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Abstract
Advances in both hardware and software are enabling rapid proliferation of in situ plankton imaging methods,

requiring more effective machine learning approaches to image classification. Deep Learning methods, such as con-
volutional neural networks (CNNs), show marked improvement over traditional feature-based supervised machine
learning algorithms, but require careful optimization of hyperparameters and adequate training sets. Here, we docu-
ment some best practices in applying CNNs to zooplankton andmarine snow images and note where our results dif-
fer from contemporary Deep Learning findings in other domains. We boost the performance of CNN classifiers by
incorporating metadata of different types and illustrate how to assimilate metadata beyond simple concatenation.
We utilize both geotemporal (e.g., sample depth, location, time of day) and hydrographic (e.g., temperature, salinity,
chlorophyll a) metadata and show that either type by itself, or both combined, can substantially reduce error rates.
Incorporation of contextmetadata also boosts performance of the feature-based classifiers we evaluated: RandomFor-
est, Extremely Randomized Trees, Gradient Boosted Classifier, Support Vector Machines, and Multilayer Perceptron.
For our assessments, we use an original data set of 350,000 in situ images (roughly 50%marine snow and 50% non-
snow sorted into 26 categories) from a novel in situ Zooglider.We document asymptotically increasing performance
with more computationally intensive techniques, such as substantially deeper networks and artificially augmented
data sets. Our best model achieves 92.3% accuracy with our 27-class data set. We provide guidance for further refine-
ments that are likely to provide additional gains in classifier accuracy.

The burgeoning number of digital imaging methods available
to aquatic ecologists, both in situ (Davis et al. 1992; Samson
et al. 2001; Benfield et al. 2003; Watson 2004; Olson and Sosik
2007; Cowen and Guigland 2008; Picheral et al. 2010; Schulz
et al. 2010; Thompson et al. 2012; Briseño-Avena et al. 2015;
Ohman et al. 2018) and in the laboratory (Sieracki et al. 1998;
Gorsky et al. 2010), is generating rapidly expanding libraries of
digital images useful in a variety of scientific applications. How-
ever, the accumulation of large numbers of images increases the
need for much more efficient machine learning methods in
order to automate the processes of image classification, data
extraction, and analysis.

Until recently, most automated image classification has
employed methods we refer to as “feature-based,” in that they
operate on a set of descriptive geometric features calculated from

the digital images, such as area, shape, aspect ratio, fractal dimen-
sion, textures, and grayscale histograms (e.g. Peura and Iivarinen
1997). The feature-based algorithms then derive a mapping from
the calculated values to labels corresponding to the type of organ-
ism. Ideally, thismapping will extrapolate to future images. Some
of the feature-based algorithms that have been applied to classifi-
cation of plankton images with varying degrees of success include
Random Forest (Grosjean et al. 2004; Gorsky et al. 2010), support
vector machines (SVMs) (Hu and Davis 2005; Sosik and Olson
2007; Ellen et al. 2015), andmultilayer perceptron (MLP) (Wilkins
et al. 1996), among others.

Since 2012, “Deep Learning” algorithms (Krizhevsky et al.
2012; LeCun and Ranzato 2013; LeCun et al. 2015) have out-
performed feature-based classifiers in a variety of fields, including
natural language processing (Socher et al. 2013), time series anal-
ysis (Graves et al. 2013), variational autoencoders (algorithms
that learn to generate or alter existing data, such as image correc-
tion; Kingma and Welling 2013), plankton image analysis
(Orenstein et al. 2015; Dai et al. 2016; Dieleman et al. 2016b;
Graff and Ellen 2016; Wang et al. 2016; Zheng et al. 2017;
Orenstein and Beijbom 2017; Luo et al. 2018), et al. Multiple
algorithms have been characterized as examples of Deep Learn-
ing, the commonality being the use of repetitive layers of algo-
rithmic structure that operate on the prior layers rather than the
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original input. Deep Learning algorithms tend to require orders
of magnitude more computation, although often such computa-
tions are highly parallelizable and can be done rapidly given
appropriate hardware. Among the most commonly adopted
Deep Learning methods are convolutional neural networks
(CNNs). CNNs have been applied to a spectrumof image recogni-
tion problems (e.g., LeCun and Bengio 1995; LeCun et al. 1998;
Matsugu et al. 2003; Ng et al. 2015; Esteva et al. 2017). Applica-
tions of CNN and Random Forest to phytoplankton image classi-
fication include Orenstein et al. (2015), while further
applications of CNNs to coral, plankton, and fish classification
are surveyed by Moniruzzaman et al. (2017). A detailed end-to-
end workflow utilizing CNNs to classify large numbers of plank-
ton images is described in Luo et al. (2018), and the results they
provide for their selected CNN architecture clearly illustrate that
CNNs can be used to classify plankton images.

CNNs obviate the need for explicit geometric image mea-
surements to be defined and generated, and instead operate
directly on the two-dimensional image contents. When a
human examines an image captured with discrete pixels such
as Fig. 1a, the Gestalt theory of perceptual grouping states that
we do not primarily perceive individual dots of colored ink or
light, but instead comprehend unified shapes in relation to
complete objects, such as in Fig. 1b (Wertheimer 1923). This
recognition may consist of simplistic objects such as “tunic,”
“stomach,” and “salp,” or more specific objects based on the
viewer’s expertise, such as “circumferential muscle bands” or
“endostyle” (Wagemans et al. 2012).

A computer’s perception is entirely different, lacking these
higher level taxonomic or morphometric concepts. Computer
“vision” is limited to a grid of integer values (Fig. 1c) and concepts
such as “42 dark gray pixel values” or “123 contiguous nonzero
pixels.” Feature-based methods use summary statistics such as
perimeter or mean intensity to describe the image or object. In
contrast, CNNs generate independent statistics for a lattice of sec-
tions of the original image, and repeat this process at multiple
scales to build a statistical summary of the entire image contents.

CNNs apply a system of hierarchical filters to the grid of pixels
in a manner inspired by Hubel and Wiesel’s investigation of
receptive fields within the visual cortex (Hubel 1959; Hubel and
Wiesel 1963). The lowest layer of the CNN consists of a set of fil-
ters as in Fig. 2a. These filters are initialized by either generating
random values or adopting a set of filters from a previously
trained CNN. The filters are then convolved against the input
image, i.e., performing element-wise multiplication between the
filter and the region of the image that it covers for every possible
region in the image. Every filter’s convolution is input for a neu-
ron, which sums these inputs, and applies a nonlinear activation
function that produces higher valued output when the match
between the filter and input region’s high values are closely corre-
lated (Fig. 2b). The neuron’s output is used as input for the next
layer of filters. Each subsequent layer of filters is similarly applied
to its predecessor. During the training phase, as labeled images
are assessed, the algorithm gradually adjusts these filters so that
they are the most useful for determining differences between
classes. Early layers of filters usually evolve to identify low-level

Fig. 1. Multiple renderings of a salp zooid (a) at low resolution (b) at full resolution typical of Zooglider, which a human generally perceives as contigu-
ous, unified shapes, and (c) a numerical representation of the intensity values in (a).
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visual concepts such as colors (or in our case, shades of gray), cor-
ners, and edges at a particular orientation as in the example in
Fig. 2. Secondary filters typically correspond to mid-level con-
cepts such as curves and textures, potentially equating to muscle
bands or outer tunic. Additional layers of filters evolve against
their predecessors’ output, ideally resulting in high level objects
such as peripharyngeal band or testes that are useful for deter-
mining the final classification label.

