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The thousands of different species of drifting organisms that comprise the plankton form 

the base of the food web in the world’s largest ecosystem; hence sampling plankton to increase 

our scientific understanding and assess their status is important for ecological, environmental, 

and commercial purposes.  Rapidly expanding libraries of digital images of plankton necessitate 

new approaches for object recognition and efficient classification.  In this dissertation I inventory 

geometric features commonly used in biological object classification and benchmark the 

accuracy of supervised machine learning algorithms that use these features.  I then employ 
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convolutional neural networks (CNNs) and evaluate preprocessing techniques and augmentation 

strategies to improve classification of zooplankton in scientific images.   

I use two types of images: those acquired open-ocean by a novel autonomous Zooglider 

and images of preserved zooplankton from a laboratory-based Zooscan.  For both instruments, I 

compiled 350,000+ original training images of zooplankton and marine snow (i.e., detritus) in 16 

or 27 classes.  To improve object detection, I implement a flat-fielding background correction 

algorithm and an original two-pass algorithm for segmenting Zooglider images.  I investigate 

techniques for preprocessing images, and find that per-image normalization (global contrast 

normalization) results in the highest accuracy for plankton images.  

Since environmental factors force changes in the plankton assemblage, human experts 

use knowledge of these conditions to determine expected and observed species.  Therefore, I 

evaluate the effect of inclusion of geotemporal (e.g., sample depth, location, time of day) and 

hydrographic (e.g., temperature, salinity, chlorophyll-a) context metadata on classification 

efficacy and find a marked accuracy boost for feature-based classifiers (e.g., random forests, 

support vector machines, and multilayer perceptrons). 

I introduce different approaches for incorporating geometric features and context 

metadata into CNNs and find that these augmentations (geometric, geotemporal, hydrographic) 

significantly reduce error rates in CNNs, and using all three yields the most improvement.  For 

CNNs, I evaluate the effect of changes in dropout, number of layers, connectivity, and filter size 

on classification accuracy.  I document asymptotically increasing accuracy with more 

computationally intensive techniques and complex architectures, such as substantially deeper 

networks and artificially augmented data sets.  The best CNN model achieves 92.3% accuracy 

with a 27-class dataset. 
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CHAPTER 1 Introduction to the Dissertation 
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1.1 The Case for Automating Biological Object Classification 

Counting or labeling objects within images is a time consuming part of many scientific 

processes, including in the biological sciences. From in situ observations to lab-based 

experiments to medical diagnosis, assessing the presence or quantity of objects is critical to 

achieve the scientific assessment or objective. Applications where assessing a small number of 

images with 100% certainty is required do not make a good candidate for automation; a scientific 

process that requires counting or observing hundreds or thousands of objects, with some 

tolerance for a noise in the measurements is amenable to modern machine learning technologies. 

Automating these processes was inconceivable until recently, yet there is strong motivation to do 

so. First, human experts are often required for these specialized image processing tasks, 

including plankton classification (Robinson et al. 2017). For many repetitive tasks humans are 

susceptible to fatigue, boredom, or bias that causes errors, which may skew or invalidate the 

outcome, and plankton classification is no exception (Culverhouse et al. 2003; Culverhouse 

2007). Second, automation allows for faster results. In the case of a medical diagnosis, increased 

speed could save lives, in the case of biological oceanography, increased speed could facilitate 

better sampling and understanding of oceanic phenomena in progress, particularly unusual events 

such as the recent warm anomalies in the Northeast Pacific (Bond et al. 2015; Ohman 2018). 

Third, automation reduces cost, which allows for markedly increased sample sizes and more 

frequent or comprehensive assessments. In the case of climate sciences and environmental 

monitoring, the impact could be global in scope (Hays et al. 2005; Field et al. 2006; Richardson 

et al. 2009). For widely distributed or longitudinal studies, an additional benefit can be 

consistency; an algorithm can be deployed in multiple locations worldwide simultaneously and 

for a longer duration than is possible for most human experts. Fourth, as more species are 
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discovered, data that has already been analyzed will need to be reassessed. There are thousands 

of species of plankton, but dozens more being identified annually. Some are obscure, such as 

very large (~70cm) gelatinous species from 2000m+ depth (Pugh and Haddock 2014), or so 

distinctive they are unable to be assigned to an existing phylum (Just et al. 2014). Also many 

new species are revealed from existing collections when sufficient samples are analyzed, for 

example, an entire taxonomic family of crustaceans within the Copepoda subclass required 

reorganization and further delineated into additional species (Bradford-Grieve et al. 2017), which 

would also trigger a need for reanalysis. Although not a new species, a physical specimen was 

captured by a Remotely Operated Vehicle (ROV) in the relatively shallow (100-200m) and well-

sampled waters of Monterrey Bay which turned out to be a species that had been described once 

(Chun 1900) and not reported for 100 years (Sherlock et al. 2016). Upon review of archived 

ROV with a more precise description, that species had been sampled 12 times on video over the 

previous decades, just not recognized (Carey 2016; Sherlock et al. 2017).  

1.2 Defining the Problem Space 

When two or more target classes of interest are to be identified from within a set of pixel-

based images, the goal can be formulated as a supervised machine learning classification 

problem. First, a set of ‘gold standard’ images is created where the desired labels are provided 

with authority from a trusted source, usually a manual annotation. Next, image processing 

techniques derive sets of numerical features as a level of abstraction from the pixel 

representations. Finally, the numerical features are used as input to the machine learning 

algorithm to train a model. The goal is to automatically assign a label using the same image 

processing techniques, and to evaluate the efficacy of the machine learning model.  
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Two of the most significant distinctions for image processing are whether the objects are 

identical or merely similar, and whether the objects are deformable or non-deformable. While 

each type of object has unique challenges, and many image processing techniques are used 

across all four object types, this introduction will focus on feature extraction techniques that are 

most clearly relevant for deformable, non-unique objects (Figure 1.1). Most biological objects 

are in this category.  

 

Figure 1.1: Representative object types for image classification problems, arranged on 

two different axes: uniqueness and rigidity. Biological object classification tends to 

involve non-unique, deformable objects.  

 

Besides the target object's criteria, there are other common image processing challenges 

resulting from the manner in which the image is captured. Two important considerations are 

whether the objects will be easy to locate in the image, and whether or not they will be obscured. 

Segmentation is the definition of a boundary separating a `region of interest,' or ROI, from the 

`background'. Obstructions of the ROI are called occlusions. I am considering the case where 

segmentation has already been performed, or where the target object is visible without much 
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clutter. Applicable domains therefore include identifying biological objects within a fluid, such 

as aquatic organisms, aerial organisms, cellular level identification, and particle recognition 

(Figure 1.2).  

 

Figure 1.2: Representative biological object classification problems, again arranged on 

two axes: prevalence of occlusions and ease of segmentation. Plankton images tend to 

be infrequently occluded and easier to segment.  

 

One additional consideration for the image is the manner in which it was captured. 

General purpose image processing such as object recognition, scene understanding, or optical 

character recognition are generally performed with data from a standard camera, which is 

intended to be used in a variety of illumination conditions, at various focal lengths (and therefore 

viewing angles) employing a wide range of magnification. General purpose images are generally 

recorded extemporaneously, and the information they convey is generally entirely contained 

within the pixels, or perhaps supplemented by a small amount of metadata such as date and time.  

Biological object processing in support of scientific applications is usually performed in a 

known, controlled environment, such as a microscope, flow cytometer, or wildlife camera. This 
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provides a known pixel pitch and other high levels of consistency from one image to the next. 

Also, these images are generally not captured spontaneously, but are often acquired in a planned, 

controlled manner. Examples of this type of image acquisition includes processing a sequence of 

known samples (e.g. medical diagnostics), at a fixed interval (e.g. time lapse), or based on a 

known criterion (e.g. motion-activation). Because of these characteristics, the images often 

contain metadata that are critical to interpreting the image, such as a location or a sample ID 

(unique identifier). Sometimes these devices also record other information, such as fluorescence, 

directly with the file, while at other times, such as with a medical chart, the information is not 

directly measured physically by the camera. All of these factors lead to a tendency for images of 

biological objects to have significantly more metadata than other types of images. 

This dissertation will primarily focus on images of mesozooplankton drawn from Scripps 

Institution of Oceanography resources, including the California Current Ecosystem – Long Term 

Ecological Research (CCE-LTER) project, the Pelagic Invertebrate Collection, the California 

Cooperative Oceanic Fisheries Investigations (CalCOFI), and a novel in situ autonomous 

Zooglider (Ohman et al. 2018). However, the findings and techniques presented extend to many 

other biological object classification tasks. 

1.3 Motivating Questions 

1.3.1 What is the prior state-of-the-art for plankton classification in images? 

In the context of this dissertation, prior state-of-the-art algorithms are non-Deep Learning 

algorithms that operate on vectors of feature values. These supervised machine learning 

algorithms learn an association between vectors of feature values and the provided classification 

label. When presented with a vector of feature values without a label, the classification is 

inferred. Example prior state-of-the-art machine learning algorithms include Random Forests 
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(Ho 1995), Support Vector Machines (Cortes and Vapnik 1995), and Multilayer Perceptrons 

(Rumelhart et al. 1986). While single-channel plankton images are relatively simple compared to 

full color natural scenes, previously published results using the above algorithms vary widely in 

outcomes (Grosjean et al. 2004; Blaschko et al. 2005; Hu and Davis 2005; Sosik and Olson 

2007; Gorsky et al. 2010; Luo et al. 2011; Ellen et al. 2015).  

Even if Deep Learning algorithms have a higher overall accuracy, there are other factors 

which might still cause a researcher to select a feature-based approach. One important factor 

when comparing feature-based algorithms with one another, and with Deep Learning methods, is 

to establish the number of images that need to be annotated in order to form a sufficiently large 

training set to achieve asymptotic classification accuracy. A second factor is that as plankton 

imaging technologies migrate from simply being tethered to a ship in situ (e.g. Benfield et al. 

2003; Cowen and Guigland 2008; Picheral et al. 2010; Briseño-Avena et al. 2015) to being 

deployed aboard autonomous vehicles (e.g. Ohman et al. 2018) and some level of on-board 

classification is desired as a diagnostic, the power consumption and hardware requirements of 

the classification algorithm may be a larger concern than the overall accuracy. 

1.3.2 What is the improvement from using contemporary convolutional neural networks? 

Convolutional neural networks for image processing, as an example of contemporary 

deep learning methods, are repetitive structures that apply a system of hierarchical filters to 

process their input in a manner inspired by Hubel and Wiesel’s investigation of receptive fields 

within the visual cortex (Hubel 1959; Hubel and Wiesel 1963). Unlike a mammalian brain, 

however, the criteria that trigger recognition in a CNN can be quickly focused for a specific goal 

a priori. Sets of CNN filters learn to be maximally discriminative; that is given a set of training 

images, their configuration is optimized so that the most diagnostic features are recognized (not 
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necessarily the entire contents of the image). The earliest successful commercial usage of CNNs 

for image classification was handwritten zip codes on envelopes sent via U.S. Mail. The 

handwritten individual digits consisted of low resolution images resized to 16 pixels square (Fig. 

1.3, left), and the usage of CNNs surpassed existing benchmarks by 30% (LeCun et al. 1989; 

LeCun et al. 1998). 

In terms of expressive power, which is the notion of the complexity of the relationship 

between input images and desired output labels, CNNs are so powerful that they can essentially 

memorize training examples without sufficient ability to generalize or extrapolate to future input, 

a condition called overfitting. One of the factors in the dramatic increase of successful CNN 

applications for image classification since 2010 is called ‘dropout’, where during training the 

CNN has half or more of its neurons disabled in order to prevent overfitting (Krizhevsky et al. 

2012; Srivastava et al. 2014). Dropout enabled successful training of larger CNNs with more sets 

of filters without overfitting, and these CNNs were able to classify full color images of everyday 

objects such as those in the ImageNet Large Scale Visual Recognition Challenge (LSVRC, Deng 

et al. 2009). The ImageNet images are from contemporary digital cameras, most with a shorter 

edge longer than 256 pixels. Altogether, ImageNet LSVRC data consists of millions of images, 

each labeled by one of thousands of hierarchical categories (Fig. 1.3, right). These larger CNNs 

have become widely adopted since their introduction, so that many trained models are available, 

in particular the ImageNet challenge winners (Krizhevsky et al. 2012; Simonyan and Zisserman 

2014; Szegedy et al. 2015; He et al. 2016). Recently, performance by best CNNs has even 

outperformed the human-level benchmark on the ImageNet challenge data (He et al. 2015). 

However, an open question is whether or not an existing model will be effective for classifying 
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plankton images. If an existing model does not provide good results, then additional design is 

required to optimize the parameters and hyperparameters of a Convolutional Neural Network. 

 

Figure 1.3: Two types of images commonly used as benchmarks for CNN image 

classification. On the left are low resolution handwritten digits. Image of digits adapted 

from LeCun et al. (1989). On the right are higher resolution samples from the ImageNet 

collection. Images of objects adapted from Deng et al. (2009). 

1.3.3 Can context metadata be used to improve classification accuracy? 

Human experts, when classifying plankton (or other organisms) often use information not 

present in the images. I refer to such external information as context metadata. For plankton 

context metadata can include measurements as diverse as the salinity of the sample, the distance 

from shore where the sample was acquired, or the local sea level anomaly at the time the sample 

was acquired which serves as an index of the El Niño/La Niña state (UH/CCE-LTER 2017) and 

the flow of the California Current (Chelton et al. 1982). These data points can also be 

reinforcing, such as the chlorophyll-a measurement, the season, and the density of particles (both 

visually and acoustically) which, when combined, can indicate whether or not there is currently a 

phytoplankton bloom.  A central question is this dissertation is whether inclusion of context 
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metadata in machine learning applications can significantly improve the accuracy of the 

classifications. This question pertains to both CNNs and feature-based algorithms, although 

inclusion of context metadata into CNN classifiers is not straightforward because the hierarchical 

filters of CNNs only operate on pixels. Hence, I explore different means of incorporating context 

metadata into a CNN classification problem.  

 

1.4 Outline of the Dissertation 

Three different types of expertise are required for automating image recognition 

workflows: domain expertise, image processing, and machine learning. The chapters of this 

dissertation correspond to the second two elements of this workflow. The chapters are ordered in 

the sequence in which the tasks would be encountered when developing an end-to-end solution 

for other application areas, not only plankton identification. 

The first required form of expertise is on the application domain for which the labeling is 

required. In order to train an algorithm, labeled training data must be provided, along with 

insights into the desired results, challenges, and potential troublesome classes. Domain expertise 

is outside the scope of this dissertation, except that I  express appreciation for the thousands of 

hours of hard work that are required to acquire the source images through novel engineering and 

physical labor, to develop the expertise to identify organisms through extended study, and to 

generate thousands of human-labeled examples of objects (Figure 1.4).  
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Figure 1.4: Expertise in plankton assessment requires hard work that can include 

deploying equipment at sea, collecting, and preserving samples. In the case of 

autonomous vehicles, deployment, operation, and extensive digital data processing are 

required. 

 

The second form of expertise is the image processing required to transform the raw 

intensity values into a different representation that can be more easily analyzed by a machine 

learning algorithm. Humans naturally and rapidly develop a vocabulary and understanding of 

shapes, colors, and textures more easily than any digital system. However, natural language 

descriptions of classes are not currently part of any tractable machine learning algorithm. 
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Machine learning algorithms do operate on quantitative features, which are extracted from 

images using various algorithms.  

In Chapter 2, I provide a comprehensive overview of historical and contemporary feature 

extraction techniques that are particularly applicable to biological object classification in images. 

This overview includes a literature review and categorizes previous feature extraction techniques 

into three different categories: statistical analysis methods, topology-based methods, and 

point/patch correspondence methods.  

In Chapter 3, I describe methods that improve the quality of our plankton images, thereby 

providing better features for machine learning algorithms. My contributions include creating a 

uniform background with a technique called flat-fielding, and adjusting contrast and removing 

artifacts so that objects in the image are uniformly illuminated and distinct from the background 

as much as possible. In order to complete the transition from signals received on a charge-

coupled device (CCD) to viable machine learning input, the images need to be segmented to 

detect any plankton in the images. While it is possible to simply apply machine learning 

algorithms to every part of the input image, I instead consider algorithms that identify which 

pixels from a particular image frame belong to a region of interest (ROI), and which are just 

noise.  

The third form of expertise required is on the computer science and machine learning 

algorithms and statistical techniques required to achieve maximum accuracy from the derived 

features. Chapter 4 (published as the paper Ellen et al. 2015) establishes a baseline for attainable 

classification accuracy with zooplankton images using non-deep learning approaches. This 

publication also quantifies the number of expertly labeled images required and determines that 

the algorithms that work best in our case are support vector machines and gradient-boosted 
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random forest. Some ancillary points of investigation include whether or not having the 

algorithm abstain from assigning a class label for low classification scores provides any 

meaningful gain, and whether or not size fractionation of images improves accuracy. I also 

investigate whether creating an ensemble of algorithms with two diverse approaches results in 

better performance than either individually. 

Chapter 5 evaluates normalization strategies and potential diagnostics to consider when 

using convolutional neural networks (CNNs, Graff and Ellen 2016). We use CNNs on various 

types of images, including Zooscan plankton images (Fig. 1.4), and observe that global contrast 

normalization provides the highest accuracy for our plankton images, but not for other types of 

images. We find that rather than starting with an existing CNN, our best results are from training 

CNN models de novo. We identify a correlation between the statistical distribution of the 

weights of filters in a fully trained network and the overall accuracy of that network. This 

correlation is potentially useful as a performance diagnostic. 
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Figure 1.5: Zooscan (left, inset) and sample Zooscan images (left); Zooglider (right, 

inset) and sample Zooglider images (right). 

 

Chapter 6 is a major new contribution of this dissertation. In this chapter, I thoroughly 

investigate the dominant contemporary approach, convolutional neural networks (CNNs) when 

applied to our Zooglider images (Fig. 1.5). I conduct the investigation using an original data set 

of 350,000 in situ images (roughly 50% marine snow and 50% non-snow sorted into 26 

categories). First I establish a performance baseline using feature-based classifiers, and find that 

CNNs provide significantly higher accuracy than feature-based methods, even with unusually 

shallow and small CNNs. I then evaluate deeper networks and augmenting the data set, and 

observe asymptotically increasing performance, and report on which ones are the most effective 

at classifying Zooglider images.  
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Chapter 6 also finds that including context metadata significantly increases accuracy for 

all algorithms considered. The context includes the observed conditions when the image was 

acquired, for example geotemporal (e.g., sample depth, location, time of day) and hydrographic 

(e.g., temperature, salinity, chlorophyll-a) metadata. All of the feature based classifiers that I 

assessed benefit from the inclusion of context metadata: random forests, extremely randomized 

trees, gradient boosted trees, support vector machines, and multilayer perceptrons.  

I find that CNNs also benefit from the inclusion of geotemporal and hydrographic context 

metadata, and derive further benefit from including the geometric features as auxiliary data 

alongside the context features. CNNs do not inherently accept any non-pixel data, so I consider 

multiple architectures for including metadata and identify the ones that provide the most 

accuracy gain. The most simple inclusion of metadata reduces errors by 5%. On my best 

performing architecture, the benefit metadata provides is a 10% reduction in classification errors, 

while also a reducing the computation time for training by 15% due to faster convergence of the 

algorithm.  

Chapter 7 provides a brief summary of the dissertation, synthesizing my results from the 

previous chapter. I also analyze recent developments in the field of machine learning which are 

applicable to biological object classification. 
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CHAPTER 2 A Review of Feature Extraction Techniques for Automating Biological 

Object Classification in Images 
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2.1 Introduction 

This review presents algorithms useful for automated biological object classification from 

images, and provides illustrative examples from recent scientific literature. I review techniques 

for extracting features from images and provide an overview of image processing for readers 

unfamiliar with common types of feature extraction techniques, such as domain experts in 

biological sciences and machine learning computer scientists. I present features in three groups 

organized by the morphological strategy they aim to implement: statistical analysis methods, 

topology-based methods, and point and patch correspondence methods. Features reviewed span 

the earliest techniques through the most recent advances in the field, including moment-based 

approaches from the 60s through SIFT and advances in `deep learning' approaches of the past 

few years. I provide a sample of recent results from biological object classification publications 

to illustrate the features discussed.  

 

2.2 Review Organization 

First, existing publications are surveyed. The rest of the review focuses on various 

categories of techniques. Each even-numbered section defines a category of features, and 

provides a high level description of the features. Each subsequent odd-numbered section 

provides examples from recent literature that illustrate use of the features. Section 2.4 discusses 

statistical analysis methods, including moments and textures. Section 2.6 covers topology based 

methods. These methods generally try to quantify the shape and include shape contexts, Fourier 

descriptors, and various turning functions in addition to skeleton-based methods. Section 2.8 

addresses point and patch correspondence methods, which include SIFT descriptors and deep-

learning approaches. 
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Sections 2.4, 2.6, and 2.8 describe the canonical, most widely used techniques 

encompassing the origins of image processing through current approaches. For each method 

cited, the level of detail provided is intentionally cursory, consisting of only the level necessary 

to introduce each method. My focus is to characterize input to the algorithm, and to review what 

it is intended to produce, with mathematical and other details intentionally omitted. Full details 

for each feature type presented in sections 2.4, 2.6, and 2.8 can be found in the cited works, 

which are generally the original publication for the algorithm, unless a subsequent publication 

has provided substantial clarification. 

Sections 2.5, 2.7, and 2.9 provide example implementations and customizations that 

illustrate types of strategies that a problem-specific customization would employ. When possible, 

the examples given in these sections correspond to the type of clutter-free, fine-grained 

biological object classification task listed as the objective for this review. However, other 

application domains will sometimes be presented because of their notoriety or potential 

applicability. The summary provided for each example is intentionally brief; in-depth 

experimental results and minor optimizations can be found in the original work. Examples were 

selected on the basis of how well they represent the method and how clearly their results can be 

interpreted. Secondarily, examples were selected for the soundness of their overall 

experimentation, and the applicability of their machine learning methodology. Minimal 

consideration was given to the percentage accuracy, as each domain has its own nuances, and 

often subsequent improvements can be achieved through completely domain-specific 

optimizations, which are not useful for this review. On average, a dozen implementations were 

examined, and three to four reviewed in detail before selecting the provided citations.  
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While easy segmentation and lack of occlusions are relaxations, there are challenges in 

the type of tasks focused on in this review. If the classification target is suspended in a fluid (e.g., 

water or air) the images will be acquired from a variety of perspectives. Therefore, orientation of 

the target of classification will vary greatly and the scale may also fluctuate. As with object 

types, use of most features is not intrinsic to any particular image acquisition scenario, but the 

techniques reviewed are clearly beneficial in the easily segmented, non-occluded situation. The 

examples provided will originate from all four quadrants of the table in figure 1.2 with a focus on 

the more easily segmented, less occluded domains. This review will ignore the computational 

demands of each feature extraction algorithm. Computational complexity will be ignored not 

only for comparing features to each other, but also for considering optimized versions of the 

features. This is for two reasons: (1) most of the intended scientific applications will find overall 

accuracy, not computational resources, to be the limiting factor for implementing an automated 

process; (2) the details of the complexity improvements are most likely of interest to image 

processing experts, who are not the intended audience of this review. Many of the features 

covered in this review have efficient implementations in modern image processing toolboxes. 

 

2.3 Other Feature Extraction Reviews 

I aim to summarize the most crucial feature extraction techniques for biological image 

processing at a level that will allow those without image processing expertise to assess their 

applicability, but with sufficient brevity to address as many methods as possible. An equivalent 

review could not be located. A detailed description of the mechanics of each mentioned strategy 

can be found in an image processing textbook. An Introduction to Object Recognition (Treiber 

2010) provides similarly provides brief descriptions, but also includes many algorithms not 
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applicable for this review. Feature extraction & Image Processing for Computer Vision (Nixon et 

al. 2012) provides more depth and details, and Pattern Recognition, Fourth Edition (Theodoridis 

and Koutroumbas 2008) provides perspective on how these algorithms fit within the larger field 

of ‘pattern recognition’. These books were referenced but this review provides additional recent 

niche techniques not present in these textbooks due to their focus on more general image 

processing problems and examples of contemporary implementations. This review provides 

more focus most textbooks by omitting the portions which are not relevant beyond the biological 

object feature extraction problem. Automated taxon identification in systematics: theory, 

approaches and applications (MacLeod 2007) provides colorful and thorough discussion of the 

motivation and history of automating identification, and provides chapter-length summaries of a 

handful of fully implemented systems, but feature extraction techniques are not enumerated or 

analyzed separately.  

Textbooks aside, there are many reviews, or background sections of longer papers, which 

overlap some aspects of this review, but do not adequately cover general biological object 

classification. For example, in (Shortis et al. 2013), the authors evaluate techniques for 

measuring fish, not classifying them. Ulrich and Steger (2002) provide a feature extraction 

survey which focuses on performance evaluation, but this and other assessments do not 

specifically focus on biology. Surveys published within biology (e.g. Pattern recognition 

software and techniques for biological image analysis (Shamir et al. 2010) tend to evaluate the 

currently available tools as finished software products and discuss their usability rather than the 

underlying math and algorithms. (Danuser 2011) and (Cardona and Tomancak 2012) discuss the 

current state of progress in image processing, and its implications and ramifications on the 

respective application domains, rather than providing concrete information on techniques as one 
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would implement them. Each one of the above references is valuable but does not help address 

two important considerations of the present survey: (1) providing a better understanding of the 

algorithm; (2) providing awareness across the field of image processing so that new algorithms 

or advances in theory can be leveraged to augment existing or build custom software.  

Loncaric’s (1998) Survey of Shape Analysis Techniques provides an overview of a 

number of many basic shape identification methods. However, that overview is intended for 

shapes only and is somewhat dated. Loncaric provides a succinct summary of the theories of 

human perception, in order to bound and quantify the definition of ‘shape’ and similarity. A 

more recent review of shape description techniques (Zhang and Lu 2004) provides a summary of 

various shape-specific descriptions. Zhang and Lu provide information on many adaptations and 

nuanced variations on the approaches outlined in the Topology Matching Methods section. These 

surveys focus exclusively on shape, while the present review includes information on color and 

texture matching.  

For a high-level overview of the biological imaging process, refer to a 25 page chapter of 

Imaging Cellular And Molecular Biological Functions entitled Quantitative Biological Image 

Analysis (Meijering and van Cappellen 2007). This chapter details the end-to-end process of 

automating an image processing task. They include an introduction to pixel structure, provide 

some detail on common arithmetic and preprocessing operations including segmentation and 

rendering. This is a broader view than is presented in (Shamir et al. 2010), which focuses on 

pattern recognition specifically. Meijering and van Cappellen’s chapter does not significantly 

overlap with this review, as the chapter includes only 2 pages on features. Domain specific 

surveys, such as Automated Processing of Zebrafish Imaging Data: A Survey (Mikut et al. 

2013), similarly serves as an overview but for a more specific domain, so these publications 
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focus on metadata, tools, and challenges of a more specific application. While references such as 

the above are valuable, none provides analytical discussion of the features themselves. 

2.4 Statistical Analysis Methods. 

The approaches listed in this section describe the object using features where individual 

pixels have been abstracted. These approaches attempt to quantify the entire object. In general, 

they have the least number of features. Therefore, they are attempting the highest degree of 

dimensionality reduction. Equivalent English language descriptions would be along the lines of 

the image “is mostly black with some gray” or “has lots of stripes.” 

2.4.1 Moment Based Methods 

Using moments (e.g. weighted averages) is a common technique for object recognition, 

and one of the first to be used for shape processing. Raw Moments describe the distribution of 

the intensities of an image. The zeroth order moment is equivalent to the area of the shape. The 

first order moment is the average of that distribution, or, the center of mass. Higher order 

moments describe variance, skewness, kurtosis. These can be used directly in highly controlled 

cases, but are sensitive to any pixels being different.  

In 1962, Hu described how moments could be modified to help recognize alphabetic 

characters by defining variables that would be invariant under translation, scale, and rotation. Hu 

derived 7 specific moments that were combinations of the simple 2nd and 3rd order moments 

described above (skew and kurtosis). The example images Hu classified were 16x16 pixels, and 

5 levels of grayscale alphabetic characters (Fig. 2.1). So the same image, when viewed at 

different scales and rotations, will return exactly the same values for all 7 of these parameters. 

These values are viable features because images which are similar should return values that are 

nearly the same. 
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Figure 2.1: Samples from Hu's 1962 paper on Moment Invariant, showing images of 

16x16 pixels and 5 intensity levels. Image from (Hu 1962) 

The reduction of the 256 pixel image to these 7 features enables comparison using 

various classification algorithms. All other methods described will follow this same process, but 

with a different number of features. The four main automation steps are: (1) Given a number of 

`gold standard' images, process each of them to return a vector of floating point numbers (in this 

case corresponding to Hu's 7 invariant moments). (2) Use machine learning to develop a model 

for the relationship between these feature vectors and their expert-provided labels. (3) Generate 

the feature vector for each unlabeled image (in this case Hu's 7 invariant moments) (4) Assign a 

label for each new feature vector based on the machine learning model. Figure 2.2 shows Hu's 7 

invariant moments calculated for 5 shapes, illustrating their potential for use as features. While 

the values are not exact matches, the orders of magnitude are similar for the corresponding 

shapes. Even in this simple case, heuristics are not readily apparent, hence the use of a machine 

learning algorithm to determine a model for label assignment. 
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Figure 2.2: Illustration of Hu’s 7 Moment Invariants (Hu 1962) calculated for 5 

instances of 2 different shapes, exhibiting scaling, rotation, and mirroring. The moments 

are not exactly the same due to small differences related to the discreteness of pixels, 

for example 50% scaling of a 5-pixel feature must either be 2 or 3 pixels. Mirroring is 

indicated by the sign of M7, as indicated in the gray shading. 

In 1980, Michael Teague defined a different set of moments based on Zernike 

polynomials; these have been used extensively and referred to as Zernike Moments (Teague 

1980). While Hu provided solid analytical foundation for his suggested moments, Zernike 

moments have dominated in modern usage because they can be defined for arbitrarily high 

orders, thereby providing additional features for the classification algorithm to use. Calculation 

of a single Zernike moment is done as follows: First, the image is mapped to a unit disc. Next, 

the image is effectively projected onto the surface of a Zernike polynomial by applying a 

weighting function to the individual pixels. The center of mass of this weighted function, given 

in polar coordinates, is considered the Zernike moment. To achieve rotational invariance, only 

the magnitude of the vector is considered. Visualization of the Zernike polynomial hierarchy is 

shown in figure 2.3. Flusser and Suk (1993) further defined a system of moments which was 

additionally invariant under affine transformations.  
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Figure 2.3: Visualizations of the first few orders of Zernike moments. Image from 

Wikipedia (http://en.wikipedia.org/wiki/Zernike_polynomials). 

Moments average all of the detail of an image into a series of a few numbers. Many 

publications report using a few dozen at the most. While moments are a powerful technique, and 

provide additional advantages for other applications including compression, other approaches 

have been subsequently developed to capture more detail and nuance of the images.  

2.4.2 Histogram Based Methods 

As resolution and fidelity increased, various authors created histograms of the pixels in 

an image and compared them to perform classification. First in black and white, and eventually 

in color (Swain and Ballard 1991). The intuition is that similar objects would have similar 

distributions of intensity, and the size of the bins could control for variation between images. 

Figure 2.4 shows a histogram with a bin width of 1. By design, histograms are insensitive to 

location and rotation, and somewhat robust to occlusions and viewpoint changes. For example, 

an image captured at a shallower angle to a flat surface will cause all of the regions of each color 
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to shrink in proportion. The ordered set of histogram counts is the feature vector. The length of 

the feature vector is the number of bins in the histogram, which varies from application to 

application, and is often defined through experimentation. 

 

Figure 2.4: Each pixel in the original image contributes its intensity value to the 

histogram. Image from OpenCV Tutorial (http://docs.opencv.org). 

2.4.3 Texture Based Methods 

Moments and histograms provide information regarding the levels of intensity in a given 

image, but because of the averaging or binning, all positional information is lost. To address this 

deficiency, a seminal paper was introduced by Haralick et al. in 1973 to quantify the inherent 

structure in an image. Originally described as `texture' features (Haralick et al. 1973), they have 

been extensively used and extended since their original definition. Haralick texture descriptors 

are calculated in two distinct steps. First, exhaustive statistics about the location and quantity of 

co-occurring intensity values are tabulated as a co-occurrence matrix. The adjacency of every 

grayscale value is accounted in each of four directions as shown in figure 2.5. These co-

occurrence matrices is then used as raw material for higher order mathematical functions 

including some of the geometric moments mentioned earlier. The aim is to quantify contrast, 
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orderliness, etc. in the image. In general, references to 'texture' features are statistical 

measurements of these co-occurrence matrices. In the paper, Haralick provided a set of 14 

descriptors including contrast, variance, entropy, etc., whose formulas are concisely provided in 

Theodoridis and Koutroumbas (2008). Each descriptor is applied to each of the 4 co-occurrence 

matrices, and the mean of the four values is reported. Therefore the image is summarized as 14 

features. Subsequent modifications by others include changing the stride over which the co-

occurrence is calculated to a radius larger than 1, and including range and standard deviation in 

addition to the mean. 

 

Figure 2.5: Pixel directions used to calculate co-occurrences for Haralick texture 

features with a radius of one pixel (Haralick et al. 1973). 

The original application of Haralick's texture work included classification of overhead 

imagery for which the segmentation was irrelevant because the `object' was all pixels in the 

image. In this sense, the term `texture' is applicable not only to the feature being extracted, but to 

the classification label itself (e.g. 'grassland', 'water', 'urban'). Therefore, texture and its 

derivatives may be applicable for some types of biological object classification (identifying 

fields of cells) but without modification, may not be ideal for classification of individual entities. 

They have been used to classify ROIs but there may be other methods that would perform better.  

 

2.5 Statistical Analysis Methods Specifically for Biological Object Classification 

Recent work by Wilder et al. (2012) achieved 95+% classification accuracy on an 8-way 

classification task identifying reef fish using a simple set of 48 features, including 16 histogram 

features, 16 discrete cosine transform features, and 16 perimeter measurement features. In their 
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paper, they asserted that the performance success with simple features was because most of the 

fish did not resemble each other, and given their lighting configuration color itself (the 

histogram) was likely enough to be discriminatory.  

Rodriguez-Damian et al. (2006) experimented with an assortment of features in a 3-way 

classification task of different types of pollen. This study is particularly well written, and covers 

in depth many aspects of the classification process, including image preprocessing and 

enhancement as well as various machine learning algorithms. It is by far the most comprehensive 

example cited in this review. They report results on 4 different types of features, and various 

combinations within each type. First, they use 15 low level geometric features that provided a 

best case accuracy of 73%. They experiment with a varying number of Fourier Descriptors (see 

Section 2.6.2), and achieve a best case accuracy of 80% using 128 descriptors. They experiment 

with four different sets of moments, and achieve 80%. They also used a set of 23 texture 

features: 6 first order gray level statistics, 7 Haralick textures, 10 other texture features. They 

experimented with each individually, but achieve 88% using a concatenation of all texture 

feature types. Most significantly, they claim their maximum accuracy is “much higher than 

palynologists can distinguish in routine analysis.” 
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Figure 2.6: Each column contains examples from 1 of the 3 different types of pollen 

grains used for extensive feature experimentation in Rodriguez-Damian, et al. (2006). 

Conceptually, moments require a consistant image aquisition angle, or the object to be 

relatively non-deformable, such as the case with the pollen grains. This constraint has not 

prevented moments from being used to classify other biological objects. 

Luo, et al. (2004) classify binary images of plankton, as seen in figure 2.7. They used a 

set of 29 features: The 7 invariant moments described by Hu, the same 7 moments on a slightly 

modified contour of the image, 7 granulometric features, and 8 low level geometric features. 

They reported achieving 90% accuracy on a 5-way classification task where all ROIs had a 

ground truth belonging to one of the 5 types of organisms, and 76% accuracy on a related 6-way 

classification task where one of the classes consisted of “unidentifiable particles.” 
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Figure 2.7: Examples of binary plankton images from Luo, et al. (2004). 

Sosik and Olson (2007) classify phytoplankton using a combination of 131 features. They 

achieve 88% classification accuracy on a 22-way classification task of phytoplankton, as shown 

in figure 2.8. The features used include 6 texture features, 12 invariant moments (based on 

Flusser and Suk as well as Hu), 39 grayscale co-occurrence statistics, and the rest various 

geometric features.  
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Figure 2.8: Examples of phytoplankton images used during classification by Sosik and 

Olson (2007). 

Boom et al. (2013) use 66 features to achieve 90.1% accuracy on the 15 most prevalent 

classes of live reef fish in their image set, as shown in figure 2.9. They used a combination of 66 

features, including two different 11-bin color histograms, and 12 grayscale co-occurrence 

features, some affine invariant moments (as in Flusser and Suk (1993)) and a few low level fish-

specific features, such as ratio of head area to tail area.  
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Figure 2.9: The 15 most prevalent classes of live reef fish classified by Boom et al. 

(2013). 

Conrad et al. (2004) use a combination of 323 features and experimented with a number 

of classifiers and configurations to eventually achieve an average of 82.6% on a 12-way 

classification task of cellular structures (Fig. 2.10). The features used included 250+ Haralick 

textures, 50 Zernike moments, and less than 25 granularity features, edge-related features, 

wavelets, and handful of others. The exact number of features used varied from experiment to 

experiment, but are dominated by Haralick textures.  

 

Figure 2.10: Examples of sub-cellular structures classified by Conrad, et al. (2004) 

primarily using Haralick textures. 

Harder et al. (2006) subsequently were able to achieve 96% accuracy using support 

vector machines on a 4-way cellular classification task using the same base set of features with 

small modifications (Figs. 2.11, 2.12).  
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Figure 2.11: Sample unsegmented microscopy image of human cells from Harder, et al. 

(2006) 

 

 

Figure 2.12: Examples of cell nuclei lifecycle stage classified by Harder, et al. (2006) 

primarily using Haralick textures. 

Figure 2.12 illustrates why textures are an appropriate feature for this task: shape and 

orientation are not the key features necessary to discriminate between the classes. 

Chebira et al. (2007) also use textures, but incorporate a multi-resolution approach. Their 

approach consisted of a combination of a horizontal and vertical filter bank to augment 

directional edges, and downsampling the image to generate textures at different scales (Fig. 

2.13). Their application was a 10-way classification task identifying subcellular structures in an 

open-sourced set of single-cell images. They improved the previous best performance by 4%, 

achieving 95.3% accuracy. This is not the first approach to generate features at multiple scales, 

concisely illustrates one way in which it can be executed effectively. 
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Figure 2.13: Illustration of multi-resolution approach leveraged by Chebira et al. 

(2007) using primarily Haralick textures at each resolution. Each branch of the tree 

represents enhancing of edges with filter banks, either high or low pass, and in either 

the horizontal or vertical direction. 

 

2.6 Topology Based Methods 

These methods are characterized by their focus on shape recognition. Once a 

segmentation algorithm determines which pixels are part of the object to be recognized, and 

which are not, these algorithms attempt to classify the resulting shape. However, unlike the 

moments, textures, and histograms mentioned above, which to some extent account for shape, 
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these algorithms focus on the shape exclusively. An equivalent English language description 

would say that the ROI is "an elongated oval" or "t-shaped." To restate: these methods generally 

operate on a binary version of the object or even just the object's perimeter, where pixels have a 

0/1 value, no intensity information is preserved, or at least is not used as a primary feature. There 

are features, such as granulometry, that are applicable in cases where the shape is known in 

advance, or will be nondeformable. When these simplifications are not applicable, the following 

techniques have been used to classify shapes. 

2.6.1 Boundary Matching Methods 

Many approaches attempt to quantify the visual experience of `shape', thereby 

introducing a layer of abstraction. Hundreds of publications use combinations of single low level 

geometric features, where each is calculated with respect to the segmented region such as area, 

perimeter, circularity (Young et al. 1974), eccentricity, area excluding holes, etc. Other, similar 

but slightly more advanced features include convexity, circular variance, and elliptical variance 

(Peura and Iivarinen 1997). Some measurements, such as circularity imply a regular or uniform 

shape, such as a circle. For those a best-fit circle or convex hull is first applied to the irregular 

ROI, and the measurements are taken from that approximation. One benefit to these types of 

features is that many of them, particularly those expressed as percentages or ratios, are relatively 

insensitive to orientation or scale. Another potential benefit is that they are fairly general. The 

machine learning feature vector is a straightforward concatenation of as many of these low level 

features as desired. 
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Figure 2.14: Examples of some shape descriptors from (Peura and Iivarinen 1997). 

Shape Contexts are a highly cited approach that matches new items with a known 

prototype (Belongie et al. 2002). The core process forms correspondences between points on one 

shape to the second to create the actual Shape Context (Fig 2.15). First, landmark points are 

calculated using an edge detector. These are assumed to be interior or exterior contour points to 

the shape. For resistance to noise and speed of calculation, a randomized, roughly equally spaced 

subset is selected. Next, relative location from each landmark point to each other landmark point 

is calculated with respect to a log-polar coordinate axis, with the origin centered on a point. A 

histogram is generated for each point. This set of histograms is compared to each set of 

histograms for existing prototypes to create an ordered set of correspondences between each 

histogram. Then, a thin plate spline model is used to calculate the required deformation, 

assuming that the two shapes are of the same class (even though they might not be). Ultimately, 

the classification is made based on a combination of three factors. The first factor is the distance 

of the thin plate spline calculation (the “Shape Context distance”). The second factor is the 

“image appearance distance.” This is the comparison of intensity values compare at each 

landmark point, after the images have been warped to the same configuration using the thin plate 

spline calculations. The third term is the “bending energy” which would have been required to 

complete the thin plate spline warping. As described, the feature vector is the combination of 

these three factors with respect to each template.  



 

41 

 

Figure 2.15: The process used to match a new sample to an existing prototype using 

Shape Contexts (Belongie et al. 2002).  

This approach is well suited for things such as digits and trademark symbols, two of the 

original applications, because these are nondeformable flat objects intended to have a canonical 

representation that is recognizable from a number of different angles, that is, a distinctive shape.  

Another drawback of this approach compared to others is that it requires the selection of 

particular prototypes to represent the entire class. To quote the paper: “a sparrow is a likely 

prototype for the category of birds; a less likely choice might be a penguin” (Belongie et al. 

2002). 

As with any popular and novel approach, Shape Contexts have been extended and 

modified a number of ways. One extension that is particularly useful for deformable or 
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articulated objects is Inner-Distance Shape Contexts by Ling and Jacobs (2007). Rather than 

directly creating a log-polar histogram between landmark points based on direct Euclidean 

distance and global orientation, Ling and Jacobs calculate distance and orientation piecewise. 

Inner Distance is calculated along the minimal path that stays within the object, which may not 

be linear, and orientation is determined by the angle of the inner distance segment, as shown in 

figure 2.16. This particular approach is notable because it specifically accounts for deformations, 

in particular articulations, which may be common for certain biological objects (e.g. limbs, 

antennae). The inner distance angle will remain relatively stable in proportion to how inflexible 

the component arms are with respect to the overall articulation. Specifically, the inner distance 

angle will remain constant for two completely rigid bodies connected with a joint or hinge (such 

as legs or wings); but would vary widely for a highly deformable object being stretched (such as 

a cell undergoing mitosis). These modifications change the calculations but the feature vector is 

the combination of the same three factors as Shape Contexts. 

 

Figure 2.16: The polyline between x and y is defined as the inner distance, and the 

angle θ between a tangent at p and the inner distance polyline to q is defined as the 

inner distance angle (Ling and Jacobs 2007). Note that θ is resistant to articulation: it is 

the same in both figures. 

As computing resources are no longer a bottleneck, more complex and less intuitive 

strategies have been devised. For example, Backes and Bruno (2010) have a two-step strategy. 

First a series of Complex Network graphs is created that correspond to the Euclidean distance 

between points on the shape's contour (Fig. 2.17). They then leverage prior research in Multi-
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Scale Fractal Dimension to characterize the growth and changes of topological features in the 

network's growth. Their assertion is that similar shapes will have similar growth curves, even in 

the presence of noise in the contours, or occlusions which cause the boundary to be non-

contiguous (this is of particular concern for methods in the next section, “Path Matching 

Methods”). Multi-Scale Fractal Dimension provides a feature vector consisting of 7 coefficients 

of a polynomial that is derived from the evolution of the Complex Network at multiple 

thresholds. They report a higher success rate than Fourier Descriptors, Zernike Moments, 

Curvature measurements, or Skeleton Path. In a longer publication, they also report performance 

on a fish profile classification task (Backes et al. 2009). 