Although CNNs and feature-based methods operate on dif-
ferent representations of the image data, a limitation of both
approaches is that they utilize only the information contained
in the image. In contrast, human taxonomists consider the
context in which the sample was acquired when making iden-
tifications. For planktonic organisms, collection information
such as geographic location, season, depth, time of day, and
hydrographic conditions provide context metadata that may
help constrain the realm of plausible answers and facilitate
the identification process. The concept of utilizing metadata
to improve image classification has been explored in other
domains. One early work on classifying tourism photography
used GPS information in conjunction with the images to
improve identifying landmarks (Li et al. 2009). Other work
incorporated GPS information to generate metadata such as
elevation, average vegetation, and congressional district and
explored two different ways of incorporating the metadata to
achieve a 5-point gain in accuracy on a 100-way classification
task of common objects and scenes (Tang et al. 2015). While
incorporating context metadata into feature-based classifica-
tions is straightforward, it is more challenging to include such
metadata into CNNs.

In this article, we assess whether incorporation of different
types of context metadata improves classification accuracy for
both CNNs and feature-based methods. Our numerical experi-
ments are based on an original library of validated images
from Zooglider (Ohman et al. 2018), a novel in situ

zooplankton imaging device. We will illustrate how to opti-
mize the use of metadata. In addition, although machine-
learning methods involve many parameter values that can
markedly affect the efficacy of a classifier, many practitioners
simply adopt default values in commonly available software
packages. We illustrate the benefits of tuning hyperparameters
for both CNNs and five of the most common feature-based
methods, and provide guidance for selecting hyperparameter
values (where a hyperparameter is an overarching parameter
whose value is chosen before the learning algorithm optimizes
the model’s parameters). We assess the performance of
feature-based algorithms against CNNs of varying size and
complexity, and quantify the benefit of including metadata.

Materials and procedures
Machine learning algorithms and image processing
software

In addition to CNNs, we used five feature-based algorithms:
Random Forest Classifier (RFC), Extremely Randomized Trees
(XRT), Gradient Boosted Classifier (GBC), MLP, and SVM.

The Random Forest algorithm constructs an optimal decision
tree by fitting it to a bootstrap sample drawn from the training
set. Once that tree is optimized, more trees are constructed up to
a threshold (Ho 1995). We also used two more recent modifica-
tions of RFC. The XRT algorithm uses stochastic partitions of the
data instead of all data, and stochastic tree construction condi-
tions instead of fully optimizing each tree (Geurts et al. 2006).
These modifications usually cause faster algorithm convergence
while producing similar or better results (Criminisi et al. 2012).
The other RFC variation we use, GBC, draws on the concept of
boosting, where a collection of weak models can be combined
into a stronger one (Freund and Schapire 1997), in this casemore
abbreviated decision “stumps” instead of full trees (Friedman
2001).We also assess SVMs, which construct a decision boundary

Fig. 2. Conceptual application of filters to an input image as in the first layer of a CNN. (a) A bank of 3 × 3 filters. (b) Conceptual representation of
regions where a particular filter from (a) would have a strong response to the salp input image, e.g., a sharp horizontal edge at the top of a muscle band,
or a dark-to-light gradient mid-tunic.
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that optimally divides the space between all the samples based
on their overall proximity to each other in the metric space
(Cortes and Vapnik 1995), rather than directly operating on sam-
pled values of individual features, as in RFC. Finally, we assess
MLP (Rumelhart et al. 1986), where each neuron produces a flat
subset within the decision space, and by learning these flat sub-
sets collectively forms a complex decision surface (Haykin 2009)
that is extremely flexible (Lippmann1987).

We used the Python programming language (van Rossum
1995) for high-level data handling and general computation.
We used OpenCV (Bradski 2000) for image processing and
manipulation. For RFC, XRT, GBC, and SVM, we used Scikit-
Learn (Pedregosa et al. 2011). For MLP and CNN, we used the
Lasagne library (Dieleman et al. 2016a) to specify our models,
which were then executed by the Theano Framework (Al-Rfou
et al. 2016). Alternative CNN implementations are available in
TensorFlow, Caffe, and Torch, among others.

Computational equipment
We performed smaller numerical experiments on a simple

server with 40 CPU cores, 128 GB of RAM, and an NVIDIA K40
GPU. For larger scale experiments, we utilized NSF’s Extreme Sci-
ence and Engineering Discovery Environment (XSEDE.org;
Towns et al. 2014) which provided access to dozens of Graphics
Processing Units (GPUs) simultaneously via their nationwide
supercomputing resources.While each individualmodel we eval-
uated can be assessed on a single GPU, using the computational
resources of XSEDE allowed us to more thoroughly and effi-
ciently conduct experiments, which consisted of many thou-
sands of trials and replicates.

Image acquisition
Our images were acquired by Zooglider, an autonomous vehicle

with a Zoocambearing a telecentric lens system that enables in situ
imaging of planktonic organisms and particles in a volume of
~ 250 mL per frame (Ohman et al. 2018). Zooglider operates from
400 to 0mdepth and acquires black andwhite silhouette images at
a frequency of 2 Hz during ascent, creating a spatially resolved
sequence of images with ~ 5 cm vertical resolution, each imaging
an independent volume of water. Zooglider also measures conduc-
tivity, temperature, depth, and chlorophyll a (Chl a) fluorescence,
and has a dual frequency Zonar (200/1000 kHz) intended to mea-
sure acoustic backscatter from objects approximately the same size
as those imaged by the Zoocam (0.5–50 mm).Weperformed image
correction of Zoocam image frames, including de-noising and
gamma correction, to improve contrast, as described inmore detail
in Ohman et al. (2018). These operations help improve segmenta-
tion accuracy. Segmentation is the process of identifying which
particular pixels serve as edges and lie on the boundary between
two contiguous regions in an image. We used a custom, two-pass
version of Canny edge detection (Canny 1986; Ohman et al. 2018)
to segment regions of interest (ROI)within thefield of view.

Image compilation
It is important that the images selected for annotation are

selected without bias. This topic and other best practices for vali-
dating feature-based classification of plankton images are dis-
cussed by González et al. (2017). Our images were drawn from
seasonal Zooglider coverage consisting of 225 dive profiles con-
taining 1.45 million full frame image captures. We selected
150,000 full frame images and manually classified ~ 2 million
ROI from them in an unbiased manner to obtain the 178,547
non-snow ROI used in our numerical experiments. Images were
assigned to 27 categories (Table 1 and Fig. 3). We have previously
found that approximately 1000 images per class is a rough guide-
line for the number of examples a class needs to be well defined
(Graff and Ellen 2016). So for the purposes of early trials and
debugging, we created a limited data set of no more than 1000
examples per class, which yielded a total of 25,047 ROI. We con-
structed a second data set by capping each class at 5000 examples,
yielding 76,190 ROI. To quickly assess viable candidate algo-
rithms, most of our preliminary explorations were executed on
this data set, a technique we strongly recommend. As we nar-
rowed in on a solution, wefine-tuned parameters and then report
results using our largest data set, when possible. Most feature-
based approaches could not be completely trained without run-
ning out of memory or continuing indefinitely. To construct the
largest set, we combined all non-snow ROI with 171,447 marine
snowROI to total 350 k images (Table 1).