 

Figure 2.17: Illustration of how the Complex Network is constructed for various 

threshold distances (Backes and Bruno 2010). The network grows as increasing 

numbers of neighbors are connected from left to right. 

2.6.2 Path Matching Methods 

In contrast to the approaches mentioned in the previous section, which consider the whole 

object simultaneously, approaches in this section describe the shape in a parameterized manner. 

That is, these algorithms designate a particular starting point on the shape and then proceede 

around the perimeter.  



 

44 

Fourier Descriptors have been used to describe and classify curves for many decades. 

Zahn and Roskies (1972) used Fourier Descriptors to describe curves, and Persoon and Fu 

(1977) used those descriptors specifically to classify silhouettes and shapes, including digits. The 

contour of the curved shape is first approximated with a function. Then the Fourier coefficients 

that are derived are used as a descriptor of the shape, and serve as the feature vector for the 

machine learning algorithm. Limitations of this approach include applicability to irregular or 

noisy perimeters, and potentially having an undesirably different descriptor as the result of 

deformations or changes in viewing angle.  Fourier Descriptors have also been extensively used 

in biological tasks, e.g. Lestrel's (2008) book entitled Fourier Descriptors and Their 

Applications in Biology. 

Curvature Scale Space is another parameterized perimeter descriptor. It was specifically 

defined to be invariant to rotation, scale, and translation (Mokhtarian and Mackworth 1986). It is 

defined by repeatedly smoothing the curve using a Gaussian kernel. σ is the radius of the 

smoothing, and inflection points on each curve are recorded, and shown as large dots in the left 

side of figure 2.18. The actual Curvature Scale Space graph is constructed by traveling along 

each smoothed perimeter, starting from a fixed point. Inflection points are recorded in the scale 

space image, as shown on the right hand side of figure 2.18. The length of the curves are 

normalized (to 1) for each smoothed curve. Note that if the level of detail is significantly 

different in two original images, the lower level curves will be different, but the taller peaks 

should still correspond closely. The feature vectors consist of the distances from the peaks of one 

CSS graph to another. 
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Figure 2.18: Illustration of various levels of Gaussian smoothing of the shape of Africa 

on the left, and the resulting Curvature Scale Space on the right. Figure adopted from 

(Mokhtarian and Mackworth 1986). 

A more recent path matching method is the Shape Similarity Measure created by Latecki 

and Lakamper (2000). First, they use Discrete Curve Evolution to account for noise in the shape 

by smoothing it (Fig. 2.19). They assert that through evolving the curve sufficiently, it is easier 

to form correspondences. Then using the smoothed shape they generate an inward/outward 

turning function (tangent function) (Fig. 2.20). The turning function is generated by proceeding 

clockwise around the perimeter of the shape. X is within the range [0,1] representing the 

percentage of the perimeter traversed, and the corresponding y value is within the range [0,2 π) 

representing the angle of a tangent at that point. Shapes with increasing amounts of smoothing 

will have less complex (and therefore easier to compare) turning functions. As with Curvature 

Scale Space, the feature vector is the distances from one curve to the other.  
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Figure 2.19: An example of a noisy fish profile polygon being smoothed five times 

with Discrete Curve Evolution (Latecki and Lakamper 2000) 

 

Figure 2.20: An example of the similarity and difference between two tangent curves 

(turning functions) used to calculate the Shape Similarity Measure (Latecki and 

Lakamper 2000). 

Latecki and Lakamper's approach, like many others covered in this review, makes certain 

assumptions that are important to consider for the particular biological object classification task. 

For example, their Shape Similarity Measure is heavily dependent upon the amount of smoothing 

applied. For a task with very different morphologies, such as classifying the widely different 

shapes of Sosik and Olson's phytoplankton task in figure 2.8, more smoothing would likely help. 

For a narrowly defined task, such as classifying species of reef fish (Fig. 2.9), too much 

smoothing may remove subtle detail. Also, this approach was designed to adhere to generally 

accepted vision theory principles (Basri et al. 1998). Principles such as `bending at 
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boundaries/joints should be considered more similar/likely than bending in the middle of a 

contiguous region'; `bending likelihood should be proportional to thickness', etc. Another 

important consideration is that as illustrated in figure 2.21, this method is particularly sensitive to 

occlusion.  

 

Figure 2.21: An example of two objects with very different perimeters (and therefore 

very different turning functions) that could potentially be considered very similar if the 

shape on the left is considered to be an occluded version of the one on the right. Figure 

from (Basri et al. 1998). 

A similar approach was more recently put forth by the same research group, this time as a 

height function instead of a turning function (Wang et al. 2012). As shown in figure 2.22, this 

approach also generates an x/y functional relationship by traversing the perimeter with x 

representing position along the perimeter. However in this instance y represents the height above 

or below a line tangent to the perimeter at the point of origin. The authors claim that this method 

is less sensitive to localized noise in the perimeter because of the nature of the noise itself 

tending to have more of an effect on the tangential angle than the height, as shown in figure 2.23. 

It also is slightly faster to compute than Shape Similarity Measure from Latecki and Lakamper 

(2000), because instead of smoothing first to compute tangents, calculating the heights 

intermittently achieves the same effect as smoothing. The feature vector is again a comparison 

between these generated graphs. 
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Since these methods are similar, they can be computed with much of the same code, and 

the authors show how using both metrics in combination achieves better results than using either 

of the two individually. 

 

Figure 2.22: An illustration of how the height function is constant for the same shape, 

but with slightly different amplitude at different points on the perimeter (Wang et al. 

2012). Each perimeter point shown, xi, xu, and xw have a horizontal tangent line which 

is used to calculate the heights, with red heights above and blue heights below the 

tangent line. 

 

Figure 2.23: Illustration of an increasingly noisy perimeter, for which tangent would be 

noisier (across the allowable range of y-value) than the height function (Wang et al. 

2012). 

2.6.3 Skeleton Matching Methods 

Skeleton matching methods assume that there is some rigid or deterministic structure to 

the coarse, overall shape in question and that deformable details are superficial. While this 

analogy is clearly biological and could work well to classify things such as vertebrates, shrouded 
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objects, and other similar circumstances, it is important to observe that classification by skeletal 

shape ignores finer level detail of shape. Skeleton matching methods also assume an elongated or 

non-convex shape. So these approaches would not work well for the pollen grains shown figure 

2.6 or the cellular structures shown in figure 2.10, but might work well for the phytoplankton 

shown in figure 2.8 even though phytoplankton do not have a physical skeleton. There are two 

cases where these assumptions would not only be acceptable, but perhaps preferred. The first 

case is when finer grained details are ornamentation and not highly relevant to the overall shape 

classification. The second case is when fine grained details will be subject to noise in the image 

capture process, and should not be utilized because they will not be dependable from one entity 

to the next. 

One of the earlier approaches in this area is from 1977 when Persoon and Fu attempted to 

define the skeleton of some objects using harmonics of their Fourier Descriptors (Persoon and Fu 

1977). However, the most widely used definition of an image's `skeleton' is the centers of all the 

bi-tangent circles to the object. This was termed the medial axis (Blum et al. 1967). As a physical 

metaphor for the definition of the medial axis, he proposed that if the image were a field of grass, 

and the shape were the location where the grass was set afire, the medial axis would be where the 

fronts of the fires would meet and extinguish each other. An equivalent, but conceptually 

different description is the set of all circles which are tangent to the shape in two or more 

locations, and whose centers are located within the perimeter of the ROI. Both of these cases are 

illustrated in figure 2.24.  
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Figure 2.24: Two visualizations of the medial axis used for Skeleton matching. The 

grassfire/wavefront metaphor is depicted on the left, and the tangential circles are 

displayed on the right. In both figures, the medial axis is the bold red line in the middle 

of the shape with round endpoints. Image adopted from 

(https://liris.cnrs.fr/david.coeurjolly/). 

Figure 2.24 also illustrates that for most classification tasks, the skeleton used does not 

precisely match the definition because it does not intersect the perimeter of the region. Most 

classification tasks define a threshold additionally constraining the skeleton to be a certain 

distance from the perimeter itself. This parameter controls noise, and it is important to note that it 

would be highly task-specific.  

Unlike other features previously mentioned, the skeleton cannot be used directly as a 

feature by itself. Quantifying and comparing the resultant skeletons is required in order to 

achieve automated classification. The skeleton could then be considered a binary ROI and 

analyzed with techniques above. Many different comparison approaches are possible, and some 

unique to this construct. 

 

One example of a specific research trajectory based on Blum's skeleton concept was 

developed by a series of PhD students under Benjamin B. Kimia at Brown University. These 

introduced and gradually refined the Shock Graph matching concept in order to achieve shape 

recognition. Shocks are a classification of the points within the skeleton defined by their 

topological function in the overall structure. Various investigations culminated in an approach 

for creating a graph from these shocks (Siddiqi et al. 1999). The concept is to create a graph 

based on shock classification, as shown in figure 2.25.  
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Figure 2.25: The four orders (classes) of Shock Points explained graphically. The 

mathematical definitions are provided in (Siddiqi et al. 1999). Image from (Johannessen 

2011). 

Shocks which are adjacent and of the same class are merged to form a single node. The 

rationale is that small amounts of noise or distortions in shape are absorbed in this step. Since the 

graph derived was shown to be unique for a particular 2-D shape, it can be used as a substitute 

for considering all pixels. The initial paper considered pose estimation and perspective in 

addition to classification.  

 

Further research from the group partitioned Shock Graphs into equivalence classes, 

which they termed Shape Cells (Sebastian et al. 2001). They then considered edit distances 

between cells, and use that distance to classify new items the same as their nearest neighbors. 

Specifically, their approach was to simplify each exemplar through deformation to reach a 

common shape, and consider the length of those paths. A partial illustration is shown in figure 

2.26. This was shown to work very well for classifying shapes from a number of different 

benchmark databases. 
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Figure 2.26: Part (a)illustrates a number of different perimeters divided into two Shape 

Cells. Note that each perimeter has its skeleton depicted in red, with skeletons in the top 

cell having one more segment than skeletons in the bottoms cell. Each shape in the cell 

is considered roughly equivalent because each of their skeletons would result in an 

identical Shock Graph, due to the requirement to merge adjacent shocks. The cells are 

considered adjacent because only one graph operation is required to turn the Shock 

Graph from the top into the bottom. Part (b) shows an example of two possible 

deformation paths from one Shape Cell to another (Sebastian et al. 2001). The original 

authors draw multiple lines to indicate that there are conceptually many different 

transformations that can be made that result in equivalent path distance. 

The minimum path distance between Shape Cells is then directly the measure of 

similarity between two different images to be considered. Structured as a supervised 

classification task, the distance computation is performed from an unlabeled image's Shape Cell 

to every example class. Therefore, the classifier for this approach must be nearest-neighbor 

within this non-euclidean space of possible transforms (See Fig 2.26 Part (b) for an example 

depiction). Further extensions of this method are cited in the next section regarding biological 

object classification. 

2.7 Topology Based Methods Specifically for Biological Object Classification 

Taylor, et al. (2008) use a combination of statistical and topological features to classify 

scallops in situ. They use a combination of Haralick textures, color histograms, low level 

geometric descriptors, and Fourier Descriptors. They achieve an overall accuracy of 82% on 

their 5-way classification task, including single class accuracies of 77%-87%. In a subsquent 

publication, they introduce HoG features to assist with differentiating textures for their classes, 
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(along with other modifications to improve segmentation) and report a significant improvement. 

Each of their types of features only achieved at most 75% accuracy individually, but in 

combination they were able to achieve 98.7% accuracy on classification of already segmented 

objects. 

ImageJ is a java based software package published as open source by the US National 

Institutes of Health (Abramoff et al. 2004). This software can generate 60+ geometric features 

for segmented ROIs, such as area, perimeter, eccentricity. It also computes grayscale information 

for histograms, etc. Since it is open sourced, it has been repackaged within some domain specific 

software packages.  

One software package based on ImageJ is Fiji (Schindelin et al. 2012), which has earned 

975 citations since its introduction. It does many things outside the scope of this review (for 

example, segmentation), but also generates additional feature types, including SIFT features and 

skeletons. Another popular software suite based on ImageJ is CellProfiler (Carpenter et al. 2006), 

which has also been cited 975 times. In addition to the geometric features, it provides Zernike 

moments, Haralick textures, and many others. Not all of the citations are for supervised 

classification tasks. Some applications are simply quantifying datasets using CellProfiler when 

classification of ROIs is not desired. However, CellProfiler has been successfully used for a 

number of cellular classification tasks, including 91% accuracy on phenotype classification 

(Horvath et al. 2011), as shown in figure 2.27. 
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Figure 2.27: 4 different cellular phenotypes classified by the CellProfiler software in 

conjunction with customized machine learning software. Image modified from (Horvath 

et al. 2011). 

ZooScan is another specialized version which uses the low level geometric features and 

grayscale features ImageJ provides (Grosjean et al. 2004). It has been used to count the 

abundance of both zooplankton (Gorsky et al. 2010) as well as fish eggs (Lelievre et al. 2012). 

Comparison of software suites is not the focus of this review. However the popularity of these 

tools helps give a metric as to whether or not researchers are finding the features that these tools 

generate to be useful. 

 

Figure 2.28: Varieties of zooplankton classified by (Gorsky et al. 2010). 

Hu and Davis (2005) built a series of algorithms to classify diverse plankton including 

diatoms. This is a relatively broad classification task; the classes that they considered had 

dramatically different morphologies, as shown in figure 2.29. They experimented with a variety 
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of classifiers, and a few different feature sets. In 2004, they used a combination of the seminal 7 

moment invariants described by Ming-Kuei Hu (Hu 1962), 6 low-level geometric features, 64 

Fourier Descriptors, and 160 granulometric features. Using these features, they achieved 60-70% 

accuracy on 7-way classification, and 79-82% accuracy on binary classification tasks (Davis et 

al. 2004). In 2005, they derived 64 Haralick texture based features (Hu and Davis 2005). 

Specifically, they calculated a total of 8 different co-occurrence summarization matrices, which 

calculated the mean and range of gray-scale values at 4 different angles and distances. They then 

calculated a set of 8 different statistics suggested by Haralick on each of the 8 matrices, resulting 

in the 64 texture based features. They reported 10% improvement on the 7-way classification 

problem. In 2006, they combined these approaches into an ensemble method, and reported 50% 

fewer errors on low abundance (and therefore more difficult) classes (Hu and Davis 2006). 

 

Figure 2.29: Examples of the broad planktonic classification categories classified by 

Hu and Davis (Davis et al. 2004). 
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A variation of the turning function is used by Lee to classify fish species (Lee et al. 

2008). Before generating the turning function, the perimeter is reduced to between 30-50 points, 

as shown in figure 2.30 and these are the only features used. 97.5% accuracy is achieved for a 4-

way classification task. However accuracy decreases to 87.4% for a 5-way classification task, 

and 73.3% with the addition of another class, for a 6-way classification task.  

 

Figure 2.30: Illustration of turning function used to identify fish by their perimeter. 

Image from Williams et al. (2012). 

Temlyakov et al. (2010) augment the Inner Distance Shape Context with two additional 

constructs, explicitly to handle biological objects. Their first addition is to better handle `strands', 

which they define to be thin, elongated, smaller than the rest of the structure, and attached at a 

single point. These structures are located by decomposing the original object into triangles, 

creating a graph based on the shared edges (Fig. 2.31), and calculating a distance based on 

similarity of this graph to corresponding graphs from template objects. Their observation is that 

the strands would tend to be highly deformable or inconsistent from one image to the next, but 

have minimal impact on our classification of the `core' shape, according to human perception 

studies they cite. Arguably, this is application dependent, but would likely be applicable in many 

biological classification tasks. Their second addition is the definition of an aspect ratio based on 
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bilateral symmetry. They then scale candidates shapes to match the aspect ratio of the templates 

before executing the rest of the comparison. Temlyakov et al. compare accuracies with over a 

dozen other methods on a standard data set, and using their additions, achieve 2% better than the 

next best performance. 

 

Figure 2.31: Illustration of identification of strand structures by shape-decomposition 

and graph transformation (Temlyakov et al. 2010). Strands are capped with blue 

triangles, and represented blue nodes in the graph. 

The distance between Shape Cells of equivalent Shock Graphs was shown to work well 

for relatively simple shapes with broad variations. As later researchers applied the technique to 

more complex shapes, they determined that better results could be achieved by pruning the 

skeleton in order to facilitate comparisons. One pruning approach is outlined by Bai et al. (2007). 

For their approach, they simplify the perimeter of the object by first partitioning the contour with 

Discrete Curve Evolution, as shown in figure 2.32.  
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Figure 2.32: Examples of the stability of skeletons pruned with DCE (Bai et al. 2007). 

For each example, The red shape is the result of the original black contour being heavily 

smoothed with DCE. Skeleton segments which do not terminate in a convex vertex of 

the red simplified shape are pruned.  

Nguyen, et al. (2013) introduce Spike Count to assist in the classification of pollen 

grains. Starting with the same set of texture features discussed earlier from Rodriguez-Damian, 

et al. (2006), Spike Count is introduced to help differentiate features on the perimeter of the 

grains. As shown in figure 2.33, Spike Count is calculated in by graphing the intensity of pixels 

in a band immediately outside of the segmented perimeter. Unlike the other functions in this 

section, these functions are not compared. Instead heuristics are used to calculate the number of 

local minima. This integer is then used as an additional feature. They report and increase of 

accuracy of around 5% on the 4 classes for which the feature is relevant. Overall the accuracy 

attributed to this single feature on their 9-way classification task increases from 89% to 92%. 
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Figure 2.33: Two depictions of Spike Count from Nguyen, et al. (2013), with the top 

pollen grain having 11 spikes and the bottom sample having none. The graphs have the 

angles 0-360 on the x axis, and intensity from 0-1 as the y axis. Note that the large dip 

in the bottom graph, and the two largest dips in the top graph, which are all caused by 

adjacent grains, are correctly ignored.  

2.8 Point/Patch Correspondence Methods 

These methods consider portions of images at a level smaller than the whole shape. Many 

of these approaches involve some type of sliding window approach, where a very small window 

is repeatedly sought within the larger ROI. Although named part decomposition is not how they 

operate, English language descriptions in the same vein would be something such as the ROI 

“has two antennae” or “has a few large dark spots.” 

2.8.1 Fixed Heuristics 

Approaches within this section can be thought of as straightforward 'Pattern/Template 

Matching'. They seek to match large patches of the candidate image with representative samples. 

The most naive is called 2D correlation, which involves looking for patches of exactly matching 

intensity values. The `feature' is generally a single value for each pixel and template pair, 

roughly equivalent to the percent match when a template centered on that pixel. This approach is 
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simple and effective, but suffers greatly when the viewpoint, object orientation, or lighting is 

inconsistent. This may not be a problem for some well-controlled biological image settings. In 

order to compensate for lighting, correlation can also be performed with gradient patches, which 

is essentially using relative intensities rather than absolute intensity values. A further refinement 

is to match on gradient orientation, rather than simply gradient values, which results in rotational 

invariance (Steger 2001) 

 

2.8.2 Point Correspondence Based Methods 

From 2004-2012, point correspondence based methods were some of the most commonly 

used methods with a large number of nuances and optimizations that all follow the same basic 

procedure. The general process for these methods is to identify visually `critical' or `interesting' 

points within the image, often referred to generically as keypoints. Each keypoint is then given a 

descriptor. The idea is to create something as unique as an English description, so that keypoints 

of the same visual phenomenon, but from different images, can be matched. Keypoints are ideal 

for recognizing one specific object, such as a landmark or building, in multiple different images. 

As a classification technique, keypoints identify visual elements that would directly correspond 

to each other in different samples. Although there are nuances in some classification methods, 

most often the unknown image is given the same label as the image with which it has the closest 

correspondence of keypoints. Or, a feature vector is created based on how similar the list of 

keypoints are to each other, which is similar to the methods in the Path Matching section above. 

The complexity and variations within this general approach lie in how the keypoints are 

determined, how the keypoint descriptors are created, and how the goodness of fit for the 

correspondences is evaluated. 
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The initial keypoint identification is covered in detail in modern computer vision 

textbooks (e.g., Gonzalez and Woods 2007; Szeliski 2010). In general, keypoints are designed to 

identify the areas with the highest contrast, because those areas should be identifiable from the 

widest range of lighting and angles. These high contrast keypoints are commonly located by 

techniques such as edge detectors (Canny, Sobel, Hough Transform), corner detectors 

(Shi/Tomasi), Haar wavelets, Difference of Gaussians, etc. Additionally, pre-processing 

techniques are frequently employed to increase the contrast in the image. This reduces noise, 

similar to the smoothing step in the topology based techniques covered earlier. 

Computer vision textbooks also provide extensive discussion of the many types of 

keypoint descriptors. Scale Invariant Feature Transforms, or SIFT descriptors are one of the first 

and most highly cited (Lowe 2004). I summarize SIFT descriptors to provide a basis for 

comparison with other methods presented in this review. 

A SIFT descriptor for a keypoint summarizes the magnitude and orientation of nearby 

gradients. Specifically the descriptor is created by computing the gradient at each nearby pixel 

(an 8x8 window in the left hand side of figure 2.34). These local gradients are multiplied by a 

Gaussian weighting factor, so that the gradients closer to the keypoint have a larger magnitude. 

In order to account for noise, gradients are binned. Lowe settled on 8 bins as optimal (North, 

North East, East, etc). Rather than simply counted as a normal histogram, magnitudes are added. 

The right hand side of figure 2.34 shows an illustration of the final SIFT descriptor for the 

keypoint, in which individual gradients have been combined by quadrant with respect to the 

original keypoint. In order to achieve rotational invarience, each SIFT region is not applied with 

respect to the image's pixels, but with the gradient at the keypoint itself set to due north. Figure 

2.34 depicts a 2x2 descriptor computed from 8x8 samples, but Lowe used a 16x16 pixel window 
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and a grid of 4x4 descriptors when reporting results. Since each descriptor contains 8 bins, the 

total length of the SIFT descriptor is 128. SIFT descriptors are features for an individual point in 

the image. 

 

Figure 2.34: Illustration adopted from Lowe's original SIFT descriptor paper (Lowe 

2004). The keypoint is at the center of both images. Image gradients are calculated for 

every pixel. Gradients within the radius contribute to the keypoint descriptor 

calculation.  

Other common descriptors include SURF, HoG, GLOH, RIFT, FREAK, BRISK, FAST, 

BRIEF, ORB, and Gist. One of the main reasons why so many variations exist is because SIFT 

descriptors are computationally demanding, so many of the alternatives were generated in order 

to be more efficient. Tables from the performance comparison by Hudelist et al (2014) provide 

their relative complexity.  

Finally, the descriptors must be compared in order to achieve final labeling. This can be 

done via Euclidean distance, Hamming distance, or any number of suitable classification or 

similarity strategies commonly used in machine learning.  

2.8.3 Patch/Filter Based Methods 

Unlike the methods in the previous section, which focus on locating particular points in 

the image and trying to generate correspondences, methods in this section define a particular 
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cluster of pixels, usually in the form of a rectangular patch, and then assess their presence in the 

image. A nuance that is necessary for semantics and important for the mathematics to work 

correctly is that the patches are generally not directly identified in the image, but multiplicatively 

applied to the original image as a filter. To ease the semantics of discussion, the filter will be 

referred to as the feature, when in actuality the filter is merely the feature detector.  

Filter banks are one common technique, and there are a variety of them (Varma and 

Zisserman 2005). One particular set, the Leung-Malik set was originally used to classify textures 

(Leung and Malik 2001). It is a good representative because it includes a variety of filters, as 

seen in figure 2.35. The authors selected “36 oriented filters, with 6 orientations, 3 scales, and 2 

phases, 8 center-surround derivative filters and 4 low-pass Gaussian filters” (Leung and Malik 

2001). Because filter banks look primarily at fine-grained detail, they are also sometimes 

referred to as `textons.' In this case, the feature vector is a summarization of the responses of 

each filter in the filter bank. 

 

Figure 2.35: Illustration from Varma and Zisserman (2005) showing the diversity of 

filters in the LM Filter bank (Leung and Malik 2001). 

Another commonly used technique to generate filters is Gabor Wavelets (Gabor 1946). 

They attempt to encode the image as if it were generated by series of sine waves in the abstract, 

rather than reflected photons. Although figure 2.36 depicts a symmetric arrangement, their 

mathematical form of a combination of a sinusoid with Gaussian decay allows them to be 

generated arbitrarily.  
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Figure 2.36: Illustration of Gabor Wavelets showing 8 different orientations and 5 

different scales. Image from (Liu and Wechsler 2002). 

For the past few years, there has been extensive focus on `deep learning' techniques for 

many kinds of learning, including supervised image classification tasks. Most of their 

architecture, including their ability to learn features at multiple scale, is well beyond the scope of 

this review. There are a number of different kinds of architecture claiming to be `deep'. 

Convolutional Neural Networks(CNNs) are one implementation. CNNs consist of multiple levels 

of neurons, each of which has a small image patch as input. As far as feature extraction is 

concerned, there are two primary differences between the CNN approach and the Filter Banks 

used by Leung and Malik (2001).  

The first difference is that instead of using a set of filters a priori, the network is 

generally allowed to adjust the construction of the filters themselves to find the ones that most 

efficiently match the features. The method of patch construction and evolution is beyond the 

scope of this review, but it is frequently sparse coding, which not only has efficiency constraints, 

but possibly matches the behavior being executed by the neurons in humans' visual cortex 

(Olshausen and Field 1997). Because the filters are learned, they do not have the same level of 

regularity as the manually selected set of filters in a filter bank, as shown in figure 2.37.  
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Figure 2.37: A selection filters evolved and encoded using sparse coding (Olshausen 

and Field 1997). This figure represents half of a bank of 144 filters. Note the lack of 

uniformity when compared to figures 2.35 and 2.36. 

The second difference is that a separate set of filters is used (or learned) at various scales 

with respect to the original image. For example, if there were three sets of patches evolved, the 

filters typically correspond to edges at the lowest level, object parts at an intermediate level, and 

object models at the highest level, as seen in figure 2.38. Because calculating these image 

patches is only a portion of the overall computations required during the training phase of these 

techniques, and likely because the lowest layer tends to end up having very similar construction 

from one application to the next, some papers report simply using an existing, named filter bank 

as the lowest set of patches to expedite training. 
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Figure 2.38: Illustration of 3 levels of filters learned by an object classifier. The lowest 

level would be at a small scale, along the lines of 7x7 pixel regions in the original 

image. Filters in successive levels are applied to pooled applications of the lower level 

filter responses. So, if each additional layer was also a 7x7 filter, and applied to a 4x 

pooled 'filter' image, the middle layer would correspond to a 28x28 pixel region in the 

original image, and the top layer would correspond to a 112x112 pixel region in the 

original image. Image adopted from (Ng and Yu 2010). 

 

2.9 Point/Patch Correspondence Methods Specifically for Biological Object Classification 

A research group at Stanford recently found simple template matching to increase 

performance for fine-grained object classification (Yao et al. 2012). They directly sampled `gold 

standard' data to acquire the templates, as shown in figure 2.39. The approach is straightforward 

with respect to features because it looks for exact patch matches. The key to their success is how 

they reduce noise by discarding nondiscriminative patches, and other machine learning 

optimizations. 
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Figure 2.39: Illustration of a direct image patch matching process for classification 

from (Yao et al. 2012). 

Ranzato, et al. (2007) customized another well-known point descriptor called local jets 

for various biological particle classification tasks. They generate a feature vector of length 108 

for each pixel in the image. They reported 93.2% accuracy for a 12-way classification task of 

particles from urinalysis, as shown in figure 2.40. This same system was used by Edgington, et 

al. (2006; also Kline and Edington 2010) was used to process underwater video for invertebrate 

classification. They reported 95%-100% success on classifying larger sea urchins and sea 

cucumbers directly from frames of video. However, they reported terrible performance with 

similar classes of organisms, incluidng jellyfish, from time-lapse still imagery. Unlike many 

other approaches mentioned in this review, this particular technique skips the segmentation step, 

and classifies the ROIs directly from raw, unsgemented images.  
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Figure 2.40: Examples of 12 classes of particles from urinalysis samples from Ranzato 

et al. (2007). 

Zhang, et al. (2004) achieved 97% accuracy on a 5-way classification task of pollen 

grains. They use a set of 6 features, two second-order moment invariants, and 4 Gabor features 

on images such as those shown in figure 2.41. Subsequent research by Holt et al. (2011) cites the 

same features and adds Haralick textures and additional Gabor features to use a total of 43 

features for a 6-way classification of pollen. They report accuracies ranging from 77-94%, but 

more significantly, that those results are within 1-4% of agreement with expert level annotations.  

 

Figure 2.41: Examples of pollen classified by Gabor features in Zhang et al. 2004). 

Beijbom, et al. (2012) used 24 textons generated at 4 different scales to classify types of 

coral within reefs survey images. Superficially, this task requires extensive segmentation, as the 

corals generally grow to fill all available space, as shown in figure 2.42. However, the actual 

census is taken by labeling the coral at individual points. They address their 9-way classification 
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task hierarchically, first by splitting into coral/non-coral class, and then within one of 5 coral 

classes, or 4 non-coral classes. The highest overall accuracy reported on the end-to-end 

classification of all 9 classes is 83%. 

 

Figure 2.42: Illustration of coral reef scenes classified by textons in Beijbom, et al. 

(2012). 

Mander, et al. (2013) also use textons to classify 12 different species of grass pollens. 

Overall accuracy achieved is 85.8%, which is notable because they consider the task particularly 

difficult: their automated process achieved better accuracy than any individual human expert, out 

of 7 subjects for which they reported data. The task is so difficult, they note that consensus was 

only achieved on 28.3% of ROIs. 

Most deep learning approaches, which are patch based, report results on competition 

datasets such as ImageNet. 

Habibzadeh, et al. (2013) classify 5 different types of white blood cells. They use a CNN, 

with a first level window size of 5x5 pixels. Their target images have been `segmented' as 28x28 

pixels, as shown in figure 2.43. They achieve 85% accuracy with the CNN, which outperforms 

the 74% accuracy they report using a combination of raw intensity values and grayscale 

distribution moments.  
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Figure 2.43: Each row represents one of the 5 different types of white blood cells 

classified by a Convolutional Neural Network in Habibzadeh, et al. (2013). 

 

2.10 Discussion 

There are three additional feature extraction considerations that span all of the individual 

algorithms mentioned above. 

 

2.10.1 Algorithm Tuning 

The important consideration is that any code which purports to implement these 

approaches would not be able to be used for various classification tasks directly `out of the box'. 

That is, some methods mentioned have parameters which would need to be derived and 

optimized for the classification task at hand. Prior to, and unlike the training of the classification 

algorithm itself, there would potentially be some application or domain specific choices required. 

Two examples of these choices would be how much smoothing to apply, or how far from the 

perimeter a skeleton should be pruned. These parameters could only be derived from careful 

experimentation with sample data for a particular task. Specifically, care should be given when 

selecting values to not only achieve optimal results on the sample data, but to accommodate 

future images configurations (or an understanding that reconsidering the parameters may be 

required).  
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Similarly, some of the features could be noisy, and potentially affect performance with 

some algorithms. Many of the references in this paper use Principal Component Analysis to 

reduce the number of dimensions of the features eventually made available to the machine 

learning algorithm. Sometimes this was done to expedite the training of the model, other times it 

was in order to identify the most informative features.  

 

2.10.2 Ensemble Methods 

For the most part, the cited methods were chosen not only for their applicability to 

biological object classification, but also for the purity, uniqueness, and originality of their 

approach. A logical extension for many of these methods would be to combine them, and this 

was illustrated in some of the biological object classification examples. For the most part, these 

approaches are not mutually exclusive, and could often be used in combination. The biggest 

potential issue with combining methods is that the calculations required to extract their features 

may be completely independent, so there may be no shared calculations or savings gained. The 

computational cost will simply be the sum of computing each individually. Also, features may 

not provide additional value, thereby generating noise for the machine learning algorithm to 

learn to ignore. 

Many different types of ensembles could be considered. The first and most 

straightforward is simply computing all statistics for a number of different methods, and 

plugging them all into the same classifier. This is the approach taken by the multiple different 

research groups that have used the WND-CHARM image classification software published by 

the Goldberg research group at NIH (Orlov et al. 2008). This software computes 2873 individual 

features for each image, including many mentioned in this review (e.g. edge statistics, textures 
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(including Haralick), moments (including Zernike), fractal features, and Fourier transforms). 

Another ensemble architecture would be to use a separate machine learning classifier for each 

distinct feature type, and then to combine the results of each individual classifier, either through 

simple voting, or through a more complex scheme.   

2.10.3 Deep Learning 

For the past few years, deep learning techniques have been setting high-water marks in 

most vision contests as well as many contests outside of vision (e.g., Russakovsky et al. 2014). 

So perhaps in the near future, this entire review will be moot, if deep learning turns out to be a 

panacea for all vision tasks. However, there are a few reasons why this review is currently still 

potentially relevant even in that case. First, the deep learning approaches as currently deployed 

are computationally expensive. An ICML tutorial from 2013 given by Yann LeCun referenced a 

network with 8 layers, training on 1.3 million images, which required 10 days of training time on 

a single GPU (LeCun and Ranzato 2013). For individual researchers this may be a significant 

cost with no guarantee that everything will work correctly, so there might be multiple 10-day 

waiting periods during debugging and model creation. And while Google's submission to the 

2014 ImageNet competition raised the bar on performance, it also raised the bar on resources. 

They trained 7 separate 22-layer networks, and used an ensemble method to combine the output 

of all (Szegedy et al. 2014). They claim to be more efficient than a similar submission from 

2012, but in the near term, this approach may be beyond the resources for a classification effort 

without access to supercomputer level resources.  

Additionally, most contests are designed with different objectives than those stated at the 

start of this review. For example, ImageNet is a popular contest, but contains 1000 categories, 

which are randomly selected subclasses of broader categories such as “mammal, bird, fish, 
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reptile, amphibian, vehicle, furniture, musical instrument, geological formation, tool, flower, 

fruit” (Deng et al. 2009). The 1000 target classes contain things such as “English setter”, 

“Australian terrier”, etc. These type of full-color, macroscale images are not representative of the 

type of biological image classification targeted by this review, and performance may not 

translate. In addition, these types of 1000-way classification tasks still have error rates of 7.4% 

(Russakovsky et al. 2014). So even if these techniques are more powerful overall for general 

tasks, they may not be sufficiently accurate for a narrow, high precision classification task. 

Finally, Deep Learning approaches may greatly improve performance, but by design they 

are built to be general-purpose, so that they may be learned in an unsupervised fashion. This is so 

that they scale to accomplish large-scale performance across a huge variety of tasks without 

requiring customization for each one. However, if a particular task is very specific, and very high 

value, it may still be worth engineering a specific methodology. The `custom' approach may or 

may not perform better, but combinations are also an option. For example, in a recent paper 

entitled DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition 

(Donahue et al. 2013), the authors claimed to have achieved best in class performance on a 

number of classification tasks, including fine-grained classification of very similar species of 

birds, from the Caltech-UCSD birds 200 data set (Welinder et al. 2010). While it is true that their 

DeCAF architecture outperformed the other reported methods by two percent, an additional six 

percent gain was achieved by combining their DeCAF approach with one of the previous best 

approaches, Deformable Part Descriptors (Zhang et al. 2013). 

2.11 Conclusion 

This chapter provides a summary of many types of features that could be used to 

automate biological object classification. I organize them into three different categories as shown 
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in figure 2.44, provide a brief interpretation, and cite published implementations for 

representative domains. The feature extraction methods covered in this review are presented 

comprehensively, not comparatively. As the cited examples illustrate, each feature has been 

found more useful than some other feature for at least one application. More importantly, there is 

a clear tendency to aggregate features rather than to replace older ones outright. Therefore, the 

information in this review should remain valuable even as methods evolve and new ones are 

invented.  

 

Figure 2.44: Summary of the three categories of feature extraction methods presented 

in this review. 
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CHAPTER 3 Improving Object Detection and Segmentation for In Situ Plankton Images 

  



 

85 

3.1 Introduction 

This chapter will discuss the steps between digital image capture and image analysis, 

sometimes referred to as image preprocessing. I describe techniques to improve object detection 

in images acquired by our autonomous Zooglider (Ohman et al. 2018). Like any new imaging 

system, we seek to improve its performance in order to optimize the scientific value of the 

images captured, this includes reducing noise in the image capture process to improve not only 

the aesthetics for the human, but also the suitability of the images for machine learning. These 

improvements primarily consist of a dynamic flat-fielding algorithm to correct for uneven 

background illumination and a novel two-pass segmentation algorithm for object detection, 

together with the open standard that we use for embedding metadata into image files. After this 

introduction, the rest of this chapter provides background on flat-fielding, segmentation, and 

embedding metadata with respect to plankton images in general, detail on our implementation, 

and results of applying these methods. 

In image processing, “detection” is defined as determining whether or not a region of 

interest (ROI) is present in an image, and “segmentation” is defined as “subdividing an image 

into its constituent regions or objects” (Gonzalez and Woods 2007). In the case of plankton 

images, the background of the images will be relatively consistent, and the ROI will generally 

occupy a small portion of the field of view, but not necessarily densely or completely covering it. 

This scenario is not unique to plankton images, but is common to many biological image 

analysis tasks, including cell detection in biomedicine. This scenario is also not new; the research 

area of biomedical cell segmentation is mature enough to have retrospective articles such as 

“Cell segmentation: 50 years down the road” (Meijering 2012). While the duration of previous 
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research activity provides an indication of the level of difficulty of the problem, it also indicates 

that there is a substantial body of existing methods to draw upon.  

A successful segmentation algorithm will consistently identify which pixels are part of a 

ROI, and which are not. This process includes successful handling of the irregular, elongated, 

and nearly transparent structures typical of many zooplankton species. Once segmented, various 

properties of the ROI can be calculated for independent use or use as machine learning features, 

such as its topology (e.g., shape, size), or statistical summaries of the properties of the 

constituent pixels (e.g., average pixel value, texture descriptors). 

Once measured, these calculated properties need to be associated with the image. While 

many software solutions exist to manage data, we elect to embed the metadata in the file itself 

using the Extensible Metadata Platform (XMP) format (Adobe 2001; ISO 16684-1:2012). Two 

reasons for embedding the metadata within the file are that embedding prevents the metadata 

from getting separated from the image or applied to the wrong image, and embedding the 

metadata using a well-known format allows other researchers to use or quickly examine a subset 

of the images without having to procure or deploy secondary software. Embedding metadata also 

facilitates their use in machine learning applications. 

 

3.2 Prior Image Processing Techniques Extended for Zooglider Images 

3.2.1 Flat-fielding of scientific images 

Plankton images, like all scientific images, exist as a proxy that allows scientists to more 

easily observe or measure phenomena. The images themselves are not the object of study, 

therefore the intensity values recorded in the image are not sacrosanct. Manipulating intensity 
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values is desirable to the extent that the modifications more accurately represent the original 

phenomena. Improving the aesthetics of the image is secondary. 

Even before digital images, scientists grappled with correcting for photographic artifacts 

for use in scientific measurement (Shaw 1978). Working with a cryogenically cooled CCD used 

in astronomy, Leach et al. (1978) described a method they called "Flat-Field Correction" to try to 

reduce inherent noise. Flat-fielding has been applied to plankton images by Faillettaz et al. 2016, 

but their algorithm was not published. Other image correction methods including histogram 

normalization, per image normalization, per pixel normalization, and dehazing (He et al. 2011) 

did not provide results as consistently as our flat fielding implementation. 

3.2.2 Segmentation of plankton images 

Many different segmentation algorithms have been applied to plankton. Most algorithms 

either locate discontinuities (intensity gradients) to define the boundary between image segments 

or locate similarities (uniformity by some metric) to define membership to an image segment 

(Gonzalez and Woods 2007).  

One type of similarity-based segmentation is thresholding; the threshold can be defined a 

priori or dynamically determined. In the case of plankton images, the goal is to identify the 

uniform characteristics of the background and then remove it, leaving the remaining pixels as 

ROIs. Thresholding is the approach used to segment zooplankton in Zooscan images (Grosjean 

et al. 2004, Gorsky et al. 2010) due to the high uniformity of the background as in figure 3.1. 

Similarly, after transforming the image from intensity to phase congruency, thresholding is then 

used to segment phytoplankton in Imaging Flow CytoBot images by Sosik and Olson (2007) in 

figure 3.2 (left). 
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Figure 3.1: Example Zooscan image that can be segmented by thresholding. 
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Figure 3.2: Two segmentation algorithms applied to phytoplankton. On the left, all 

stages of segmentation including thresholding at step C. Image from Sosik and Olson 

(2007). On the right, all stages of segmentation are shown for three different circular 

diatoms. The Canny edge detector is used to create the initial segmentation in the 

second row, before subsequent refinements specific to circular diatoms. Image from 

Luo et al. (2011).   

 

One common discontinuity-based method is a Canny edge detector (Canny 1986). In the 

case of plankton images, since an edge detector only identifies boundary pixels, an additional 

step is required to link the edges (Gonzalez and Woods 2007). A Canny edge detector was used 

to segment circular diatoms in microscope images by Luo et al. (2011) in figure 3.2 (right). A 

different discontinuity-based method is called Active Contours, which deforms a spline curve 

based on an initial segmentation, yielding only smooth contours. This is implemented for 



 

90 

phytoplankton and small zooplankton in FlowCam images by Blaschko et al. (2005), as shown in 

figure 3.3 (top). 

 

Figure 3.3: Combining segmentation algorithms. The top row has the original ciliate 

image (left), active contour segmentation (middle), and thresholding (right). Image from 

Blaschko et al. (2005). The bottom row has three additional segmentation types. Image 

from Hirata et al. (2016). 

 

The choice of segmentation method is not mutually exclusive. Many workflows include 

mixtures of methods (Blaschko et al. 2005; Sosik and Olson 2007). Hirata et al. (2016) created 

an ensemble of segmentations using multiple approaches (Fig. 3.3, bottom) and let the 

subsequent machine learning algorithm determine which is useful. Because plankton 

segmentation presents challenges such as elongated structures for the ROI, all six of the 

previously cited studies modify the baseline segmentation algorithm, rather than just evaluating 

as a stock algorithm.  
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In addition to modified approaches, a completely novel segmentation algorithm 

specifically designed to capture setae (thin, elongated, hair-like extensions) is the “Grayscale 

Surface Direction Angle Model” by Zheng et al. (2014; Fig. 3.4). As digital image resolution 

improves, specialized segmentation algorithms for particular species or structures should become 

more feasible. 

 

Figure 3.4: Microscopic images (leftmost column), with results shown from standard 

segmentation algorithms (middle columns) and from the greyscale direction angle 

model capturing setae (rightmost column). Image from Zheng et al. (2014). 

 

3.2.3 Embedding Metadata with the Extensible Metadata Platform (XMP) format 

 When used in the context of images, the term ‘metadata’ refers to information 

about the origin and contents of the image, frequently including time, date, exposure 

information, and also potentially including location, description of the intended subject, etc. 

Rather than being maintained as a separate catalog, most contemporary digital image formats 
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(e.g., JPEG, PNG) allow text or binary information to be stored within the image file itself. The 

most common standards governing the structure and contents of this embedded data are EXIF, 

ITPC, and XMP (Tesic 2005). The eXtensible Metadata Platform (XMP) was first announced by 

Adobe Systems Incorporated in 2001 and eventually published as an open standard in 2012 by 

the International Organization for Standardization (ISO 16684-1:2012). 

 

3.3 Original Image Correction and Segmentation Algorithms 

3.3.1 Acquisition and Characterization of Zooglider images 

The images analyzed here were acquired with Zooglider (Ohman et al. 2018), which is a 

modified Spray glider (Sherman et al. 2002; Davis et al. 2008). Spray gliders are autonomous 

underwater vehicles capable of 50-day ocean deployments during which they sample physical 

properties of the ocean during dives as deep as 400 m (Sherman et al. 2002; Davis et al. 2008). 