Our main assessments use this largest data set. We arrived at
350 k by evaluating larger data sets, but found no appreciable dif-
ference in accuracy, yet incurred longer computer run times. All
ROI including snow were randomly sampled from their respec-
tive classes to avoid introducing biasedmetadata or other anoma-
lies. The overall data set sizes are 1.5, 4.7, and 21.5 GB, with the

Table 1. Distribution of the 350,000 ROI in our largest data set.
Example illustrations of each of the 27 classes are provided in
Fig. 3.

Class name Quantity Class name Quantity

1. Acantharians (Sun-like) 4418 15. Fish larvae 789

2. Acantharians 1659 16. Foraminifera 320

3. Appendicularians 14,250 17. Narcomedusae 673

4. Chaetognaths 2170 18. Overturns

(nonbiological)

8734

5. Cnidarians 2358 19. Phaeodarians 1159

6. Comets 1151 20. Quasi-spheres 5387

7. Copepods 44,662 21. Spheres (egg-like) 1345

8. Nauplii (copepods) 371 22. Threads 8043

9. Dense_background

(biological)

2272 23. Marine snow 178,547

10. Diatoms high

concentrations

4899 24. Tentacles with

white streaks

1935

11. Diatoms (no spines) 20,088 25. Spheres (white) 1627

12. Diatoms (with spines) 10,115 26. Tentacles 28,984

13. Disks 2150 27. Translucent spheres 981

14. Euphausiids 913
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metadata (described below) approximately 0.1 GB for each data
set. CNNs require uniformly sized images. Based on the size of the
majority of our ROI, we selected 128 × 128 pixels, which required
rescaling some larger ROI, thus losing some detail. Smaller ROI
were increased in size by padding with neutral pixels in order to
conform to this size. Each neutral pixel contains a random inten-
sity value sampled from a normal distribution around the mean
intensity value of all images, intended tominimize introduction of
artificial edges or areas of uniform color that would be falsely
detected by first layer filters. Therefore, the padded neutral pixels,
when rendered, yield a speckled appearance rather than a solid
thick frame of a single color. When resizing, we used resampling
with the Lanczosfilter to resize the images (Blinn1998).

Hydrographic, geotemporal, and geometric metadata
We incorporated three types of context metadata: hydro-

graphic, geotemporal, and geometric (Table 2). Hydrographic

metadata are intended to reflect the in situ environment of
the specific water parcel in which the image was acquired.
These measurements include Zooglider measurements of Chl a
fluorescence, salinity, density (calculated in accordance with
Fofonoff and Miller 1983 using Fernandes 2014), and tempera-
ture, an upwelling index (Schwing et al. 1986; Pacific Fisheries
Environmental Laboratory 2018; for 33�N, 119�, averaged for
the 10 d preceding each Zooglider image), and two different
ways to approximate object concentration: acoustic backscat-
ter and distance between ROI. Chl a and CTD measurements
are made by Zooglider every 8 s, while Zoocam images are
acquired at 2 Hz; hence, measurements are linearly interpo-
lated to each Zoocam frame. We also use as metadata Zoo-
glider-measured acoustic backscatter at the two acoustic
frequencies, and the difference between them, which helps
distinguish small and large sound scatterers. The Zonar on
board Zooglider does not ensonify the same volume as that

Fig. 3. Representative ROI for each of the 27 classes imaged by Zooglider.
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Table 2. Three types of context metadata (geometric, geotemporal, and hydrographic) incorporated in machine learning experiments.
Numerals indicate the number of variables.

Geometric (58) Geotemporal (22) Hydrographic (13)

Area (7)
Area (filled area), area excluding

holes, convex hull area, equivalent

circular diameter, skeletal area, area

excluding holes/area filled ratio,

extent (area/bounding box ratio)

Perimeter (8)

Perimeter (filled), perimeter (with holes),

convex hull perimeter, Feret diameter,

height, width, fractal dimension,

orientation

Circularity (12)

Major axis length, minor axis length,

circularity (filled), circularity (with

holes), elongation, eccentricity, Feret

diameter/area filled ratio, Feret/area

excluding holes, perimeter (filled)/

Feret ratio, perimeter (filled)/area

filled, perimeter (filled)/area excluding

holes ratio, perimeter (filled)/major

axis length ratio

Symmetry (8)
Centroid [X, Y], weighted centroid [X, Y]

centroid distance, centroid

distance/area excluded ratio,

horizontal symmetry, vertical

symmetry

Gray level (14)

Gray level normalized cumulative

histogram statistics: [Slope, 1st

quartile, 2nd quartile, 3rd quartile],

intensity [Min, Mean, Max, Range,

Std_Dev, Skew, kurtosis], intensity

mean position (max-mean/range),

intensity signal/noise ratio, coefficient

of variation of pixel intensity

Image moments (9)

Central moments

Geographic information (8)
Latitude, longitude, bottom depth,

distance from [shore, pt. conception,

Santa Barbara Basin], distance from

closest shallow point (600 m),

sampling depth proxy (pressure in

dBar)

Temporal information (14)

Season (1 of 4)

Time of day (day/night/twilight status—

1 of 8)

PDO state*

El Nino/La Nina state† (as San Diego

de-trended sea level anomaly)

Measured (6)
Chl a fluorescence, salinity, temperature,

200 kHz scattering volume (SV)
‡,

1000 kHz scattering volume (SV)
‡, dB

difference (SV 1000kHz − SV 200 kHz)

Derived (7)
ρ (density), upwelling index at 33 N

119 W§, distance to nearest neighbor

ROI|| (in frame, up to 5 nearest,

in mm)

*PDO from http://research.jisao.washington.edu/pdo/PDO.latest.txt (Mantua et al. 1997).
†Anomaly from http://oceaninformatics.ucsd.edu/datazoo/data/ccelter/datasets?action=summary&id=153.
‡Returns between 3 and 8.1 m from the transducers were averaged into 1 m depth bins (Ohman et al. 2018).
§Upwelling from https://www.pfeg.noaa.gov/products/PFEL/modeled/indices/upwelling/NA/data_download.html (Pacific Fisheries Environmental Labora-
tory 2018).
||Calculated after full-frame images are segmented.
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being imaged, so the acoustic return is not a property of any
recorded ROI, but provides context information about the
aggregate density of nearby sound scatterers. Acoustic back-
scatter is averaged in 1 m depth bins.