Zooglider additionally has a Zoocam (Fig. 3.5), a low power camera with a telecentric lens that 

acquires in situ images of ~250 mL of ocean per frame in order to quantify plankton and 

plankton-sized particles (Ohman et al. 2018). Images recorded are single-channel transmission 

images, like a common X-Ray, but with illumination provided by a red LED centered at 620-630 

nm (Ohman et al. 2018). Images can be captured at a frame rate of up to 2Hz, which, based on 

the typical ascent rate of the glider of 0.1 m s
-1

, yields a profile of images with as little as 5cm 

vertical separation 
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Figure 3.5: Zooglider schematic (left) and photograph of the Zoocam camera system 

(right) 

 

The Instrument Development Group at Scripps Institution of Oceanography engineered 

and deployed the fully autonomous Zooglider, which can sample parts of the ocean not possible 

with any shore-based, towed, human operated, or cabled system. It is navigated remotely via the 

internet using Iridium satellite communications. Each time it surfaces, Zooglider telemeters 

ashore hydrographic measurements, chlorophyll-a fluorescence, and dual-frequency acoustic 

backscatter, together with an indication of size distributions of particles imaged by the Zoocam. 

The images themselves are downloaded upon recovery of the vehicle.  

A single Zooglider ascent from 400 m depth captures approximately 8,000 full frame 

images over the span of approximately 65 minutes. More than a hundred such 0-400m profiles 

can be acquired per deployment at the full 2 Hz acquisition rate. A full frame image may have no 

objects present, or hundreds. Thus, efficient means for object detection and segmentation in 

Zooglider images are essential. 

3.3.2 Flat-fielding of Zooglider Images 

Similar to the telescope images considered by Leach et al. (1978), our Zooglider images 

of uniformly illuminated fields exhibited a consistent gradient of sensor response (uneven 
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brightness during exposures of deep water/empty frames) as in figure 3.6. Our raw intensity 

values also have a slight banding artifact. Therefore I implemented a correction process inspired 

by previous approaches, which removes these artifacts, standardizes the intensity values, and 

improves image contrast. The main difference between our implementation and that of Leach et 

al. is that instead of recording baseline frames with no expected input, we use a rolling average 

of adjacent frames (prior and subsequent exposures) as our average, or flat, image. 

 

Figure 3.6: A typical Zooglider image with raw pixel values rendered as recorded in 

situ.  

The flat field correction begins with a 100 frame rolling average (i.e., the 50 frames 

before and after an exposure, excepting the first 50 and last 50 images of each dive). The raw 
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pixel values for each frame are corrected by subtracting the 'flat-field' as follows. We calculate 

the single mean intensity value across the 100 adjacent images for all pixel locations, a single 

value between 0 and 255. We then calculate the mean intensity value across the 100 adjacent 

images for each pixel location, calculate the mean of those mean values, and divide each 

component mean by the singular mean intensity to create a correction factor matrix of values 

(clipped at a maximum of 1.75) yielding a correction factor matrix the same size as the image 

frame of values [0-1.75]. We then multiply the raw pixel values pointwise by this correction 

factor matrix and divide the result by the maximum value in the frame to rescale pixel values to 

[0-1], at which point the contrast of background areas is uniform throughout the image. We 

additionally increase contrast by performing gamma correction (Gonzalez and Woods 2007) of 

2.2 and re-center these new pixel values to have a mean intensity of 0.812 (corresponding to 

greyscale value of 207). Finally we clip values below 0.0 and above 1.0 and convert back to 8-bit 

values [0, 255]. 

Pseudo-code for our flat-fielding algorithm using a rolling average 

#Calculate mean of stack of 100 frames, and the global mean 

Pixc[j,k] = image_pixels    #Pixels of current frame 

PixMean[j,k] = mean(  Pixi[j,k] : for i = [c-50,c+50] )  

PG = mean( PM[j,k] ) 

 

#Use the clipped mean to adjust the current image  

CF[j,k] = PG / PM[j,k]    # / is element-wise division 

if CF[j,k]>1.75: 

set CF[j,k]=1.75    

PixCorr[j,k]  = Pixc[j,k] * CF[j,k] # * is element-wise mult 

Figure 3.7: Pseudocode for flat-fielding Zooglider images.  
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#Convert pixel values from 8-bit to 0-1 space for gamma corr. 

PCmax = maximum( PixCorr [j,k] ) 

PixCorrNorm[j,k] = PixCorr [j,k] / PCmax   

 

#Now normalized so 0 <= PCN[j,k] <=1, perform gamma correction 

gamma = 2.2 

PixCorrGamma[j,k] = PCN[j,k]^gamma 

 

#For aesthetics and consistency, Re-center distribution so that 

mean intensity is 207/255. Clip values that are adjusted too far. 

PixCorrGammaMean = mean ( PCG[j,k] ) 

PixCorrRecenter[j,k] = PCG[j,k] * 0.812/PCGM 

if PixCorrRecenter[j,k]<0: 

PCR[j,k]=0 

if PixCorrRecenter[j,k]>1: 

PCR[j,k]=1  

PixFlatField[j,k] = PCR[j,k] * 255  

Figure 3.8: Pseudocode for flat-fielding Zooglider images (continued).  

3.3.3 Segmentation of Zooglider Images 

Segmentation of Zooglider images presents challenges, with the primary concern that 

large portions of nearly transparent ROIs, such as medusae, are difficult to distinguish from the 

background. Based on the dynamic background within a single frame, the numerous small 

particles that are also present, and the highly variable ocean conditions, we did not find success 

using thresholding or any other similarity-based approach (Gonzalez and Woods 2007). 

Regions of Interest (ROIs) were segmented with a novel algorithm using two passes of an 

edge detector (Canny 1986). Our first pass uses less sensitive settings to generate detection 
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regions where at least some strong edges will be present. Because the perimeters of many of our 

target ROI contain portions that are extremely thin or nearly transparent we perform a second, 

more sensitive pass to capture these fine-grained details. This second pass is used as the actual 

segmented perimeter used for geometric feature calculation and ROI retention, but only if the 

first pass also indicates that some portion of the perimeter was part of a strong detection region. 

We also created unique handling for high coincidence frames and ROI at the edge of the frame. 

We used the Python implementation of OpenCV (Bradski and Kaehler 2000) as well as Scipy 

(Oliphant 2007) and its scikit-image component (van der Walt et al. 2014), because neither 

implementation alone provided direct access to all parameter values required. All thresholds and 

kernel values were determined after extensive evaluation of possible values. 

For our first pass, we blur using a 13-pixel-wide Gaussian kernel with σ = 1.5 and 

calculate directional gradients using the same filter. We then perform Canny segmentation with a 

low threshold of 8 and a high threshold of 20 (note that Canny (1986) recommended a ratio of 

2:1 or 3:1). Following Canny (1986), we retain all of the highest threshold edges and moderate 

edges if they are 8-connected to a strong edge (adjacent or diagonal). To merge nearby line 

segments into continuous perimeters, we perform dilation with a 5x5 structuring element, and 

since the purpose of the regions is detection we leave them dilated. We then perform flood-fill 

using 4-connected neighbors (adjacent but not diagonal). We retain these detection regions if 

their area exceeds 100 pixels (corresponding to a roughly 30 pixel or larger area before dilation). 

Our second pass also uses blurs and calculates gradients using a Gaussian kernel of size 

13, but with σ = 1.75. This pass performs thresholding using low and high values of 25 and 35. 

We again perform dilation with a 5x5 structuring element, but then perform erosion with the 
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same 5x5 element so that these perimeters closely match the intensity boundaries. We fill as 

before and discard all regions with an area less than 30 pixels.  

We then use the first pass as a detector, discarding all second-pass regions that do not 

overlap with a region from the first pass. If the candidate region has an area less than 100 pixels, 

we count it but do not record the image tile or any geometric statistics. If the candidate region’s 

area is greater than 100 pixels we retain the ROI as an individual PNG image and calculate 

geometric features (e.g. area, min/mean/max intensity) and embed these as XMP formatted 

metadata. 

 As quality control, we perform a check against coincidence. We found that in frames 

with a large number of diatoms or marine snow, the entire field of view is returned as a single 

latticed ROI. So if the second pass returns greater than 5% of the pixels as edges of candidate 

regions, the edges are discarded, and another attempt is made using a low threshold of 38 and a 

high threshold of 52, with an otherwise identical procedure. If that still yields greater than 5% of 

the pixels as edges, a tertiary attempt is performed with a low threshold of 50 and a high 

threshold of 104, and these ROI are retained regardless of the ratio of edges to original frame. 

The Canny algorithm does not include frame boundaries as edges. Since many objects of 

interest, including larger ROI, will be partially out of the frame, we consider all top and bottom 

pixels to be candidate edges, as well as all the pixels that are eroded when a 3x3 cross is applied 

to the mask. 
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Pseudo-code for segmenting an image 

First Pass Canny 

# Blur the current frame 

Pix[j,k] = image_pixels   #Pixels of current frame 

PixBlur[j,k] = Pix[j,k] * GaussianKernel( 13,1.5 ) 

       #where * is convolution  

 

#calculate the magnitude of the directional gradients  

#element-wise, e.g. Python’s numpy.hypot 

GradX[j,k], GradY[j,k] = Directional_Gradients( PB[j,k]  ) 

Mag[j,k] = hypot( GX[j,k], GY[j,k] ) 

 

#Bin edges per direction by the low and high thresholds 

LowThresh = 8, HighThresh = 20 

PixStrong[j,k], PixWeak[j,k] =  

(edges_per_direction( GX[j,k], GY[j,k], Mag[j,k], LT, HT )) 

 

#Following Canny (1986) to keep only edges meeting criteria 

Edges[j,k] = hysteresis_thresholding( PixStrong[j,k],  

         PixWeak[j,k] )  

 

#Dilate candidates, fill holes, and save as first pass binary 

#mask which will subsequently be used as detections 

Edges[j,k] =dilate( Edges[j,k], Ones[5,5] ) 

      #Ones = 5x5 array of all 1’s 

RegionsFirstPass[j,k] = fill_holes( Edges[j,k] ) 

RegionsFirstPass[j,k] = remove_small_objects( RFP[j,k], min=100 ) 

Figure 3.9: Pseudocode for two-pass segmentation of Zooglider images.  
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Second Pass Canny 

# Again, Blur the current frame, slightly different blur 

PixBlur[j,k] = Pix[j,k] * GaussianKernel( 13,1.75 ) 

      #where * is convolution   

 

#calculate the magnitude of the directional gradients  

#element-wise, e.g. Python’s numpy.hypot 

GradX[j,k], GradY[j,k] = Directional_Gradients( PB[j,k] ) 

Mag[j,k] = hypot( GX[j,k], GY[j,k] ) 

    

#Bin edges per direction by the low and high thresholds 

LowThresh = 25, HighThresh = 35 

PixStrong[j,k], PixWeak[j,k] =  

(edges_per_direction( GX[j,k], GY[j,k], Mag[j,k], LT, HT )) 

 

#Following Canny (1986) to keep only edges meeting criteria 

Edges[j,k] = hysteresis_thresholding( PixStrong[j,k], 

         PixWeak[j,k] )  

 

#Check to see if secondary or tertiary settings are required 

If Edges[j,k] > 5% of image: 

restart second pass with LT= 38; HT = 52 

If Edges[j,k] > 5% of image again: 

restart second pass with LT= 50; HT = 104 

 

#Dilate and Erode candidates, fill holes, and save as second pass 

#binary mask which will subsequently be used as boundaries 

Figure 3.10: Pseudocode for two-pass segmentation of Zooglider images (continued).  
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Edges[j,k] = dilate( Edges[j,k], Ones[5,5] ) 

Edges[j,k] = erode( Edges[j,k], Ones[5,5] ) 

      #Erode, unlike 1st pass 

RegionsSecondPass[j,k] = fill_holes( Edges[j,k] ) 

RegionsSecondPass [j,k] = remove_small_objects( RSP[j,k],min=30 ) 

  

Detection & Segmentation 

For region in RSP[j,k]: 

 If region overlaps RFP[j,k]: 

  If region.area > 100: 

Calculate geometric features and retain 

Else if region.area > 30:  

 Increment ROI count and discard 

Figure 3.11: Pseudocode for two-pass segmentation of Zooglider images (continued).  

3.3.4 Embedding Metadata as XMP 

We use XMP as the format for embedding data in our images because it is an open, 

published standard supported by numerous image processing programs, and because XMP 

supports arbitrary (extensible) information. We use the Python-XMP-Toolkit (ESA/ESO/CRS4 

2017) to store the key/value pairs of information in the image file. This includes dozens of 

geometric features extracted from the ROI (Gorsky et al. 2010; Ellen et al. 2015) as well as 

hydrographic measurements (CTD, Chl-a fluorescence) and geotemporal location and timing 

information (Ohman et al. 2018). An example is shown in figure 3.9. 
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Figure 3.12: Zooglider image of a siphonophore and the first 16 data elements 

embedded as XMP which describe the location and time the image was captured, 

dimensions of the segmented boundary of the siphonophore, and hydrographic 

properties of the water 

 

3.4 Results 

3.4.1 Flat-fielding Successes and Limitations 

Our Zooglider images Figure 3.2 shows the difference between our raw pixel values, an 

implementation in keeping with Leach et al. (1978), and our modification using a rolling average 

of 100 adjacent frames (prior and subsequent exposures) as our ‘flat’ image, as shown in figure 

3.10. Our flat-fielding process worked both on images with few objects as well as images with 

many diatoms and marine snow particles, as shown in figure 3.11. 
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Figure 3.13: The original input (top), standard flat-fielding without a rolling average 

computation (middle), and our flat-fielding algorithm (bottom). 
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Figure 3.14: Raw images (left) and flat-fielded versions (right). Detail shown in center, 

showing that the gradient in intensity and banding has been corrected. 

 

Flat-fielding not only corrects baseline image artifacts; it also corrects image defects. One 

deployment had an anomalous dark region in images acquired, due to a small leak caused by a 

faulty O-ring. The flat-fielding process was able to significantly improve the region of the image 

affected, as shown in figure 3.12. Larger ROIs within the damaged area are still visible.  
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Figure 3.15:  Raw image with leak (left) and flat-fielded version (right). In the top row, 

the blotch is removed, and the copepod that was imaged in the obscured region is 

preserved mostly intact. In the bottom row, the distribution of the particles is roughly 

uniform throughout the frame, except for the region where the dark zone had occurred, 

and a smaller copepod has been preserved. 

 

3.4.2 Segmentation Successes and Limitations 

Our best algorithm used a combination of two different Canny edge detectors. Our first 

Canny edge detector was tuned to capture only strong gradients, specifically avoiding the under 

100 µm unidentifiable particles in our images (visible as hundreds of objects a few pixels in 

diameter). Our second Canny edge detector was tuned to capture much weaker gradients in the 

image in order correctly segment edges with very small gradients, as shown in figure 3.13. We 
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use generous edge linking criteria to capture critical elongated structures such as copepod 

antennae, ctenophore tentilla, and acantharian spicules, at the cost of occasionally admitting 

extraneous pixels.  

 

Figure 3.16: Flatfielded image (left) and pixels identified by our two different Canny 

edge detectors (right). Pixels highlighted in blue were designated as part of the ROI by 

the algorithm with less sensitive settings only. Pixels in pink were designated as part of 

the ROI by the algorithm with more sensitive settings only. Pixels highlighted in purple 

were recognized by both. Bottom image shows discarded false positive ROI (ROI with 

only red pixels).  

 

In figure 3.14, pixels in blue are identified by the first pass, and serve as the initial 

detection. Pixels in red are identified by the second pass. In order to be retained, a candidate ROI 

must have at least one purple pixel, hence many of the faint, small particles in the bottom row 

fail to meet that criterion. A single retained ROI identified by our two-pass algorithm is the 

union of the purple and red pixels in a contiguous block. Some pixels are blue because of 

differences in our thresholds and edge-linking criteria from one pass to the next.  
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We then count and save a ROI as follows: ROIs that meet the segmentation algorithm but 

have an Equivalent Circular Diameter of <0.25mm (i.e. ECD of less than 6 pixels) are discarded, 

because they are near the resolution limit of the camera and therefore very inconsistent, and seem 

to include many false positive particles. ROI that have an ECD of <0.45mm (roughly 100 pixels 

in area) but  0.25 mm are enumerated but not retained. All larger ROIs are saved as individual 

image tiles. In figure 3.15, the ROIs that are only enumerated are highlighted in blue, while the 

retained ROIs are highlighted in green. ROIs are saved as individual image tiles with a scalebar 

and a padded margin of additional pixels around the original image (right). 
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Figure 3.17: Two segmented images. Full frame images are segmented with our 

algorithm based on two passes of Canny segmentation (left). Blue ROIs are enumerated, 

green ROIs are retained as individual image tiles (right).  
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Figure 3.18: The full frame image from figure 3.10 after being processed by our 

segmentation algorithm. Four distinguishable copepods are located in the orange boxes.  

 

Most of the time, the algorithm performs as desired, as in figure 3.16 (top), but 

transparent structures and images with numerous occlusions cause challenges. 



 

110 

 

Figure 3.19: Three Zooglider frames. A typical frame (top) with fewer objects and 

accurate segmentation including setae on the copepod antennae, captured by our 

algorithm’s sensitivity. This sensitivity occasionally causes issues such as enclosing 

regions due to adjacent objects at higher densities(middle), and also is not sensitive 

enough to capture the most transparent structures of some organisms (bottom). 
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Having a very sensitive segmentation algorithm causes issues when there is a high 

number of diatoms or marine snow in the frame. Figure 3.17 shows a flat-fielded  frame on the 

left, and an intermediate step in the Canny algorithm on the right, where the white pixels have 

been identified as edge candidates by our second, more sensitive pass. These pixels are only 

candidates to be identified as edge pixels, since this step is before the edge-linking. 

 

Figure 3.20: Original image with many particles (left) and candidate edge pixels 

identified in white (right). 

Based on our edge-linking criteria, these candidate edge pixels are merged into a single 

large ROI, which is an unacceptable outcome in this case. I developed a heuristic algorithm to 

identify this situation. Even when there is a single large ROI, such as a chain of salps or a large 

siphonophore, the number of edge candidate pixels does not exceed roughly 3 or 4 % of the total 

number of pixels under consideration. However, fields of view with thousands of small particles 

have 5 to 10 % of the total number of pixels identified as edge candidates. So if the candidate 

pixels exceed 5% of the field of view, I adjust the thresholds used by the Canny algorithm to be 

roughly half as sensitive, and identify candidate edge pixels that meet the new criteria (Fig. 

3.18). If the number of candidate pixels still exceeds 5%, I use a tertiary setting and proceed 

regardless of the number of pixels returned (Fig 3.19).  
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Figure 3.21: A full frame (upper left) and segmentations performed at our three 

sensitivity thresholds. ROIs were retained with the secondary sensitivity threshold 

(bottom left). 
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Figure 3.22: A full frame (upper left) and segmentations performed at our three 

sensitivity thresholds. ROIs were retained with the tertiary sensitivity threshold (bottom 

right). 

 

Once our ROIs are properly segmented, I measure properties of the segmentation 

perimeter to be retained and embedded as XMP metadata.  

 

3.5 Summary 

I presented a complete workflow for processing images of plankton in situ acquired by a 

novel Zooglider. I adjust images to have a more uniform appearance with a flat-fielding 

technique inspired by the correction of images in astronomy. I introduced a novel segmentation 
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algorithm that is intended to capture delicate and nearly transparent zooplankton structures. This 

algorithm includes two different passes of a Canny edge detector with secondary and tertiary 

criteria to be used in the presence of dense aggregations of particles. After segmentation, 

properties of ROIs are calculated and embedded in the image in XMP format. 

Deep Learning is becoming prevalent, and Convolutional Neural Networks and their 

predecessors can accurately classify objects in images without performing segmentation as a 

separate action (LeCun et al. 2015). Yet segmentation algorithms are still necessary for plankton 

images because in addition to the classification, biologists use quantitative morphometric aspects 

of the image (e.g. ROI length, area) extensively when conducting investigations using the 

images. Segmentation using Deep Learning is an area of active research that could address some 

the limitations of current approaches that rely on heuristics. CNNs have been used to segment by 

densely predicting a label for each pixel in the image (Long et al. 2015), and combining dense 

predictions with explicit human annotations of segmentation boundaries to improve 

generalization (Xie and Tu 2015). Future work on segmentation without deep learning has value 

for ensembles and embedded systems. Ensemble approaches combining multiple segmentation 

strategies have been shown to work for plankton (Blaschko et al. 2005; Sosik and Olson 2007; 

Hirata et al. 2016). As automated and high volume imaging systems acquire more plankton 

images, there is also a need for segmentation algorithms that achieve results at a high enough 

speed and low enough computational demands to allow for applications such as embedded 

hardware or autonomous vehicles (Ohman et al. 2018). Therefore plankton image segmentation 

should continue to be an open area of research. 
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CHAPTER 4 Quantifying California Current Plankton Samples  

with Efficient Machine Learning Techniques   
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4.1 Introduction 

4.2 Machine Learning Experimentation 
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CHAPTER 5 Correlating Filter Diversity with Convolutional Neural Network Accuracy 
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CHAPTER 6 Improving plankton image classification using context metadata 
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6.1 Abstract 

This chapter shows how to boost the performance of CNN classifiers by incorporating 

metadata of different types, and illustrates how to assimilate metadata beyond simple 

concatenation.  We utilize both geotemporal (e.g., sample depth, location, time of day) and 

hydrographic (e.g., temperature, salinity, chlorophyll-a) metadata and show that either type by 

itself, or both combined, can substantially reduce error rates.  Incorporation of context metadata 

also boosts performance of the feature-based classifiers we evaluated: Random Forest, Extremely 

Randomized Trees, Gradient Boosted Classifier, Support Vector Machines, and Multilayer 

Perceptron.  For our assessments, we use an original data set of 350,000 in situ images (roughly 

50% marine snow and 50% non-snow sorted into 26 categories) from a novel in situ Zooglider.  

We document asymptotically increasing performance with more computationally intensive 

techniques, such as substantially deeper networks and artificially augmented data sets, each 

bringing slightly greater accuracy apparently approaching a limit.  Our best model achieves 

92.3% accuracy with our 27-class dataset.  We provide guidance for further refinements that may 

provide additional gains in classifier accuracy. 

6.2 Introduction 

The burgeoning number of digital imaging methods available to aquatic ecologists, both 

in situ (Davis et al. 1992; Samson et al. 2001; Benfield et al. 2003; Watson 2004; Olson and 

Sosik 2007; Cowen and Guigand 2008; Picheral et al. 2010; Schulz et al. 2010; Thompson et al. 

2012; Briseño-Avena et al. 2015; Ohman et al. 2018) and in the laboratory (Sieracki et al. 1998; 

Gorsky et al. 2010), is generating rapidly expanding libraries of digital images useful in a variety 

of scientific applications. However, the accumulation of large numbers of images increases the 
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need for much more efficient machine learning methods in order to automate the processes of 

image classification, data extraction, and analysis.   

Until recently, most automated image classification has employed methods we refer to as 

'feature-based,' in that they operate on a set of descriptive geometric features calculated from the 

digital images, such as area, shape, aspect ratio, fractal dimension, textures, and gray scale 

histograms. The feature-based algorithms then derive a mapping from the calculated values to 

labels corresponding to the type of organism. Ideally this mapping will extrapolate to future 

images. Some of the feature-based algorithms that have been applied to classification of plankton 

images with varying degrees of success include random forests (Grosjean  et al. 2004; Gorsky et 

al. 2010), support vector machines (Hu and Davis 2005; Sosik and Olson 2007; Ellen et al. 

2015), and multilayer perceptrons (Wilkens et al. 1996), among others. 

Since 2012, “deep learning” algorithms (Krizhevsky et al. 2012; LeCun et al. 2015) have 

outperformed feature-based methods in a variety of  fields, including natural language processing 

(Socher et al. 2013), time series analysis (Graves et al. 2013), variational autoencoders 

(algorithms that learn to generate or alter existing data, such as image correction; Kingma and 

Welling 2013), zooplankton image analysis (Orenstein et al. 2015; Dieleman et al. 2016b; Dai et 

al. 2016; Graff and Ellen 2016; Wang et al. 2016; Zheng et al. 2017), and others. Multiple 

algorithms have been characterized as examples of deep learning, the commonality being the use 

of repetitive layers of algorithmic structure that operate on the prior layers rather than the 

original input. Deep learning algorithms tend to require orders of magnitude more computation, 

although often such computations are highly parallelizable and can be done rapidly given 

appropriate hardware. Among the most commonly adopted deep learning methods are 

convolutional neural networks (CNNs). CNNs have been applied to a spectrum of image 



 

139 

 

recognition problems (e.g., LeCun et al. 1998; Matsugu et al. 2003; Yue-Hei Ng et al. 2015; 

Esteva et al. 2017). Applications of CNNs and random forests to phytoplankton image 

classification include Orenstein et al. (2015), while further applications of CNNs to coral, 

plankton, and fish classification are surveyed by Moniruzzaman et al. (2017). 

Convolutional Neural Networks obviate the need for explicit geometric image 

measurements to be defined and generated, and instead operate directly on the 2-dimensional 

image contents. When a human examines an image captured with discrete pixels such as figure 

1a, the Gestalt theory of perceptual grouping states that we do not primarily perceive individual 

dots of colored ink or light, but instead comprehend unified shapes in relation to complete 

objects, such as in figure 1b (Wertheimer 1923). This recognition may consist of simple objects 

such as “tunic,” “stomach,” and “salp,” or more specific objects based on the viewer's expertise, 

such as “circumferential muscle bands” or “endostyle” (Wagemans et al. 2012).  

 

Figure 6.1: Multiple renderings of a salp zooid (a) at low resolution (b) at full 

resolution typical of Zooglider, which a human generally perceives as contiguous, 

unified shapes, and  (c) a numerical representation of the intensity values in (a). 

A computer’s perception is entirely different, lacking these higher level taxonomic or 

morphometric concepts. Computer ‘vision’ is limited to a grid of integer values (Fig. 1c) and 
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concepts such as “42 dark gray pixel values” or “123 contiguous non-zero pixels.” Feature-based 

methods use summary statistics such as perimeter or mean intensity to describe the image or 

object. By contrast, CNNs generate independent statistics for a lattice of sections of the original 

image, and repeat this process at multiple scales to build a statistical summary of the entire 

image contents, starting with a summary of the pixels at the lowest level, and building towards 

higher level object concepts.  

CNNs apply a system of hierarchical filters to the grid of pixels in a manner inspired by 

Hubel and Wiesel’s investigation of receptive fields within the visual cortex (Hubel 1959; Hubel 

and Wiesel 1963). The lowest layer of the CNN consists of a set of filters as in figure 2a. These 

filters are initialized by either generating random values, or adopting a set of filters from a 

previously trained CNN. The filters are then convolved against the input image, i.e., performing 

element-wise multiplication between the filter and the region of the image that it covers for every 

possible region in the image. Every filter’s convolution is input for a neuron, which sums these 

inputs, and applies a non-linear activation function that produces higher valued output when the 

match between the filter and input region’s high values are closely correlated (Fig. 2b). The 

neuron’s output is used as input for the next layer of filters. Each subsequent layer of filters is 

similarly applied to its predecessor. During the training phase, as labeled images are assessed, 

the algorithm gradually adjusts these filters so that they are the most useful for determining 

differences between classes. Early layers of filters usually evolve to identify low level visual 

concepts such as colors, corners, and edges at a particular orientation as in the example in figure 

2. Secondary filters typically correspond to mid-level concepts such as curves and textures, 

potentially equating to muscle bands or outer tunic. Additional layers of filters evolve against 
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their predecessors' output, ideally resulting in high level objects such as peripharyngeal band or 

testes that are useful for determining the final classification label.  

 

Figure 6.2: Conceptual application of filters to an input image as in the first layer of a 

CNN. (a) A bank of 3x3 filters. (b) Conceptual representation of regions where a 

particular filter from (a) would have a strong response to the salp input image: e.g., a 

sharp horizontal edge at the top of a muscle band, or a dark-to-light gradient mid-tunic. 

Although CNNs and feature-based methods operate on different representations of the 

image data, a limitation of both approaches is that they utilize only the information contained in 

the image. In contrast, human taxonomists consider the context in which the sample was 

acquired when making identifications. For planktonic organisms, collection information such as 

geographic location, season, depth, time of day, and hydrographic conditions provide context 

metadata that may help constrain the realm of plausible answers and facilitate the identification 

process. The concept of utilizing metadata to improve image classification has been explored in 

other domains. One early work on classifying tourism photography used GPS information in 

conjunction with the images to improve identifying landmarks (Li et al. 2009). Other work 

incorporated GPS information to generate metadata such as elevation, average vegetation, and 
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congressional district and explored two different ways of incorporating the metadata to achieve a 

5 point gain in accuracy on a 100-way classification task of common objects and scenes (Tang et 

al. 2015). While incorporating context metadata into feature-based classifications is 

straightforward, it is more challenging to include such metadata into CNNs.  

In this chapter we assess whether incorporation of different types of context metadata 

improves classification accuracy for both CNNs and feature-based methods. Our numerical 

experiments are based on an original library of validated images from Zooglider (Ohman et al. 

2018), a novel in situ zooplankton imaging device. We will illustrate how to optimize the use of 

metadata. In addition, although machine learning methods involve many parameter values that 

can markedly affect the efficacy of a classifier, many practitioners simply adopt default values in 

commonly available software packages. We illustrate the benefits of tuning hyperparameters for 

both CNNs and five of the most common feature-based methods, and provide guidance for 

selecting hyperparameter values (where a hyperparameter is an overarching parameter whose 

value is chosen before the learning algorithm optimizes the model’s parameters). We assess the 

performance of feature-based algorithms against CNNs of varying size and complexity, and 

quantify the benefit of including metadata.  

6.3 Materials and procedures 

6.3.1 Machine learning algorithms and image processing software 

In addition to CNNs, we used five feature-based algorithms:  Random Forest Classifier 

(RFC), Extremely Randomized Trees (XRT), Gradient Boosted Classifier (GBC), Multilayer 

Perceptron (MLP), and Support Vector Machine (SVM).  

The Random Forest algorithm constructs an optimal decision tree by fitting it to a 

bootstrap sample drawn from the training set. Once that tree is optimized, more trees are 
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constructed up to a threshold (Ho 1995). We also used two more recent modifications of RFC. 

The Extremely Randomized Trees algorithm uses stochastic partitions of the data instead of all 

data, and stochastic tree construction conditions instead of fully optimizing each tree (Geurts et 

al. 2006). These modifications usually cause faster algorithm convergence while producing 

similar or better results (Criminisi et al. 2012). The other RFC variation we use, Gradient 

Boosted Classifier, draws on the concept of boosting, where a collection of weak models can be 

combined into a stronger one (Freund and Schapire 1997), in this case more abbreviated decision 

“stumps” instead of full trees (Friedman 2001). We also assess Support Vector Machines, which 

construct a decision boundary that optimally divides the space between all the samples based on 

their overall proximity to each other in the metric space (Cortes and Vapnik 1995), rather than 

directly operating on sampled values of individual features, as in RFC. Finally, we assess 

Multilayer Perceptron (Rumelhart et al. 1986), where each neuron produces a flat subset within 

the decision space, and by learning these flat subsets collectively forms a complex decision 

surface (Haykin 2009) that is extremely flexible (Lippmann 1987). 

We used the Python programming language (van Rossum 1995) for high level data 

handling and general computation. We used OpenCV (Bradski 2000) for image processing and 

manipulation. For RFC, XRT, GBC, and SVM we used Scikit-Learn (Pedregosa et al. 2011). For 

MLP and CNN we used the Lasagne library (Dieleman 2016a) to specify our models, which 

were then executed by the Theano Framework (Al-Rfou et al. 2016). Alternative CNN 

implementations are available in TensorFlow, Caffe, and Torch, among others. 

6.3.2 Computational equipment 

We performed smaller numerical experiments on a simple server with 40 CPU cores and 

128GB of RAM. Because CNNs are optimized for performance on the hundreds/thousands of 
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weaker computational cores found in graphics processing units (GPUs); our server also had an 

NVIDIA K40 GPU. For larger scale experiments, we utilized NSF’s Extreme Science and 

Engineering Discovery Environment (XSEDE.org) which provided us access to dozens of GPUs 

simultaneously via their nationwide supercomputing resources. While each individual model we 

evaluated can be assessed on a single GPU, using the computational resources of XSEDE 

allowed us to more thoroughly and efficiently conduct experiments, which consisted of many 

thousands of trials and replicates.  

6.3.3 Image acquisition 

Our images were acquired by Zooglider, an autonomous vehicle with a Zoocam bearing a 

telecentric lens system that enables in situ imaging of planktonic organisms and particles in a 

volume of~250 mL per frame (Ohman et al. 2018). Zooglider operates from 400-0 m depth and 

images at a frequency of 2 Hz.  Zooglider also measures conductivity, temperature, depth, and 

chlorophyll-a fluorescence, and has a dual frequency Zonar (200/1000 kHz; Ohman et al. 2018) 

intended to measure acoustic backscatter from objects approximately the same size as those 

imaged by the Zoocam (0.5mm to 50mm). We performed image correction of Zoocam image 

frames, including de-noising and gamma correction, to improve contrast, as described in more 

detail in chapter 3. These operations help improve segmentation accuracy. Segmentation is the 

process of identifying which particular pixels serve as edges and lie on the boundary between 

two contiguous regions in an image. We used a custom, two-pass version of Canny edge 

detection (Canny 1986, Ohman et al. 2018) to segment Regions of Interest (ROI) within the field 

of view.  
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6.3.4 Image compilation 

It is important that the images selected for annotation are drawn without bias, that is 

sampling the images to reflect what will be acquired, such as not labeling only the largest and 

easiest to identify ROI, or only the first ROI from a time period. This topic and other good 

practices for validating feature-based classification of plankton images are discussed by 

González et al. (2017). From a larger collection, ~2 million ROI were selected in an unbiased 

manner and classified. Out of the ~2 million ROI, we used the resulting 178,547 non-snow ROI 

in our numerical experiments. For our largest data set, we combined all non-snow ROI with 

171,453 randomly sampled marine snow ROI (out of the ~1.8 million positively identified) to 

total 350,000 ROI (Table 1). Images were assigned to 27 categories (Table 1 and Fig. 3).  

Table 6.1: Distribution of the 350,000 ROI in our largest data set. Examples for each of 

the 27 classes are provided in figure 3. 

Acantharian_sun_like 4418  Diatoms_high_concentrations 4899  Phaeodarean 1159 

 Acantharians 1659  Diatoms_no_spines 20088  Quasispheres 5387 

 Appendicularians 14250  Diatoms_w_spines 10115  Snow 2M+ 

 Chaetognaths 2170  Disks 2150  Spheres_egg_like 1345 

 Cnidarians 2358  Euphausiids 913  Spheres_white 1627 

 Comets 1151  Fish_Larvae 789  Tentacles 28984 
 Copepods 44662  Foramanifera 320  Tentacles_white_streaks 1935 

 Copepods_Nauplii 371  Narcomedusae 673  Threads 8043 

 Dense_background 2272  Overturns 8734  Translucent_spheres 981 

 

We have previously found that approximately 1,000 images per class is a rough guideline 

for the number of examples a class needs to be well defined (Graff and Ellen 2016), so for the 

purposes of early trials and debugging, we created a limited data set of no more than 1,000 

examples per class, which yielded a total of 25,047 ROI. We constructed a second data set by 
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capping each class at 5,000 examples, yielding 76,190 ROI. Most of our explorations were 

executed on this dataset.  

 

Figure 6.3: Representative ROIs for each of the 27 classes imaged by Zooglider. 

Our main assessments use this largest dataset. We arrived at 350k by evaluating larger 

datasets, but found no appreciable difference in accuracy, yet incurred longer run times. All ROI 

including snow were randomly sampled from their respective classes to avoid introducing biased 

metadata or other anomalies. The overall data set sizes are 1.5GB, 4.7GB, and 21.5GB, with the 

metadata (described below) approximately 0.1 GB for each data set. CNNs require uniformly 

sized images. Based on the size of the majority of our ROI, we selected 128x128 pixels, which 

required rescaling some larger ROI, thus losing some detail, and adding neutral pixels to smaller 
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ROI in order to conform to this size. We used resampling with the Lanczos filter to resize the 

images (Blinn 1998).  

6.3.5 Hydrographic, geotemporal, and geometric metadata 

We used three types of context metadata:  hydrographic, geotemporal, and geometric 

(Table 2). Hydrographic metadata are intended to reflect the in situ environment of the specific 

water parcel in which the image was acquired. These metrics include Zooglider measurements of 

chlorophyll-a fluorescence, salinity, density, and temperature; the local upwelling index 

(Schwing et al. 1986; PFEL 2018 for 33°N, 119°, averaged for the 10 days preceding each 

Zooglider image), and two different ways to approximate object concentration: acoustic 

backscatter and distance between ROI. Chlorophyll-a fluorescence, salinity, density, and 

temperature measurements are made by Zooglider every 8 seconds, while Zoocam images are 

acquired at 2 Hz, hence measurements are linearly interpolated to each Zoocam frame. We also 

use as metadata acoustic backscatter at the two acoustic frequencies, and the difference between 

them, which helps distinguish small and large sound scatterers. The Zonar does not ensonify the 

same volume as that being imaged, so the acoustic return is not a property of any recorded ROI, 

but provides context information about the aggregate density of nearby sound scatterers. 

Acoustic backscatter is averaged in 1 m depth bins. The full frame image from which ROI are 

segmented also provides information about nearby particle density. We calculate the individual 

distances from each region to its nearest neighbor ROIs in the frame, up to 5.  

Our geotemporal metadata identify the place and time that the image was acquired. 

Values measured directly aboard Zooglider are hydrostatic pressure, time of image capture, and 

latitude and longitude interpolated between each glider surfacing. Based on these position values, 

bottom depth is obtained from ~100 m grid cells calculated by downsampling bathymetry 
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(NOAA 2012; 2018). We also calculate distance to Point Conception (a major upwelling center) 

and distance to the Santa Barbara Basin (a productive area). Distance to the coast and distance to 

the nearest continental slope (600 m) are calculated using the downsampled bathymetry. We 

generate four types of temporal metadata: time of day (divided into 8 time intervals); season (4 

seasons, each 3 months long); El Niño-Southern Oscillation index off California (monthly, from 

Lilly and Ohman 2018); and Pacific Decadal Oscillation (monthly, from Mantua et al. 1997).  

Geometric features extracted from the images were used as a third type of metadata for 

the CNN architectures (geometric features are required for feature-based approaches). The 

geometric values are calculated with respect to the pixels that are designated by the segmentation 

algorithm as being within the region (e.g., mean intensity, kurtosis, area, diameter, weighted 

centroid). While these values are derived from information within the image itself, the geometric 

features are metadata in that they describe the original image contents and ROI size before the 

image is rescaled and pixel values are adjusted for processing by the CNN. These values include 

measurements of the segmentation boundary, such as perimeter length and eccentricity, and 

information about the originally measured intensity values, such as minimum, maximum, and 

average, which are not otherwise provided to the CNN. Combined, they provide context about 

the illumination and scale of the original image capture. Additional detail regarding these 58 

geometric measurements is provided by Ellen et al. (2015). 

6.3.6 Procedures 

For each of our assessments, we split the data into 80% for training, 10% for validation, 

and 10% as the test set. We generated 10 different randomly selected sets with these split ratios 

as replicate trials. 
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Most of the algorithms are designed to accept feature values across a defined range, 

usually [0-1] or [-1, 1]. In prior work, we examined four different whitening and normalization 

techniques, and found that with our images, per image normalization worked best (Chapter 5 - 

Graff and Ellen 2016). Commonly referred to as Global Contrast Normalization, the mean value 

of the image is subtracted from each pixel, and the result is divided by the standard deviation of 

the original pixel values. Since each type of metadata measurement has a scale different from the 

others (e.g., temperature or sampling depth) we also subtracted the mean of the measurement 

from its observations and divided by the standard deviation. All normalizations are calculated 

using the 80% split of training data for each replicate.  

We calibrated each model to each replicate of the data, a process commonly referred to as 

hyperparameter tuning. While some of our feature-based algorithms require minimal tuning, 

CNNs require more careful evaluation to achieve a strong model. Training a single CNN consists 

of evaluating the network's performance on an image, then adjusting the network weights to 

reinforce good performance and alter bad performance. This is usually done by selecting one of 

the images at random without replacement, processing it, then selecting another. The term 

‘epoch’ is used to describe the condition where the network has seen each training image one 

time.  

This workflow creates a number of different options and hyperparameters, not all of 

which were evaluated. We used a batch size of 25 to evaluate multiple images simultaneously, 

thus increasing throughput. We imposed a limit on the number of epochs at 40, but this limit was 

rarely needed (see Bengio 2012 and Smith 2018 for guidance on stopping criteria and other 

hyperparameter choices). We also assess data set augmentation (Dai et al. 2016; Dieleman et al. 

2016b), which involves generating synthetic examples to improve overall accuracy. Because our 
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images are captured with known pixel pitch and images are centered by our segmentation 

process, we only assessed horizontal reflection, vertical reflection, and rotation.  

6.3.7 CNN architecture 

We trained our CNNs de novo, rather than adopting networks from different application 

domains because our de novo results were markedly better in both this and our previous work 

(Graff and Ellen 2016). Initial networks have nearly random weights and no discriminative 

power. With each successive example, weights are adjusted. The learning rate controls the 

amount the weights are adjusted to respond to the most recent example and is an important 

hyperparameter. We used the Adam optimization algorithm (Kingma and Ba 2015), which 

updates all network values, in addition to modifying the initial learning rate. Two initialization 

algorithms are made available through the Lasagne/Theano software (Glorot and Bengio 2010;  

He et al. 2015). We evaluated both, found no significant difference, so we used Glorot and 

Bengio (2010). 

Network shape has a large impact on results, and is an active area of research (Lee et al. 

2015; He et al. 2016; Szegedy et al. 2017; Sabour et al. 2017). We implemented a network shape 

based on the VGG-16 model (Simonyan and Zisserman 2014), but on a smaller scale; since 

theirs was a 1000-way classification problem with images of 224x224. We also used small filters 

of size 3x3 for every layer and the rectified linear unit activation function (ReLU), but otherwise 

the convolutional portion of our network was approximately one quarter the size of their 

network. We had a total of 5 convolutional layers, with 16, 32, 32, 64, and 64 filters respectively, 

with a pooling layer between each one (Fig. 4). The pooling layers serve to reduce the input size 

from one layer to the next by half, using maximum value pooling: that is, for each 2x2 area of 
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activations, the maximum value is selected for use as a single value going forward (not the 

mean).  

 

Figure 6.4: Our CNN architecture. (a) Illustration of the first convolution and pooling 

layers. Our input images are 128x128. Each of the 16 3x3 filters is convolved against 

the input, resulting in an activation volume of 16x128x128. A 2x2 max pooling layer 

scales the image by 50%. (b) Our baseline architecture has five convolutional layers 

with 16, 32, 32, 64, and 64 filters, all are 3x3. A 2x2 pooling layer follows each filter 
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layer. After these 10 layers are two fully connected layers, each with 512 neurons 

before the final softmax length 27 vector corresponding to predicted classification. 

One other key architectural detail in the VGG-16 and related models is the use of fully-

connected layers of neurons prior to the final softmax layer that determines the classification. We 

reduced the size of these fully-connected layers to one eighth the size or more of that used in 

VGG-16, which increased accuracy and decreased training time by 50% or more. 

Since convolutional layers are designed to operate on image pixels, there is no means to 

fuse metadata directly into the convolutional layers. One approach to incorporating additional 

context metadata is to concatenate metadata values to the penultimate network layer. Instead, we 

find better accuracy when we incorporate the features earlier into fully-connected layers, as 

illustrated schematically in figure 5. Our best model, which we call Metadata Interaction, allows 

some interaction between the features with the output of the final pooling layer.  

 

Figure 6.5: Schematic illustration of our baseline (left) and three architectures for 

metadata incorporation (Simple Concatenation, Metadata Interaction, and More 

Interaction). All convolutional layers precede illustrated alternatives, as illustrated in 

figure 4. 

Figure 5 illustrates variations in the final fully connected layers, to the right of the dashed 

line labeled “classification” in figure 4. All four of these architectures have identical 

configurations of 5 convolutional and 5 pooling layers (Fig. 4b). In a fully connected layer, each 
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neuron’s output is routed to every neuron’s input in the subsequent layer, with a weight on each 

route. Therefore the number of weights applied to a fully connected layer’s output is the product 

of the size of the layer and its successor. Our selected “No Metadata” architecture routes the 

convolutional layer’s output to two consecutive layers of 512 neurons followed by a layer of 27 

neurons, resulting in a total of ~278k weights. (Fig. 5 – convolutional layers not pictured that 

contain ~700k additional weights in an identical configuration for all pictured models). If we 

concatenated the vector of all 93 features to the penultimate layer, that CNN would have slightly 

more weights than the No Metadata option. Therefore, our simple concatenation model has 

smaller fully connected layers of 512, 256, 128, 27. After adding metadata, there are only ~193k 

weights, to ensure that any gain in accuracy must be from context metadata. Our Metadata 

Interaction model is even more restricted. We use the same layer structure as in simple 

concatenation (256, 128) but route the metadata from the ROI through the multiple fully 

connected layers instead of the CNN extracted features, so the number of weights is significantly 

less than either (~74k weights). Alternatively, we route the metadata through a single layer, 

combine them with the extracted features, and use two more fully connected layers for a total of 

257k weights. These are the largest numbers, 193k , 74k, and 257k, corresponding to the usage 

of all 93 context metadata features.  