The full frame image from which ROI are segmented also
provides information about nearby particle density. We calcu-
late the individual distances from each region to each of its
nearest neighbors in the frame, up to 5. For frames with less
than six ROI, a default maximum pixel distance of 9999 is
used. This metric will not always be accurate, since a region just
outside of the field of view may be closer than one within the
field of view, and we cannot account for the depth of the field
of view. However, it is consistent as a two-dimensional metric
for comparisons to other images within our data set and should
provide an indication of the localized particle density.

Our geotemporal metadata identify the place and time that
the image was acquired. Values measured directly aboard Zoo-
glider are hydrostatic pressure, time of image capture, and latitude
and longitude interpolated between each glider surfacing. Based
on these position values, bottomdepth is obtained from ~ 100 m
grid cells calculated by downsampling bathymetry (NOAA 2016).
We also calculate distance to Point Conception (a major upwell-
ing center) and distance to the Santa Barbara Basin (a productive
area, Ohman et al. 2013). Distance to the coast and distance to
the nearest continental slope (600 m) are calculated using the
downsampled bathymetry. We generate four types of temporal
metadata: time of day (divided into eight time intervals); season
(four seasons, each 3months long); El Niño-Southern Oscillation
index off California (monthly, from Lilly and Ohman 2018); and
PacificDecadal Oscillation (monthly, fromMantua et al. 1997).

Geometric features extracted from the images were used as
a third type of metadata for the CNN architectures (geometric
features are required for feature-based approaches). The geo-
metric values are calculated with respect to the pixels that are
designated by the segmentation algorithm as being within the
region (e.g., mean intensity, kurtosis, area, diameter, weighted
centroid). While these values are derived from information
within the image itself, the geometric features are metadata in
that they describe the original image contents and region size
before the image is rescaled and pixel values are adjusted for
processing by the CNN. These values include measurements of
the segmentation boundary, such as perimeter length and
eccentricity, and information about the originally measured
intensity values, such as minimum, maximum, and average,
which are not otherwise provided to the CNN. Combined,
they provide context about the illumination and scale of the
original image capture. Additional detail regarding these
58 geometric measurements is provided in Ellen et al. (2015).

Procedures
For each of our assessments, we split the data into 80% for

training, 10% for validation, and 10% as the test set. We gen-
erated 10 different randomly selected sets with these split
ratios as replicate trials.

Most of the algorithms are designed to accept feature
values across a defined range, usually [0–1] or [−1 to 1]. In prior
work, we examined four different whitening and normalization
techniques, and found that with our images, per region normali-
zationworked best (Graff and Ellen 2016). Commonly referred to
as Global Contrast Normalization, themean value of the image is
subtracted from each pixel, and the result is divided by the stan-
dard deviation of the original pixel values. Since each type of
metadata measurement has a scale different from the others
(e.g., temperature or sampling depth), we also subtracted the
mean of the measurement from its observations and divided by
the standard deviation. All normalizations are calculated using
the 80% split of training data for each replicate.

We calibrated each model to each replicate of the data, a pro-
cess commonly referred to as hyperparameter tuning. While
some of our feature-based algorithms require minimal tuning,
CNNs require more careful evaluation to achieve a strong model.
Training a single CNN consists of evaluating the network’s per-
formance on an image, then adjusting the network weights to
reinforce good performance and alter bad performance. This is
usually done by selecting one of the images at random without
replacement, processing it, and then selecting another. The term
“epoch” is used to describe the condition where the network has
seen each training image one time.

This workflow creates a number of different options and
hyperparameters, not all of which were evaluated. We used a
batch size of 25 to evaluatemultiple images simultaneously, thus
increasing throughput. We imposed a limit on the number of
epochs at 40, but this limit was rarely needed (see Bengio 2012
and Smith 2018 for guidance on stopping criteria and other
hyperparameter choices). We also assess data set augmentation
(Dai et al. 2016; Dieleman et al. 2016b), which involves generat-
ing synthetic examples to improve overall accuracy. Because our
images are captured with known pixel pitch and images are cen-
tered by our segmentation process, we only assessed horizontal
reflection, vertical reflection, and rotation.

CNN architecture
We trained our CNNs de novo, rather than adopting networks

from different application domains because our de novo results
were markedly better in both this and our previous work (Graff
and Ellen 2016). Initial networks have nearly randomweights and
no discriminative power. With each successive example, weights
are adjusted. The learning rate controls the amount the weights
are adjusted in response to the most recent example and is an
important hyperparameter.We used the Adam optimization algo-
rithm (Kingma and Ba 2015), which updates all network values, in
addition to modifying the initial learning rate. Two initialization
algorithms are made available through the Lasagne/Theano soft-
ware (Glorot and Bengio 2010; He et al. 2015).We evaluated both,
foundno significant difference, sowe used the former.

Network shape has a large impact on results, and is an active
area of research (Lee et al. 2015; He et al. 2016; Sabour et al. 2017;
Szegedy et al. 2017). We implemented a network shape based on
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the VGG-16 model (Simonyan and Zisserman 2014), but on a
smaller scale, since there was a 1000-way classification problem
with images of 224 × 224. We also used small filters of size 3 × 3
for every layer and the rectified linear unit activation function
(ReLU), but otherwise the convolutional portion of our network
was approximately one-quarter the size of their network.We had
a total of five convolutional layers, with 16, 32, 32, 64, and 64 fil-
ters, respectively, with a pooling layer between each one (Fig. 4).
The pooling layers serve to reduce the input size from one layer
to the next by half, using maximum value pooling: that is, for
each 2 × 2 area of activations, the maximum value is selected for
use as a single value going forward (not themean).

One other key architectural detail in the VGG-16 and
related models is the use of fully connected layers of neurons
prior to the final softmax layer that determines the classifica-
tion. We reduced the size of these fully connected layers as a

hyperparameter investigation, arriving at a configuration with
fewer and smaller layers (one eighth or more) than those used
in VGG-16, which increased accuracy while also decreasing
training time by 50% or more.

Since convolutional layers are designed to operate on image
pixels, there is no means to fuse metadata directly into the con-
volutional layers. One approach to incorporating additional con-
text metadata is to concatenate metadata values to the penultimate
network layer. This is the approach used by Tang et al. (2015) to
achieve their 5-point gain in accuracy. Instead, we find better accu-
racy when we incorporate the features earlier into fully connected
layers, as illustrated schematically in Fig. 5. Our best model, which
we call Metadata Interaction, allows some interaction between the
features with the output of the final pooling layer.