Dropout (Hinton et al. 2012) acts as “a stochastic regularization technique” (Srivastava et 

al. 2014). Dropout is the concept of randomly ignoring the output of some neurons in the 

network in order to strengthen the rest of the network, and in most cases is beneficial. We assess 

the impact of dropout on both pixel data and on context metadata. 
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6.3.8 Performance metrics 

We report binary accuracy for each of our models, where full credit is given for each 

correctly classified image and none for incorrect classifications, regardless of class of origin. A 

confusion matrix is used to interpret class-specific distribution of true/false positives and 

negatives. Timing information, when provided, is for single-threaded computations for training 

and testing a single replicate of the data. It does not include the time to load the dataset into 

memory. Our boxplots display whiskers equal to 1.5 times the inner quartile range, with the 

results of individual trials overlain as circles to indicate the distribution of the trained models. 

The number of trials was often as few as 10 (1 for each replicate) and rarely more than 20. 

6.4 Assessment 

6.4.1 Feature-based algorithm assessment  

We assessed a range of different hyperparameters in order to select values that provide 

the best overall performance of each of the five feature-based algorithms we evaluated (Fig. 6.6). 

Heatmaps show averages at each combination of the two most influential hyperparameters we 

assessed (Fig. 6.6, left column). By examining the variance across all trials for the most 

important hyperparameter value (Fig. 6.6, right column) we are able to determine that no further 

search is warranted. The leftmost bar in each right column panel in figure 6.6 contains a 

suboptimal combination, the middle bar shows the results from adjusting the key hyperparameter 

by a single increment, and the rightmost bar shows the results from one additional increment. 

The rightmost values show little accuracy gains, but all have significantly higher computational 

cost. For example, time to convergence for SVM on a single replicate of our medium data set 

with regularization strengths of 100, 1000, and 10000 resulted in convergence times of 2, 6, and 

34 hours, respectively. Therefore the middle bar represents the selected hyperparameter 
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combination for all further assessments. The hyperparameters with the most impact on our 

assessment for the three Random Forest based algorithms are the same (RFC, XRT, and GBC, 

Figs. 6.6a-f). They each have a constraint on the maximum size of the forest constructed (number 

of estimators) and a limit on the number of features considered in each tree/stump (maximum 

depth). For SVMs, best practices are to perform a grid search over the kernel coefficient for the 

decision boundary (gamma) and the penalty parameter that determines the strength of the error 

term (Fig. 6.6i-j). Both are recommended to be evaluated in geometric/exponential increments 

(Hsu et al. 2003). Our MLP uses the Adam optimization algorithm and the rectified linear unit 

activation function, which is the default parameter, and also the same as our CNN architecture. 

The MLP’s shape is determined by the hyperparameters of the number of “hidden” layers of 

neurons, and the number of neurons in each hidden layer (a hidden layer is between the input and 

output layers). We assessed two different network shapes; one with two equally sized layers 

(rectangle) and one with three layers, each half the size of the preceding layer (triangle). Our 

second hyperparameter is the width of the base layer (Fig. 6.6g-h) 



 

156 

 

 

Figure 6.6: Hyperparameter grid search results for 5 different feature based machine 

learning classification methods (a,b – RFC, c,d – XRT, e,f – GBC, g,h – MLP, i,j – 

SVM). Cells in left column contain average results across all trials for a given 

hyperparameter combination. Boxplots in right column show all results for each 

hyperparameter combination across one key region of the grid search, and illustrate the 

variance within that configuration. 

Our evaluation of the effect of data set size on classification accuracy of the feature-based 

algorithms showed that the largest data set consistently provided the best results (Fig. 7). Our 

medium data set contains ~3x more training images than the small but the large contains ~14x 

more training images than the small, therefore the increase in accuracy from our small to 

medium to large data set is less than linear with respect to the number of training images, 

suggesting we are approaching asymptotic performance.  
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Figure 6.7: Accuracy vs Data Set size for 5 different feature based machine learning 

classification methods (RFC, XRT, GBC, MLP, SVM). The small data set contains 

~25k images, the medium data set contains ~76k images, the large data set contains 

350k images. All sets have 27 classes. 

Having optimized hyperparameters and data set size, we now turn to metadata. Inclusion 

of context metadata significantly boosts performance for all five feature-based algorithms (Fig. 
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8). For algorithms assessed on the medium data set, we find gains of 6.9 to 12.2 percentage 

points. This gain is similar to the benefits of using the large set (Fig. 7). Geotemporal and 

hydrographic metadata have approximately the same influence, and inclusion of both results in 

the best overall classification accuracy.  
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Figure 6.8: The effect of metadata on classification accuracy for 5 different feature-

based machine learning classification methods (RFC, XRT, GBC, MLP, SVM) on our 

medium data set. The leftmost bar in each graph corresponds to a model using only the 

58 geometric features, the next bar adds 22 geotemporal features, the next bar uses the 

58 geometric features plus 13 additional hydrographic features. The rightmost bar 

utilizes all 93 features. 
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6.4.2 Convolutional Neural Network Assessment 

CNNs have more hyperparameters that dramatically affect performance, so more 

preliminary investigation is required. Two that have the largest impact on performance are 

learning rate and regularization strength. We found the effect of learning rate to be much 

stronger than that of regularization, but both have a local maximum at regularization = 0.0001 

(Fig. 9). As our CNN architecture matured, we revisited this assessment, but setting both values 

to 0.0001 remained optimal for our data. All subsequent figures use this value.  

 

Figure 6.9: Hyperparameter optimization for CNN. (a) Heatmap cells contain average 

accuracy across all trials for a given combination of hyperparameters. (b) Boxplots 

show the distribution of results for each hyperparameter combination in the heatmap. 

All trials use medium data set size. 
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Augmentation strategies of horizontal and vertical image reflection have a stronger 

impact on performance with our medium than with our larger data set (Fig. 10). Our 

implementation used a 50% chance at runtime for each reflection operation on each image in 

each epoch, thus there was no additional computational demand, so we used this augmentation 

on all subsequent figures.  

 

Figure 6.10: The effect on classification accuracy of using reflection as a runtime 

augmentation with our baseline CNN architecture, with (left) medium and (right) large 

data sets. 

We evaluated the impact of dropout by incrementing the probability that any particular 

neuron will have its output ignored. We found a nearly monotonic association between dropout 

probability and accuracy on our medium data set (Fig. 11a) but a negligible effect with our large 

data set (Fig. 11b). Since using dropout still provides better results, we use it for the remainder of 

our assessments. Our finding of limited influence of dropout with larger datasets is notable 

because of the widespread use of dropout (Srivastava et al. 2014). Figure 11 reports results when 

we applied the dropout probabilities on only the fully connected layers of neurons.  
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Figure 6.11: The effect on classification accuracy of using dropout with our baseline 

CNN architecture for (a) the medium data set and (b) the large data set. X-axis indicates 

the dropout probability. 

We assessed numerous network configurations before arriving at our selected baseline 

method. This baseline method performed as well or better than the other alternatives we 

evaluated (Fig. 12). Our baseline model (Fig. 4), with 5 convolutional layers (16 filter 

convolutional layer, pooling layer, 32, pool, 32, pool, 64, pool, 64, pool) had an improvement in 

accuracy of 1.5 points over a similar model with 3 convolutional layers (16, pool, 32, pool, 64, 

pool). Models with dropout applied to the convolutional layers, and with narrower fully 

connected layers (512, 256, 128, 27) had lower accuracy than our selected baseline (Fig. 5 - 512, 

512, 27). Larger filters (5x5 instead of 3x3) provided no significant difference in accuracy, but 



 

163 

 

the model with larger filters requires double the amount of memory as well as ~2x time as much 

time to train the network. Figure 12 also indicates that our networks are well tuned and not 

undersized since they increase in accuracy when given additional training examples.  

Accuracy from our CNN is markedly better than all of the feature-based approaches: the 

accuracy of our baseline CNN on even our smallest dataset (25k ROI; ~1k per class) exceeds 

accuracy of each of the feature-based classifier accuracies on the largest dataset (350k ROI; max. 

5k per class). Our CNNs exhibited a nearly linear relationship between convergence time and 

number of training examples, i.e., 1-2 hours per trial on our small data set and 8-12 hours per 

trial on our largest data set.  

 

Figure 6.12: The effects of CNN architecture (i.e., changes in dropout, number of 

layers, connectivity, and filter size) relative to our baseline architecture (4th column). 

All results use pixel droput and reflection. 

Having selected our baseline CNN, we then analyzed the effect of augmenting the pixel 

information with context metadata (Fig. 13). Both geotemporal and hydrographic context 

metadata individually make a significant improvement on classification accuracy (p<0.001; Fig. 

13).  
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Figure 6.13: The effects on classification accuracy of adding context metadata.  

Experiments include no metadata and the contribution of every combination of 

geometric, geotemporal, and hydrographic metadata. 

However, the combination of both geotemporal and hydrographic metadata yields a 

classification accuracy similar to each of them individually, potentially indicating overlap or 

redundancy between the features. Combining each individually with the geometric metadata 

provides a boost in performance, and using all three metadata types provides still more accuracy 

gain, to 90.5% accuracy. Hence, our remaining analysis will be conducted utilizing all 93 

features (Table 2). 
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Table 6.2: Three different types of context metadata (Geometric, Geotemporal, and 

Hydrographic). 

 

We find that the manner in which metadata are incorporated affects accuracy. We 

obtained better accuracy when we incorporate the features earlier into fully-connected layers (Fig 

14). Our Simple Concatenation metadata model not only has smaller weights overall than our 

model without metadata (Fig 5 - 193k vs 278k), but specifically has smaller fully connected 

layers of 512, 256, 128, 27. Above we have shown (Fig. 12) that this configuration is less 

effective than a configuration with layers of 512, 512, 27, so all accuracy gained must be from 

the metadata inclusion. Because the metadata interaction requires more weights for the metadata, 

we remove the fully connected layers from the pixel based data entirely, providing evidence that 
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all improvement from the Metadata Interaction model over the Simple Concatenation model is 

from the metadata and interaction, not network size or shape.  

 

Figure 6.14: The effects on classification accuracy of different approaches to 

incorporating metadata (Simple Concatenation, Metadata Interaction, and More 

Interaction), for the large data set. 

We found that applying dropout to the features derived from metadata is detrimental to 

accuracy (Fig. 15). Metadata dropout is detrimental even if pixel dropout is removed (Fig. 15a), 

especially at high dropout fractions. Metadata dropout is detrimental for the large set (Fig. 15b).  
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Figure 6.15: The effects on classification accuracy of including dropout with our CNN 

architecture, for (a) the medium data set and (b) the large data set. X-axis indicates the 

probability that an individual unit’s value would be dropped. 

We investigated more advanced CNN architectures to pursue additional accuracy (Fig. 

14). Cyclic Pooling and Rolling (Dieleman et al. 2016b) have been shown to improve accuracy 

at the cost of much longer runtimes (5-8x longer). Our Metadata Interaction model provides 

almost as much benefit as Cyclic Pooling and Rolling (median 90.70% vs 90.40%). Doubling the 

number of filters in each layer results in a small performance gain (to 90.92%) at the cost of 50% 

longer runtimes. Doubling the number of layers instead results in a smaller performance gain at 
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the cost of 100% longer runtimes. Cycling Pooling and Rolling are still beneficial with metadata, 

and across different network sizes. Cyclic Pooling can be applied by itself, but Metadata 

Interaction plus Cyclic Pooling and Rolling is better, and this combination is significantly better 

than using Pooling and Rolling without metadata (p<0.0001). Doubling the number of filters is 

now not nearly as beneficial; this result makes sense if the additional filters were being devoted 

to learning rotations of other meaningful filters. Accordingly, doubling the number of layers and 

also augmenting with Cyclic Pooling and Rolling provides more of a gain than just doubling the 

number of filters. Our best model achieves 92.28 % accuracy with our 27-class dataset.  

 

Figure 6.16: The effects on classification accuracy of advanced CNN architectures.  

See text for explanation. 

The confusion matrix in figure 17a evaluates classwise performance of our best 

performing model, which includes context metadata added via Metadata Interaction, Cyclic 

Pooling, and Rolling (Fig. 17a). Our confusion matrix is shaded to prioritize true positive rate. 

For example, 21 of the 75 fish larvae in the test set were mislabeled as copepods, so that cell has 

a strong red shading, but the 111 snow mislabeled as copepods (corresponding to 0.06% out of 
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the 17,889 snow ROI in the test set) is essentially uncolored. Figure 17b illustrates the benefit of 

inclusion of metadata for particular classes, showing that most classes benefit. The 4 largest 

gains are found for nauplii, narcomedusae, euphausiids, and fish larvae, corresponding to some 

of the smallest classes. Prior to inclusion of metadata, some chaetognaths had previously been 

labeled as three other relatively thin and straight ROI classes: appendicularians, tentacles, and 

thread-like diatoms, while all three error types are minimized with the addition of the metadata.  

 

Figure 6.17: A confusion matrix indicating the specific errors made by our best 

performing model, which includes metadata interaction as well as cyclic pooling and 

rolling. (a) Rows indicate the true label, columns indicate the CNN algorithm’s 

predicted label. Color intensity is proportional to the true positive rate. (b) Gains in 

classification accuracy from inclusion of metadata, for each category of organism. 
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6.5 Discussion 

6.5.1 Impact of Context Metadata 

We found that inclusion of context metadata provides gains in classification accuracy for 

both Convolutional Neural Networks (CNN) and feature-based classifiers. In the case of CNNs, 

the accuracy gain averaged 1.3 points, increasing the overall classification accuracy to 90.5% 

prior to enhancing CNN architecture. While the numerical increase is modest, the results were 

consistent across all replicates and represent a systematic improvement in overall accuracy, with 

appreciable gain in specific classes of images. Inclusion of metadata also improved CNN 

execution time, reducing convergence time by 17% (from 30.9 epochs to 25.6 epochs), likely 

because the metadata overrides ambiguous pixel features. In the case of feature-based classifiers, 

inclusion of metadata markedly increased classifier accuracy between 6.9 to 12.2 points, 

depending on the method considered.  

Our estimate of the impact of adding metadata is likely conservative, because our feature-

based models are possibly undersized for the metadata. Since models with and without metadata 

cannot be the same size while also being the same complexity, we favored the models without 

metadata. We initially tuned our models with 58 geometric measurements, held hyperparameters 

constant (e.g., number and depth of decision trees), but then added the geotemporal and 

hydrographic context metadata without retuning, nearly doubling the input to 93 features. Unlike 

with CNNs, metadata increased execution time for feature-based algorithms as much as 1.6x, 

proportional to the increase in the number of features (from 58 to 93). However, hyperparameter 

choices had 10-100x more impact on runtime than this increase. Overall, these are substantial 

gains that illustrate the clear advantage to incorporating context metadata across a variety of 

machine learning methods.  



 

171 

 

Although we divided metadata into three categories for illustrative purposes, they are all 

treated equally within our architecture, which includes them in the later layers of our CNN. 

Inclusion of multiple types of metadata will usually outperform a single type for two reasons. 

The first is due to the CNN architecture, where strong positive correlations outweigh neutral or 

negative correlations, so images benefitting from one type of metadata will usually not be 

harmed by the inclusion of additional metadata that are neutral or even slightly contradictory. 

The second reason is that our Metadata Interaction architecture allows for combination of 

features to impact the classification (e.g., a specific temperature value takes different meanings 

in winter vs. summer). 

We assessed 12 different architectures for incorporating context metadata into our CNNs. 

The most naïve incorporation of metadata provided an accuracy gain of 0.6 points, less than half 

the benefit provided by our best architecture. Seven of our interaction architectures yielded 

nearly identical results at 0.8 points beyond that Simple Concatenation approach. We used 

efficiency of execution as a tiebreaker for designating our preferred Metadata Interaction model. 

However, an efficient network with a data set size of 350k could be undersized for larger data 

sets. Perhaps some of other architectures with additional fully-connected neurons processing 

context metadata would outperform the simpler architecture we presented.  

6.5.2 Convolutional neural networks vs. feature-based algorithms 

Prior to the development of Convolutional Neural Networks, plankton images were 

classified with varying degrees of success primarily using geometric features (reviewed in 

González et al. 2017). Recently, CNNs have been applied to plankton classification problems 

hinting at the potential of the approach (Wang et al. 2016; Zheng et al. 2017). A public 

competition (Robinson et al. 2017) stimulated new solutions (Dieleman et al. 2016b) but there 
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has not yet been a quantitative assessment of specific design choices when considering a CNN 

for plankton image analysis. Here we quantitatively evaluated CNN performance with a variety 

of augmentations and found that CNNs do consistently improve upon our applications of  

feature-based approaches as well as previous those of previous investigators (e.g., Hu and Davis 

2005; Sosik and Olson 2007; Gorsky et al. 2010; Ellen et al. 2015) 

On the smallest data sets, the computational requirements for CNNs exceed feature-based 

approaches, but as the size of the data set increases feature-based approaches require more 

resources because CNNs are influenced less by data set size. Since CNNs consider individual 

images sequentially, there is a linear relationship to data set size and number of images. Since 

feature-based algorithms generally consider the whole data set in the aggregate, they scale more 

steeply than linear with respect to data set size, with SVMs being more than quadratic (Cortes 

and Vapnik 1995; Pedregosa et al. 2011). Our results clearly show the benefit of larger data sets, 

although that benefit can only be realized if the algorithm can be successfully trained. Abstract 

algorithmic runtime analysis does not always hold in practice because there are confounding 

factors, such as whether individual calculations required by the algorithm are easily 

parallelizable. In practice, CNNs are also more tractable on larger data sets because GPUs have 

hundreds/thousands of cores well suited to the types of calculations that CNNs depend upon. For 

example, CNNs consider each image independently and the convolution operation with each 

filter is independent of the other filters in the layer. Therefore, many CNN calculations can be 

combined into a single multiplication of two large matrices to take advantage of the architecture 

of GPUs (Chetlur et al. 2014). 

One disadvantage of CNNs is they currently lack direct interpretability (Zeiler and Fergus 

2014). In contrast, statistics can be calculated on a trained RFC model about the relative 
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importance of individual features, and particular values of those features. In a CNN the first layer 

of filter weights can be rendered, but the interaction architecture of a CNN causes subsequent 

layers to lack a straightforward visualization, although this is an area of open research 

(Castelvecchi 2016).  

6.5.3 Optimizing machine learning architectures for plankton classification 

Both CNNs and feature-based algorithms require hyperparameter tuning for optimal 

performance. For our feature-based algorithms, we followed standard practices for 

hyperparameter optimization and found, as previously described in the literature, that attention to 

the number of estimators and depth for RFC-based approaches (Boulesteix et al. 2012), network 

size and activation function for MLPs (Haykin 2009), and gamma and regularization for SVMs 

(Hsu et al. 2003) improves performance. We found increasing the amount of training data 

improved accuracy. These two conclusions are consistent with our earlier investigation (Ellen et 

al. 2015). 

We trained our CNNs de novo. In some applications of CNNs, starting with a pre-trained 

model could result in faster training times and increased accuracy, as demonstrated on 

phytoplankton images (Orenstein et al. 2015). In training our CNNs, we followed current good 

practices for CNNs (Bengio 2012; Smith 2018), although this guidance is evolving rapidly. 

Notably, we found that dropout (Hinton et al. 2012) produced little to no effect on our pixel-

based data, and was even detrimental when applied to our context metadata. Both types of data 

set augmentation we evaluated were beneficial. Reflection increased accuracy by 0.34 points 

with no increase in runtime, while cyclic pooling and rolling (Dieleman et al. 2016b) increased 

accuracy by 1.6 points at a cost of a ~4x increase in execution time. Dieleman et al. (2015) first 

tried the concept of Cyclic Pooling and Rolling on a different class of rotationally invariant 
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images (galaxy morphology). An alternative method of obtaining rotational augmentations by Li 

et al. (2018) may be more efficient than the one we used from Lasagne (Dieleman et al. 2016a). 

Since CNNs scale better with data set size than feature-based approaches, it is easier to 

consider more complicated and deeper architectures with them (i.e., Deep Learning). Published 

CNN benchmarks for image classification have increased from 19-layer networks, to an 

ensemble of seven separate 22-layer networks, to 152-layer networks, then 1000s of layers 

(Simonyan and Zisserman 2014; Szegedy et al. 2015; He et al. 2016). A particular model called 

ResNet (Szegedy et al. 2017) was applied to plankton by Li and Cui (2016) with modest results, 

which the authors suggest could be the result of insufficient training images. In limited trials we 

modified a version of ResNet (Szegedy et al. 2017) to fit our image dimensions with 24 layers, 

and it provided an increase of 0.8 points over our 5 layer Metadata Interaction model on our 

medium data set, at a cost of ~12x longer run time. We tried a 50-layer version of ResNet, and it 

performed worse than the 24-layer model (0.3 points lower, at a cost of ~1.25x longer run time). 

These preliminary results suggest the 50-layer network was overfitting, and the 24-layer network 

is closer to the optimal configuration for our images. 

6.5.4 Metadata limitations 

Supervised Machine Learning algorithms depend on training data being representative of 

future samples. For plankton image classification, this guidance is applicable not only for the 

distribution of the sampled organisms (González et al. 2017), but also for any context metadata 

used. The term “concept drift” (Widmer and Kubat 1996; González et al. 2017) describes the 

condition when this future distribution is not stationary. Some of the metadata distributions will 

drift faster than the images of the individuals themselves, as the population level responses can 

lag the changes in context measurements. One additional concern is that metadata will be less 
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useful for conditions that are not well represented in the training set; for example, time of day is 

not informative if all samples are collected at night. 