Figure 5 illustrates variations in the final fully connected
layers, to the right of the dashed line labeled “classification” in

Fig. 4. Our CNN architecture. (a) Illustration of the first convolution and pooling layers. Our input images are 128 × 128. Each of the 16 3 × 3 filters is
convolved against the input, resulting in an activation volume of 16 × 128 × 128. A 2 × 2 max pooling layer scales the image by 50%. (b) Our baseline
architecture has five convolutional layers with 16, 32, 32, 64, and 64 filters, all are 3 × 3. A 2 × 2 pooling layer follows each filter layer. After these
10 layers are two fully connected layers, each with 512 neurons before the final softmax length 27 vector corresponding to predicted classification.
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Fig. 4. All four of these architectures have identical configurations
of five convolutional and five pooling layers (Fig. 4b). In a fully
connected layer, eachneuron’s output is routed to every neuron’s
input in the subsequent layer, with a weight on each route.
Therefore, the number of weights applied to a fully connected
layer’s output is the product of the size of the layer and its succes-
sor. Regardless of whether the input is from the image or the
metadata, since they are implemented as neurons, all of these
layer variations are trained using the same algorithm as the con-
volutional layers. Our selected “NoMetadata” architecture routes
the convolutional layer’s output to two consecutive layers of
512 neurons followed by a layer of 27 neurons, resulting in a total
of ~ 278 k weights. (Fig. 5—convolutional layers not pictured
that contain ~ 700 k additional weights in an identical configura-
tion for all pictured models). If we concatenated the vector of all
93 features to the penultimate layer, that CNN would have
slightly more weights than the No Metadata option. Therefore,
our simple concatenation model has smaller fully connected
layers of 512, 256, 128, and 27. After adding metadata, there are
only ~ 193 kweights, to ensure that any gain in accuracymust be
from context metadata. Our Metadata Interaction model is even
more restricted.We use the same layer structure as in simple con-
catenation (256, 128) but route the metadata through the multi-
ple fully connected layers instead of the CNN extracted features,
so the number of weights is significantly less than either (~ 74 k
weights). Alternatively, we route the metadata through a single
layer, combine them with the extracted features, and use two
more fully connected layers for a total of 257 k weights. These are
the largest numbers, 193 k, 74 k, and 257 k, corresponding to the
usage of all 93 contextmetadata features.

Dropout (Hinton et al. 2012) acts as “a stochastic regulari-
zation technique” (Srivastava et al. 2014). Dropout is the con-
cept of randomly ignoring the output of some neurons in the
network in order to strengthen the rest of the network, and in

most cases is beneficial. We assess the impact of dropout on
both pixel data and on context metadata.

Performance metrics
We report binary accuracy for each of our models, where full

credit is given for each correctly classified image and none for
incorrect classifications, regardless of class of origin. A confusion
matrix is used to interpret class-specific distribution of true/false
positives and negatives. Timing information, when provided, is
for single-threaded computations for training and testing a single
replicate of the data. It does not include the time to load the
data set intomemory. Our boxplots display whiskers equal to 1.5
times the inner quartile range, with the results of individual trials
overlain as circles to indicate the distribution of the trained
models. The number of trials was often as few as 10 (1 for each
replicate) and rarelymore than 20.

Assessment
Feature-based algorithm assessment

We assessed a range of different hyperparameters in order to
select values that provide the best overall performance of each of
the five feature-based algorithms that we evaluated, starting with
only the 58 geometric features (Fig. 6). Heatmaps show averages
at each combinationof the twomost influential hyperparameters
we assessed across 10-folds, with the less computationally
demanding algorithms having multiple repetitions (Fig. 6, left
column). By examining the variance across all trials for the most
important hyperparameter value (Fig. 6, right column), we are
able to determine that no further search is warranted. The left-
most bar in each Fig. 6 right column panel contains a suboptimal
combination, the middle bar shows the results from adjusting
the key hyperparameter by a single increment, and the rightmost
bar shows the results from one additional increment. The

Fig. 5. Schematic illustration of our baseline (left) and three architectures for metadata incorporation (Simple Concatenation, Metadata Interaction, and
More Interaction). All convolutional layers precede illustrated alternatives, as illustrated in Fig. 4.
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rightmost values show little accuracy gains, but all have signifi-
cantly higher computational cost. For example, time to conver-
gence for SVM on a single replicate of our medium data set with
regularization strengths of 100, 1000, and 10,000 resulted in con-
vergence times of 2 h, 6 h, and 34 h, respectively. Therefore, the
middle bar represents the selected hyperparameter combination
for all further assessments. The hyperparameters with the most
impact on our assessment for the three Random Forest based
algorithms are the same (RFC, XRT, and GBC, Fig. 6a–f). They
each have a constraint on the maximum size of the forest

constructed (number of estimators) and a limit on the number of
features considered in each tree/stump (maximum depth).
For SVMs, best practices are to perform a grid search over the ker-
nel coefficient for the decision boundary (gamma) and the pen-
alty parameter that determines the strength of the error term
(Fig. 6i,j). Both are recommended to be evaluated in geo-
metric/exponential increments (Hsu et al. 2003). Our MLP uses
the Adam optimization algorithm and the rectified linear unit
activation function, which is the default parameter, and also the
same as our CNN architecture. TheMLP’s shape is determined by

Fig. 6. Hyperparameter grid search results for five different feature-based machine learning classification methods (a, b: RFC; c, d: XRT, e, f: GBC; g, h:
MLP; i, j: SVM). Cells in left column contain average results across all trials for a given hyperparameter combination. Results for each hyperparameter
combination across one key region of the grid search are highlighted with a box, and the boxplots in right column show individual trials for these regions
illustrating the variance within that configuration.
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the hyperparameters of the number of “hidden” layers of neu-
rons, and the number of neurons in each hidden layer (a hidden
layer is between the input and output layers). We assessed two
different network shapes; one with two equally sized layers (rect-
angle) and one with three layers, each half the size of the preced-
ing layer (triangle). Our second hyperparameter is the width of
the base layer (Fig. 6g,h).

Our evaluation of the effect of data set size on classification
accuracy of the feature-based algorithms showed that the larg-
est data set consistently provided the best results (Fig. 7). Our
medium data set contains ~ 3× more training images than the
small but the large contains ~ 14× more training images than

the small; therefore, the increase in accuracy from our small to
medium to large data set is less than linear with respect to the
number of training images, suggesting we are approaching
asymptotic performance.

Fig. 8. The effect of metadata on classification accuracy for five different
feature-based machine learning classification methods (a: RFC, b: XRT, c:
GBC, d: MLP, e: SVM) on our medium data set. The leftmost bar in each
graph corresponds to a model using only the 58 geometric features, the
next bar adds 22 geotemporal features, and the next bar uses the 58 geo-
metric features plus 13 additional hydrographic features. The rightmost
bar utilizes all 93 features.

Fig. 7. Accuracy vs. data set size for five different feature-based machine
learning classification methods (a: RFC, b: XRT, c: GBC, d: MLP, e: SVM).
The small data set contains ~ 25 k images, the medium data set contains
~ 76 k images, and the large data set contains 350 k images. All sets have
27 classes.
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Having optimized hyperparameters and data set size, we now
turn to metadata. Inclusion of context metadata significantly
boosts performance for all five feature-based algorithms (Fig. 8).
For algorithms assessed on the medium data set, we find gains of
6.9–12.2 percentage points. This gain is similar to the benefits of
using the large set on geometric data only (Fig. 7). Geotemporal
and hydrographic metadata have approximately the same influ-
ence, and inclusion of both results in the best overall classifica-
tion accuracy. Having nearly doubled the size (from58 to 93), the
feature-based approaches could not be completely trained with-
out running out of memory or continuing indefinitely, so those
results are not presented.

CNN assessment
CNNs have more hyperparameters that dramatically

affect performance, so more preliminary investigation is
required. Two that have the largest impact on performance are
learning rate and regularization strength. We found the effect

Fig. 9. Hyperparameter optimization for CNN. (a) Heatmap cells contain average accuracy across all trials for a given combination of hyperparameters.
(b) Boxplots show the distribution of results for each hyperparameter combination in the heatmap. All trials use medium data set size.

Fig. 10. The effect on classification accuracy of using reflection as a
runtime augmentation with our baseline CNN architecture, with (left)
medium and (right) large data sets.
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of learning rate to be much stronger than that of regulariza-
tion, but both have a local maximum at regularization = 0.0001
(Fig. 9). As our CNN architecture matured, we revisited this
assessment, but setting both values to 0.0001 remained opti-
mal for our data. All subsequent figures use this value.

Augmentation strategies of horizontal and vertical image
reflection have a stronger impact on performance with our
medium than with our larger data set (Fig. 10). Our implemen-
tation used a 50% chance at runtime for each reflection opera-
tion on each image in each epoch, thus there was no
additional computational demand, so we used this augmenta-
tion on all subsequent figures.

We evaluated the impact of dropout by incrementing the prob-
ability that any particular neuronwill have its output ignored.We
found a nearlymonotonic association between dropout probabil-
ity and accuracy onourmediumdata set (Fig. 11a) but a negligible
effect with our large data set (Fig. 11b). Figure 11 reports results
when we applied the dropout probabilities on only the fully

connected layers of neurons. Our finding of limited influence of
dropout with larger data sets is notable because of the widespread
use of dropout (Srivastava et al. 2014). Since using dropout does
not decrease performance, and it is widely used inmachine learn-
ing applications, we choose to use it for the remainder of our
assessments to be in line with contemporary conventions. Since
the dropout value of 50% provided the most benefit for the
medium data set, we used 50% dropout for the rest of our assess-
ments. We assessed numerous network configurations before
arriving at our selected baseline method. This baseline method
performed as well or better than the other alternatives we evalu-
ated (Fig. 12). Our baseline model has five convolutional layers
(16 filter convolutional layer, pooling layer, 32, pool, 32, pool,
64, pool, 64, pool) as shown in Fig. 4. This model, labeled “Base-
line” in Fig. 12, had an improvement in accuracy of 1.5 points
over a similar model with three convolutional layers (16, pool,
32, pool, 64, pool), labeled “Fewer Layers” in Fig. 12. Models with
dropout applied to the convolutional layers (Fig. 12—“More

Fig. 11. The effect on classification accuracy of using dropout with our baseline CNN architecture for (a) the medium data set and (b) the large data
set. x axis indicates the dropout probability on only the fully connected layers of neurons.
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Dropout”), and with narrower fully connected layers (512, 256,
128, 27—Fig. 12—“Narrower Fully Connected”) had lower accu-
racy than our selected baseline configurationwith three fully con-
nected layers (Fig. 5–512, 512, 27). Substituting 5 × 5 filters in
place of our 3 × 3 filters, triples the amount of memory required
but yields nearly identical results (Fig. 12—“5 × 5 Filters”
vs. “Baseline”). Accuracy from our CNN is markedly better than
all of the feature-based approaches: the accuracy of our baseline
CNN on even our smallest data set (25 k ROI; ~ 1 k per class)

exceeds accuracy of each of the feature-based classifier accuracies
on the largest data set (350 k ROI; maximum 5 k per class) as
shown in Fig. 3. Our CNNs exhibited a nearly linear relationship
between convergence time and number of training examples,
i.e., 1–2 hper trial on our small data set and 8–12 h per trial onour
largest data set.

Having selected our baseline CNN, we then analyzed the
effect of augmenting the pixel information with context meta-
data (Fig. 13). Both geotemporal and hydrographic context

Fig. 12. The effects of CNN architecture (i.e., changes in dropout, number of layers, connectivity, and filter size) relative to our baseline architecture
(4th column) for different training set sizes: small (white), medium (gray), and large (black). All results use pixel dropout and reflection.

Fig. 13. The effects on classification accuracy of adding context metadata on our large data set. Experiments include no metadata and hatching indi-
cates the contribution of every combination of geometric (/), geotemporal (\), and hydrographic (|) metadata.
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metadata individually make a significant improvement on
classification accuracy (p < 0.001; Fig. 13). However, the com-
bination of both geotemporal and hydrographic metadata
yields a classification accuracy similar to each of them individ-
ually, potentially indicating overlap or redundancy between
the features. Combining each individually with the geometric
metadata provides a boost in performance. One possible expla-
nation for this result is that the geometric metadata includes
information about the original region of interest size, which
on its own did not prove valuable, but size given a depth or
temperature may have discriminative value. Using all three
metadata types provides still more accuracy gain, to 90.5%
accuracy. Hence, our remaining analysis will be conducted uti-
lizing all 93 features (Table 2).

We find that the manner in which metadata are incorporated
affects accuracy. We obtained better accuracy when we incorpo-
rate the features earlier into fully connected layers (Fig. 14). Our
Simple Concatenation metadata model not only has smaller
weights overall than our model without metadata (Fig. 5—193 k
vs. 278 k), but specifically has smaller fully connected layers of
512, 256, 128, 27. Abovewehave shown (Fig. 12) that this config-
uration is less effective than a configuration with layers of
512, 512, 27, so all accuracy gained must be from the metadata
inclusion. Because the metadata interaction requires more
weights for the metadata, we remove the fully connected layers
from the pixel-based data entirely, providing evidence that all
improvement from theMetadata Interactionmodel over the Sim-
ple Concatenation model is from the metadata and interaction,
not network size or shape.

We found that applying dropout to the fully connected
layers containing the features derived from metadata is detri-
mental to accuracy (Fig. 15). Metadata dropout is detrimental
even if pixel dropout is removed (Fig. 15a), especially at high

dropout fractions. Metadata dropout is detrimental for the
large set (Fig. 15b).

We investigated more advanced CNN architectures to pursue
additional accuracy (Fig. 16). Cyclic Pooling and Rolling
(Dieleman et al. 2016b) have been shown to improve accuracy at
the cost of much longer runtimes (5–8× longer). Our Metadata
Interaction model provides almost as much benefit as Cyclic
Pooling and Rolling (median 90.70% vs. 90.40%). Doubling the
number of filters in each layer results in a small performance gain
(to 90.92%) at the cost of 50% longer runtimes. Doubling the
number of layers instead results in a smaller performance gain at
the cost of 100% longer runtimes. Cycling Pooling and Rolling
are still beneficial with metadata, and across different network
sizes. Cyclic Pooling can be applied by itself, but Metadata Inter-
action plus Cyclic Pooling and Rolling is better, and this combi-
nation is significantly better than using Pooling and Rolling
without metadata (p < 0.0001). Doubling the number of filters is
now not nearly as beneficial; this result makes sense if the addi-
tional filters were being devoted to learning rotations of other
meaningful filters. Accordingly, doubling the number of layers
and also augmenting with Cyclic Pooling and Rolling provides
more of a gain than just doubling the number of filters. Our best
model achieves 92.28%accuracywith our 27-class data set.

The confusion matrix in Fig. 17a evaluates class-wise perfor-
mance of our best performing model, which includes context
metadata added via Metadata Interaction, Cyclic Pooling, and
Rolling (Fig. 17a).Our confusionmatrix is shaded to prioritize true
positive rate. For example, 21 of the 75 fish larvae in the test set
weremislabeled as copepods, so that cell has a strong red shading,
but the 111 snow mislabeled as copepods (corresponding to
0.06% out of the 17,889 snow ROI in the test set) is essentially
uncolored. Figure 17b illustrates the benefit of inclusion of meta-
data for particular classes, showing that most classes benefit. The

Fig. 14. The effects on classification accuracy of different approaches to incorporating metadata (Simple Concatenation, Metadata Interaction, and
More Interaction) for the large data set.
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four largest gains are found for nauplii, narcomedusae, euphau-
siids, and fish larvae, corresponding to some of the least observed
classes. Prior to inclusion of metadata, some chaetognaths had
previously been labeled as three other relatively thin and straight
classes: appendicularians, tentacles, and thread-like diatoms,
while all three error types are minimized with the addition of the
metadata.

Discussion
Impact of context metadata

We found that inclusion of context metadata provides gains
in classification accuracy for both CNNs and feature-based classi-
fiers. In the case of CNNs, the accuracy gain averaged 1.3 points,
increasing the overall classification accuracy to 90.5% prior to
enhancing CNN architecture. While the numerical increase is
modest, the results were consistent across all replicates and repre-
sent a systematic improvement in overall accuracy, with

appreciable gain in specific classes of images. Inclusion of meta-
data also improved CNN execution time, reducing convergence
time by 17% (from 30.9 epochs to 25.6 epochs). In the case of
feature-based classifiers, inclusion of metadata markedly
increased classifier accuracy on the medium data set between 6.9
and 12.2 points, depending on themethod considered.

Our estimate of the impact of addingmetadata is likely conser-
vative, because our feature-based models are possibly undersized
for the metadata. Since models with and without metadata can-
not be the same size while also being the same complexity, we
favored the models without metadata. We initially tuned our
models with 58 geometric measurements, held hyperparameters
constant (e.g., number and depth of decision trees), but then
added the geotemporal and hydrographic context metadata
without retuning, nearly doubling the input to 93 features. Meta-
data increased execution time as much as 1.6×, proportional to
the increase in the number of features (from 58 to 93). However,
hyperparameter choices had 10–100× more impact on runtime

Fig. 15. The effects on classification accuracy of including dropout with our CNN architecture for (a) the medium data set and (b) the large data set.
x axis indicates the probability that an individual unit’s value would be dropped.
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Fig. 16. The effects on classification accuracy of advanced CNN architectures on our large data set. Models with metadata are shaded and models with
other augmentations have hatching. See text for explanation.

Fig. 17. A confusion matrix indicating the specific errors made by our best performing model, which includes metadata interaction as well as cyclic
pooling and rolling. (a) Rows indicate the true label and columns indicate the CNN algorithm’s predicted label. Color intensity is proportional to the true
positive rate. (b) Gains in classification accuracy from inclusion of metadata for each category of organism.
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than this increase. Overall, these are substantial gains that illus-
trate the clear advantage to incorporating context metadata
across a variety ofmachine learningmethods.

Althoughwe dividedmetadata into three categories for illustra-
tive purposes, they are all treated equally within our architecture,
which includes them in the later layers of our CNN. Inclusion of
multiple types of metadata will usually outperform a single type
for two reasons. The first is due to the CNN architecture, where
strong positive correlations outweigh neutral or negative correla-
tions, so images benefitting fromone type ofmetadatawill usually
not be harmed by the inclusion of additional metadata that are
neutral or even slightly contradictory. The second reason is that
our Metadata Interaction architecture allows for combination of
features to impact the classification (e.g., a specific temperature
value takes differentmeanings inwinter vs. summer).

We assessed 12 different architectures for incorporating
context metadata into our CNNs. The most naïve incorpora-
tion of metadata provided an accuracy gain of 0.6 points, less
than half the benefit provided by our best architecture. Seven
of our interaction architectures yielded nearly identical results
at 0.8 points beyond that Simple Concatenation approach.
We used efficiency of execution as a tiebreaker for designating
our preferred Metadata Interaction model. However, an effi-
cient network with a data set size of 350 k could be undersized
for larger data sets. Perhaps some of other architectures with
additional fully connected neurons processing context meta-
data would outperform the simpler architecture we presented.

CNNs vs. feature-based algorithms
Prior to the development of CNNs, plankton images were

classified with varying degrees of success primarily using geo-
metric features (reviewed in González et al. 2017). Recently,
CNNs have been applied to plankton classification problems
hinting at the potential of the approach (Wang et al. 2016;
Zheng et al. 2017). A public competition (Robinson et al.
2017) stimulated new solutions (Dieleman et al. 2016b) but
there has not yet been a quantitative assessment of specific
design choices when considering a CNN for plankton image
analysis. Luo et al. (2018) validated the findings from the con-
test and showed that CNNs do successfully generalize to future
images and therefore can be used as part of an end-to-end
workflow that they outline in detail. However, their “described
method is highly tuned to images collected by a particular
instrument” (Luo et al. 2018). In addition to incorporating
context metadata, here we optimized and quantitatively evalu-
ated the performance of CNNs that incorporate a variety of
machine learning augmentations in comparison with classical
feature-based classifiers. We found that CNNs do consistently
improve upon applications of feature-based approaches.

On the smallest data sets, the computational requirements for
CNNs exceed feature-based approaches, but as the size of the data
set increases, feature-based approaches require more resources
because CNNs are influenced less by data set size. Since CNNs
consider images individually, there is a linear relationship with

data set size and number of images. Since feature-based algo-
rithms generally consider the whole data set in the aggregate,
they scale more steeply than linear with respect to data set size,
with SVMs being more than quadratic (Cortes and Vapnik 1995;
Pedregosa et al. 2011). Our results clearly show the benefit of
larger data sets, although that benefit can only be realized if the
algorithm can be successfully trained. In practice, CNNs are also
more tractable on larger data sets becauseGPUs have hundreds or
thousands of cores well suited to the types of calculations that
CNNs depend upon.

One disadvantage of CNNs is that they currently lack direct
interpretability (Zeiler and Fergus 2014). In contrast, statistics
can be calculated on a trained RFC model about the relative
importance of individual features, and particular values of
those features. In a CNN, the first layer of filter weights can be
rendered, but the interaction architecture of a CNN causes
subsequent layers to lack a straightforward visualization,
although this is an area of open research (Castelvecchi 2016).

Optimizing machine learning architectures for plankton
classification

Both CNNs and feature-based algorithms require hyper-
parameter tuning for optimal performance. For our feature-
based algorithms, we followed best practices for hyper-
parameter optimization and found, as previously described in
the literature, that attention to the number of estimators and
depth for RFC-based approaches (Boulesteix et al. 2012), net-
work size and activation function for MLPs (Haykin 2009),
and gamma and regularization for SVMs (Hsu et al. 2003)
improves performance. We found increasing the amount of
training data improved accuracy. These two conclusions are
consistent with an earlier investigation (Ellen et al. 2015).

We trained our CNNs de novo. In some applications of
CNNs, starting with a pretrained model could result in faster
training times and increased accuracy, as demonstrated on
phytoplankton images (Orenstein et al. 2015). In training our
CNNs, we followed current best practices for CNNs (Bengio
2012; Smith 2018), although this guidance is evolving rapidly.
Notably, we found that dropout (Hinton et al. 2012) produced
little-to-no effect on our pixel-based data, and was even detri-
mental when applied to our context metadata layers. Both
types of data set augmentation we evaluated were beneficial.
Reflection increased accuracy by 0.34 points with no increase
in runtime, while Cyclic Pooling and Rolling (Dieleman et al.
2016b) increased accuracy by 1.6 points at a cost of a ~ 4×
increase in execution time. Dieleman et al. (2015) first tried
the concept of Cyclic Pooling and Rolling on a different class
of rotationally invariant images (galaxy morphology). An
alternative method of obtaining rotational augmentations by
Li et al. (2018) may be more efficient than the one we used
from Lasagne (Dieleman et al. 2016a). Additionally, iterative
augmentation is possible by using early models to iteratively
process available unlabeled data in order to harvest additional
training images, as described in Luo et al. (2018).
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Since CNNs scale better with data set size than feature-
based approaches, it is easier to consider more complicated
and deeper architectures with them (i.e., Deep Learning). Pub-
lished CNN benchmarks for image classification have
increased from 19-layer networks, to an ensemble of seven
separate 22-layer networks, to 152-layer networks, then thou-
sands of layers (Simonyan and Zisserman 2014; Szegedy et al.
2015; He et al. 2016). A particular model called ResNet
(He et al. 2015) was applied to plankton by Li and Cui (2016)
with modest results, which the authors suggest could be the
result of insufficient training images. In limited trials, we mod-
ified a version of ResNet (Szegedy et al. 2017) to fit our image
dimensions with 24 layers, and it provided an increase of 0.8
points over our five layer Metadata Interaction model on our
medium data set, at a cost of ~ 12× longer run time. We tried
a 50-layer version of ResNet, and it performed worse than the
24-layer model (0.3 points lower, at a cost of ~ 1.25× longer
run time). These preliminary results suggest that the 50-layer
network was overfitting, and the 24-layer network is closer to
the optimal configuration for our images.

Metadata limitations
Supervised Machine Learning algorithms depend on train-

ing data being representative of future samples. For plankton
image classification, this guidance is applicable not only for
the distribution of the sampled organisms (González et al.
2017), but also for any context metadata used. The term “con-
cept drift” (Widmer and Kubat 1996; González et al. 2017)
describes the condition when this future distribution is not
stationary. Some of the metadata distributions will drift faster
than the images of the individuals themselves, as the popula-
tion level responses can lag the changes in context measure-
ments. One additional concern is that metadata will be less
useful for conditions that are not well represented in the train-
ing set; time of day is not informative if all samples are col-
lected at night.

Comments and recommendations
Recommendations

Training sets should, in most circumstances, reflect the pro-
portional distribution of classes. The percentage of marine
snow in our ROI imaged in situ exceeds 90%, but our largest
data set is only 50% marine snow. We conducted limited eval-
uations on more unbalanced data and found a small increase
in overall performance, but most of that increase was due to
higher accuracy on snow only. Accuracy on non-snow classes
decreased slightly, while false positives in the snow category
increased. Since we will be correcting algorithm errors manu-
ally, we found this outcome less desirable than the situation
shown in the confusion matrix above, where very few non-
snow ROI end up with the label of snow. Many options exist
for penalty functions where different types of errors are
assigned different costs to create different types of confusion

matrices (Elkan 2001), which then further facilitates treatment
of larger data sets.

We only present results where each trained model is used
to label images independently, but in practice, multiple
models can be used simultaneously or sequentially. Combin-
ing multiple individual models in an attempt to achieve
greater accuracy than any one on its own is called ensembling.
Ensembling of feature-based models without metadata on
plankton images can be beneficial (Ellen et al. 2015). The con-
cept of ensembling is well accepted, as nearly every major
machine learning competition is won by an ensemble of mul-
tiple models (Robinson et al. 2017). The dynamics of an
ensemble make academic analysis difficult, because the effi-
cacy of each model needs to be examined as well as the effects
of interactions between them, but evidence supports their
implementation.

Most of our workflow would remain the same regardless of
data set size with one exception. Small data sets with low per-
forming models may learn so slowly or erratically as to never
finish training. We set a hard limit on the number of epochs
as a precaution against incurring computing costs on poorly
performing models. Our 40 epoch limit was reached on ~ 20%
of small data set trials, ~ 8% of medium data set trials, and
~ 2.5% of large data set trials. If we were doing more exhaus-
tive investigation on smaller data sets, we would resume train-
ing the model from the 40th epoch for those trials.

Comments
Our CNNs are significantly smaller with a larger number of

training examples, particularly a larger number of training
examples per class, than other contemporary evaluations of
CNNs with plankton images (Dieleman et al. 2016b; Wang
et al. 2016; Moniruzzaman et al. 2017; Zheng et al. 2017).
Luo et al. (2018) note that “Deep-learning methods require
large amounts of training data, and our 42,000 item training
set for 108 categories was likely on the low end.” The overall
quality, resolution, and between-class distinctiveness of our
images are similar to previous studies. Based on previous pub-
lications, we did not expect our models to perform as well as
they did with so few layers and filters. Some preliminary
results suggest that our networks with 10 convolutional layers
are approaching asymptotic accuracy with respect to CNN
complexity.

We outlined our calibration process for both feature-based
approaches and CNNs, and found that in many situations,
accepted practices do hold (e.g., the importance of hyper-
parameters for feature-based approach hyperparameters and
augmentation for CNNs) but we did find the benefit of drop-
out to be less significant than previously observed.

We found geometric, geotemporal, and hydrographic meta-
data to be useful for classification of in situ images for both
feature-based and CNN approaches. We found the context
metadata to be useful not only as a straightforward augmenta-
tion at the end of the CNN architecture, but found other
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incorporation strategies to be twice as beneficial for accuracy,
in addition to being more computationally efficient.

CNNs are evolving rapidly, with repeated layer substruc-
tures (e.g., ResNet), optimization functions, and ensembling
techniques as three prominent research areas that will likely
boost performance beyond our current results. The four factors
that we found to provide the most benefit (data set size,
appropriate network depth, data set augmentation, and inclu-
sion of context metadata) were generally additive. We antici-
pate further advances by optimizing these four factors while
also incorporating future structural refinements of Deep Learn-
ing methods.
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