6.6 Comments and Recommendations 

6.6.1 Recommendations 

Training sets should, in most circumstances, reflect the proportional distribution of 

classes. The percentage of marine snow in our ROIs imaged in situ exceeds 90%, but our largest 

data set is only 50% marine snow. We conducted limited evaluations on more unbalanced data 

and found a small increase in overall performance, but most of that increase was due to higher 

accuracy on snow only. Accuracy on non-snow classes decreased slightly, while false positives 

in the snow category increased. We found this outcome less desirable than the situation shown in 

the confusion matrix above, where very few non-snow ROIs end up with the label of snow. 

Many options exist for penalty functions where different types of errors are assigned different 

costs to create different types of confusion matrices (Elkan 2001), which then further facilitates 

treatment of larger datasets.  

We only present results where each trained model is used to label images independently, 

but in practice multiple models can be used simultaneously or sequentially. Combining multiple 

individual models in an attempt to achieve greater accuracy than any one on its own is called 

ensembling. Ensembling of feature-based models without metadata on plankton images can be 

beneficial (Ellen et al. 2015). The concept of ensembling is well accepted, as nearly every major 

machine learning competition is won by an ensemble of multiple models (Robinson et al. 2017). 

The dynamics of an ensemble make academic analysis difficult, because the efficacy of each 

model needs to be examined as well as the effects of interactions between them, but evidence 

supports their implementation. 
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Most of our workflow would remain the same regardless of data set size with one 

exception. Small data sets with low performing models may learn so slowly or erratically as to 

never finish training. We set a hard limit on the number of epochs as a precaution against 

incurring computing costs on poorly performing models. Our 40 epoch limit was reached on 

~20% of small data set trials, ~8% of medium data set trials, and ~2.5% of large data set trials. If 

we were doing more exhaustive investigation on smaller data sets we would resume training the 

model from the 40
th

 epoch for those trials.  

6.6.2 Comments 

Our CNNs are significantly smaller with a larger number of training examples than other 

contemporary evaluations of CNNs with plankton images (Dieleman et al. 2016b; Wang et al. 

2016; Zheng et al. 2017; Moniruzzaman et al. 2017). The overall quality, resolution and 

between-class distinctiveness of our images is similar to previous studies. Based on previous 

publications, we did not expect our models to perform as well as they did with so few layers and 

filters. Some preliminary results suggest our networks with 10 convolutional layers are 

approaching asymptotic accuracy with respect to CNN complexity. 

We outlined our calibration process for both feature-based approaches and CNNs, and 

found that in many situations accepted practices do hold (e.g., the importance of hyperparameters 

for feature-based approach hyperparameters and augmentation for CNNs) but we did find the 

benefit of dropout to be less significant than previously observed.  

We found geometric, geotemporal, and hydrographic metadata to be useful for 

classification our in-situ images for both feature-based and CNN approaches. We found the 

context metadata to be useful not only as a straightforward augmentation at the end of the CNN 
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architecture, but found other incorporation strategies to be twice as beneficial for accuracy, in 

addition to being more computationally efficient.  

Convolutional Neural Networks are rapidly evolving, with repeated layer substructures 

(e.g., ResNet), optimization functions , and ensembling techniques as three prominent research 

areas that will likely boost performance beyond our current results. The four factors that we 

found to provide the most benefit (data set size, appropriate network depth, data set 

augmentation, and inclusion of context metadata) were generally additive. We anticipate further 

advances by optimizing these four factors while also incorporating future structural refinements 

of deep learning methods. 

6.7  Acknowledgements 

This research was possible because of the support given by the Office of Naval Research 

and SPAWAR Systems Center San Diego via the SMART scholarship program. The Gordon and 

Betty Moore Foundation funded the development of the Zooglider that collected these images. 

The Scripps Institution of Oceanography’s Instrument Development Group performed the 

engineering and fieldwork needed to develop and deploy the Zooglider. This research was 

conducted using the Extreme Science and Engineering Discovery Environment (XSEDE), which 

is supported by National Science Foundation grant number ACI-1548562 for machine learning 

experimentation. Most of the results were obtained using Comet from the San Diego 

Supercomputing Center and Bridges from the Pittsburg Supercomputing Center through XSEDE 

allocations TG-OCE150020 and TG-OCE160022. Machine Learning exploratory efforts and 

small scale experimentation used a Tesla K40 GPU donated by the NVIDIA Corporation. The 

National Science Foundation supported California Current Ecosystem Long Term Ecological 

Research (CCE-LTER) site also provided the support and expertise of Tristan Biard, Laura Lilly, 



 

178 

 

Catherine Nickels, Mark Ohman, Linsey Sala, Stephanie Sommer, Emma Tovar, and Ben 

Whitmore who conducted numerous hours of organism identifications and validations, without 

which these experiments would not have been possible.  

Chapter 6 is being prepared for journal submission as: Ellen, Jeffrey S.; Graff, Casey A.; 

Elkan, Charles; Ohman, Mark D. “Improving plankton image classification using context 

features.”  It is presented as part of this dissertation with the acknowledgement of the study 

coauthors Casey A. Graff, Charles Elkan, and Mark. D. Ohman.  The dissertation author was the 

primary investigator and is the primary author of this material. 

 

  



 

179 

 

6.8 References 

Al-Rfou, R., G. Alain, A. Almahairi, and others. 2016. Theano: A Python framework for fast 

computation of mathematical expressions. arXiv preprint.  

Beijbom, O., P.J. Edmunds, C. Roelfsema, and others. 2015. Towards automated annotation of 

benthic survey images: Variability of human experts and operational modes of 

automation. PloS one, 10:7-e0130312. doi: 10.1371/journal.pone.0130312 

Benfield, M., C. Schwehm, R. Fredericks, G. Squyres, S. Keenan, and M. Trevorrow. 2003. 

ZOOVIS: A high-resolution digital still camera system for measurement of fine-scale 

zooplankton distributions. Scales in Aquatic Ecology: Measurement, Analysis and 

Simulation. 

Bengio, Y. 2012. Practical recommendations for gradient-based training of deep architectures, p. 

437-478. Neural networks: Tricks of the trade, LNCS vol 7700. doi:10.1007/978-3-642-

35289-8_26 

Blinn, Jim. 1998. Jim Blinn's corner: dirty pixels. 1st ed. Morgan Kaufmann. 

Boulesteix, A.L., S. Janitza, J. Kruppa, and I.R. König, 2012. Overview of random forest 

methodology and practical guidance with emphasis on computational biology and 

bioinformatics. Wiley Interdisciplinary Reviews: Data Mining and Knowledge 

Discovery, 2, 6:493-507. doi:10.1002/widm.1072 

Bradski, G. 2000. The OpenCV Library. Dr. Dobb’s. The World of Software Development: 1 

Briseño-Avena, C., P. L. D. Roberts, P. J. S. Franks, and J. S. Jaffe. 2015. ZOOPS- O 2: a 

broadband echosounder with coordinated stereo optical imaging for observing plankton 

in situ. Meth. Oceanogr. 12:36-54. doi: 10.1016/j.mio.2015.07.001 

Canny, John. 1986. A computational approach to edge detection. IEEE Transactions on pattern 

analysis and machine intelligence 6: 679-698. doi:10.1109/TPAMI.1986.4767851 

Chetlur, S., C. Woolley, P. Vandermersch, J. Cohen,  J. Tran, B. Catanzaro, and E. Shelhamer. 

2014. cuDNN: Efficient primitives for deep learning. arXiv preprint arXiv:1410.0759. 

Cortes, C., and V. Vapnik. 1995. Support-vector networks. Machine learning 20, no. 3: 273-297. 

Cowen, R. K., and C. M. Guigland. 2008. In situ ichthyoplankton imaging system (ISIIS): 

system design and preliminary results. Limnol. Oceanogr.-Meth. 6: 126-132. 

Criminisi, A., Shotton, J., and Konukoglu, E. 2012. Decision forests: A unified framework for 

classification, regression, density estimation, manifold learning and semi-supervised 

learning. Foundations and Trends in Computer Graphics and Vision 7, 2–3:81-227. 

Dai, J., Wang, R., Zheng, H., Ji, G., & Qiao, X. 2016. ZooplanktoNet: Deep convolutional 

network for zooplankton classification. IEEE OCEANS 2016-Shanghai. 1-6. 



 

180 

 

Davis, C. S., S. M. Gallager, M. S. Berman, L. R. Haury, and J. R. Strickler. 1992. The video 

plankton recorder (VPR): design and initial results. Arch. Hydrobiol. Beih. Ergeb. 

Limnol. 36: 67-81.  

Davis, Russ E., Mark D. Ohman, Daniel L. Rudnick, and Jeff T. Sherman. 2008. Glider 

surveillance of physics and biology in the southern California Current System. 

Limnology and Oceanography, 53. 5.2: 2151-2168. 

Dieleman, Sander, Kyle W. Willett, and Joni Dambre. 2015. Rotation-invariant convolutional 

neural networks for galaxy morphology prediction. Monthly notices of the royal 

astronomical society 450. 2: 1441-1459. 

Dieleman, Sander, Jan Schlter, Colin Raffel, Eben Olson, Sren Kaae Snderby, Daniel Nouri, 

Daniel Maturana et al. 2016. Lasagne: First release. doi:10.5281/zenodo 27878  

Dieleman, Sander, Jeffrey De Fauw, and Koray Kavukcuoglu. 2016. Exploiting cyclic symmetry 

in convolutional neural networks. arXiv preprint arXiv:1602.02660. Accessed 09-2018. 

Elkan, C. 2001. The foundations of cost-sensitive learning. International Joint Conference on 

Artificial Intelligence 17. 1: 973-978. 

Ellen, J., Li, H. and Ohman, M.D. 2015. Quantifying california current plankton samples with 

efficient machine learning techniques. OCEANS'15 MTS/IEEE Washington. 1-9. IEEE. 

doi: 10.23919/oceans.2015.7404607 

Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M. and Thrun, S. 2017. 

Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542. 

7639: 115-118. 

Fernandes, F. 2014. Python-seawater v3.3.2 (Version v3.3.2). Zenodo. 

http://doi.org/10.5281/zenodo.11395 

Fofonoff, P. and Millard, R.C. Jr. 1983. Algorithms for computation of fundamental properties of 

seawater. UNESCO Technical Papers in Marine Science. 44:1-53. 

http://unesdoc.unesco.org/images/0005/000598/059832eb.pdf  

Freund, Yoav, and Robert E. Schapire. 1997. A decision-theoretic generalization of on-line 

learning and an application to boosting. Journal of computer and system sciences 55. 1: 

119-139. 

Friedman, Jerome H. 2001. Greedy function approximation: a gradient boosting machine. Annals 

of statistics. 1189-1232. 

Geurts, Pierre, Damien Ernst, and Louis Wehenkel. 2006. Extremely randomized trees. Machine 

learning 63, 1: 3-42. 



 

181 

 

Glorot, Xavier, and Yoshua Bengio. 2010. Understanding the difficulty of training deep 

feedforward neural networks. Proceedings of the thirteenth international conference on 

artificial intelligence and statistics. 249-256. 

González, P. , Álvarez, E. , Díez, J. , López‐Urrutia, Á. and del Coz, J. J. 2017. Validation 

methods for plankton image classification systems. Limnolology and Oceanography 

Methods, 15: 221-237. doi: 10.1002/lom3.10151 

Gorsky, G., Ohman, M. D. , Picheral, M., Gasparini, S., Stemmann, L., Romagnan, J.-B., 

Cawood, A., Pesant, S., Garcıa-Comas, C. , and Prejger, F. 2010. Digital zooplankton 

image analysis using the ZooScan integrated system. Journal of Plankton Research 32. 3: 

285–303. 

Graff, C.A. and J. Ellen. 2016. Correlating filter diversity with convolutional neural network 

accuracy. Machine Learning and Applications (ICMLA), 15th IEEE International 

Conference on, 75-80. doi: 10.1109/ICMLA.2016.0021 

Graves, A., A.R. Mohamed and G. Hinton. 2013. Speech recognition with deep recurrent neural 

networks. Acoustics, speech and signal processing, IEEE international conference on 

6645-6649. 

Grosjean, P., M. Picheral, C. Warembourg, and G. Gorsky. 2004. Enumeration, measurement, 

and identification of net zooplankton samples using the ZooScan digital imaging system. 

ICES Journal of Marine Science, 61(4): 518-525. 

Haykin, S.S. 2009. Neural networks and learning machines (Vol. 3). Upper Saddle River, NJ, 

USA: Pearson. 

He, K., X. Zhang, S. Ren, and J. Sun. 2015. Delving deep into rectifiers: surpassing human-level 

performance on imagenet classification. Computer Vision, IEEE international conference 

on, 1026-1034.  

He, K., X. Zhang, S. Ren, and J. Sun. 2016. Deep residual learning for image recognition. 

Computer Vision and Pattern Recognition, IEEE international conference on, 770-778. 

Hinton, G. E., N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov. 2012. 

Improving neural networks by preventing co-adaptation of feature detectors. arXiv 

preprint arXiv:1207.0580. 

Ho, T. K. 1995. Random decision forests. Document analysis and recognition, proceedings of the 

third international conference on, 1:278-282. 

Hsu, C. W., C.-C. Chang, and C.-J. Lin. 2003. A practical guide to support vector classification. 

1-16. 

Hu, Q, and C. Davis. 2005. Automatic plankton image recognition with co-occurrence matrices 

and support vector machine. Marine Ecology Progress Series 295: 21-31 



 

182 

 

Hubel, D. H. 1959. Single unit activity in striate cortex of unrestrained cats. The Journal of 

physiology 147, 2:226-238. 

Hubel, D. H., and T. N. Wiesel. 1963. Shape and arrangement of columns in cat's striate cortex. 

The Journal of physiology 165, 3:559-568. 

Kanellopoulos, I., and G. G. Wilkinson. 1997. Strategies and best practice for neural network 

image classification. International Journal of Remote Sensing 18, 4:711-725. 

Khotanzad, A, and J-H. Lu. 1990. Classification of invariant image representations using a 

neural network. IEEE Transactions on Acoustics, Speech, and Signal Processing 38, 

6:1028-1038. 

Kingma, D. P. and M. Welling. 2013. Auto-encoding variational bayes. arXiv preprint 

arXiv:1312.6114. 

Kingma, D. P. and L. Ba. 2015. J. ADAM: a method for stochastic optimization. International 

Conference on Learning Representations. 2015. 

Krizhevsky, A., I. Sutskever, and G. E. Hinton. 2012. Imagenet classification with deep 

convolutional neural networks. Advances in neural information processing systems, 

1097-1105 

LeCun, Y., and Y. Bengio. 1995. Convolutional networks for images, speech, and time series" 

The handbook of brain theory and neural networks 3361, 10. 

LeCun, Y., L. Bottou, Y. Bengio, and P. Haffner. 1998. Gradient-based learning applied to 

document recognition. Proceedings of the IEEE, 86, 11:2278-2324. 

LeCun, Y., and M. Ranzato. 2013. Deep learning tutorial. Tutorials in International Conference 

on Machine Learning. doi:10.1.1.366.4088 

LeCun, Y, Y. Bengio, and G. E. Hinton. 2015. Deep learning. Nature 521, 7553:436. 

doi:10.1038/nature14539 

Lee, C.Y., S. Xie, P. Gallagher, Z. Zhang, and Z. Tu. 2015. Deeply-supervised nets. Artificial 

Intelligence and Statistics. 562-570. 

Li, J., Z. Yang, H. Liu, and D. Cai. 2018. Deep Rotation Equivariant Network. Neurocomputing 

290: 26-33. 

Li, Y., D. J. Crandall, and D. P. Huttenlocher. 2009. Landmark classification in large-scale 

image collections. International Conference on Computer Vision, 1957-1964. 

Li, X., and Z. Cui. 2016. Deep residual networks for plankton classification. OCEANS 2016 

MTS/IEEE Monterey, 1-4. 



 

183 

 

Lilly, L. E. and M. D. Ohman. 2018. CCE IV: El Niño-related zooplankton variability in the 

southern California Current System. Deep Sea Research Part I: Oceanographic Research 

Papers. 

Lippmann, R. 1987. An introduction to computing with neural nets. IEEE Assp magazine 4, 2: 4-

22. 

Loshchilov, I., and F. Hutter. 2017. Sgdr: Stochastic gradient descent with warm restarts. 

International Conference on Learning Representations 2017. 

Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis. 1997. A Pacific 

interdecadal climate oscillation with impacts on salmon production. Bulletin of the 

american Meteorological Society, 78. 6:1069-1080. (Data accessed June 2018 via 

http://research.jisao.washington.edu/pdo/PDO.latest.txt) 

Matsugu, M., Mori, K., Mitari, Y. and Kaneda, Y., 2003. Subject independent facial expression 

recognition with robust face detection using a convolutional neural network. Neural 

Networks, 16, 5-6:555-559. 

Medwin, H., and C. S. Clay. 1998. Fundamentals of Acoustical Oceanography. Academic Press, 

Boston. 

Moniruzzaman, M., S. M. S. Islam, M. Bennamoun, and P. Lavery. 2017. Deep Learning on 

Underwater Marine Object Detection: A Survey. International Conference on Advanced 

Concepts for Intelligent Vision Systems. 150-160. 

Ng, J. Y.-H., M. Hausknecht, S. Vijayanarasimhan, S., O. Vinyals, R. Monga, and G. Toderici. 

2015. Beyond short snippets: Deep networks for video classification. Computer Vision 

and Pattern Recognition, Proceedings of the IEEE conference on. 4694-4702. 

Nilsback, M.-E., and A. Zisserman. 2008. Automated flower classification over a large number 

of classes. Computer Vision, Graphics & Image Processing, Sixth Indian Conference on. 

NOAA National Center for Environmental Information. 2016. San Diego, California Coastal 

Digital Elevation Model – Issued 2012-03-07, updated 2016-07-28. (Data accessed June 

2018 via 

https://www.ngdc.noaa.gov/thredds/dodsC/regional/san_diego_13_mhw_2012.nc.html) 

Ohman, M. D., D. L. Rudnick, A. Chekalyuk, R. E. Davis, R. A. Feely, M. Kahru, H.-J. Kim et 

al. 2013. Autonomous ocean measurements in the California Current Ecosystem. 

Oceanography 26. 3:18-25. 

Ohman M. D.,  R. E. Davis,  J. T. Sherman, K. R. Grindley, B. M. Whitmore, C. F. Nickels, J. S. 

Ellen. (in review). Zooglider:  an autonomous vehicle for optical and acoustic sensing of 

zooplankton. Limnology and Oceanography: Methods   



 

184 

 

Olson, R. J., H. M. Sosik. 2007. A submersible imaging‐in‐flow instrument to analyze nano‐and 

microplankton: Imaging FlowCytobot. Limnology and Oceanography: Methods 5, 6:195-

203. 

Orenstein, E.C., O. Beijbom, E. E. Peacock, and H. M. Sosik. 2015. Whoi-plankton-a large scale 

fine grained visual recognition benchmark dataset for plankton classification. The Third 

Workshop on Fine-Grained Visual Categorization at CVPR 2015. arXiv preprint 

arXiv:1510.00745. 

Orenstein, E. C., and O. Beijbom. 2017. Transfer Learning and Deep Feature Extraction for 

Planktonic Image Data Sets. Applications of Computer Vision (WACV), 2017 IEEE 

Winter Conference on. 1082-1088. doi:10.1109/WACV.2017.125 

Parker-Stetter, S.L., L. G. Rudstam, P. J. Sullivan, D. M. Warner. 2009. Standard operating 

procedures for fisheries acoustic surveys in the Great Lakes. Great Lakes Fisheries 

Commission Special Publication.  

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel et al. 

2011. Scikit-learn: Machine learning in Python. Journal of machine learning research 12: 

2825-2830. 

Peura, Markus, and J. Iivarinen. 1997. Efficiency of simple shape descriptors. Aspects of visual 

form. 443-451. 

PFEL Upwelling Index: (Pacific Fisheries Environmental Laboratory),  

https://www.pfeg.noaa.gov/products/PFEL/modeled/indices/upwelling/NA/data_downloa

d.html, retrieved 2018. 

Picheral, M., L. Guidi, L. Stemmann, D. M. Karl, G. Iddaoud, and G. Gorsky. 2010. The 

Underwater Vision Profiler 5: An advanced instrument for high spatial resolution studies 

of particle size spectra and zooplankton. Limnol. Oceanogr.-Meth. 8: 462-473 doi 

10.4319/lom.2010.8.462 

Robinson, K. L., J. Y. Luo, S. Sponaugle, C. Guigand, and R. K. Cowen. 2017. A tale of two 

crowds: Public engagement in plankton classification. Frontiers in Marine Science 4:82. 

Rumelhart, D. E., G. E. Hinton, and R. J. Williams. 1986. Learning representations by back-

propagating errors. Nature 323, no. 6088:533. 

Sabour, S., N. Frosst, and G. E. Hinton. 2017. Dynamic routing between capsules. Advances in 

Neural Information Processing Systems. 3856-3866. 

Samson, S., T. Hopkins, A. Remsen, L. Langebrake, T. Sutton, and J. Patten. 2001. A system for 

high-resolution zooplankton imaging. IEEE J. Ocean. Engin. 26: 671-676 doi 

10.1109/48.972110 



 

185 

 

Schulz, J., K. Barz, P. Ayon, A. Luedtke, O. Zielinski, D. Mengedoht, and H.-J. Hirche. 2010. 

Imaging of plankton specimens with the lightframe on-sight keyspecies investigation 

(LOKI) system. J. Euro. Opt. Soc.-Rapid Publ. 5:  doi 10.2971/jeos.2010.10017s 

Schwing, F. B., M. O’Farrell, J. M. Steger, and K. Baltz. 1996. Coastal Upwelling indices west 

coast of North America. NOAA Tech. Rep., NMFS SWFSC NMFS SWFSC 231: 144. 

Sherman, J., R. E. Davis, W. B. Owens, and J. Valdes. 2001. The autonomous underwater glider 

Spray. IEEE Journal of Oceanic Engineering 26:437-446. 

Sieracki, C. K., M. E. Sieracki, and C. S. Yentsch. 1998. An imaging-in-flow system for 

automated analysis of marine microplankton. Marine Ecology Progress Series 168:285-

296 

Simonyan, K. and A. Zisserman. 2014. Very deep convolutional networks for large-scale image 

recognition. CoRR, arXiv preprint arXiv:abs/1409.1556 

Smith, Leslie N. 2018. A disciplined approach to neural network hyper-parameters: Part 1--

learning rate, batch size, momentum, and weight decay. arXiv preprint 

arXiv:1803.09820. 

Socher, R., A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Ng, and C. Potts. 2013. Recursive 

deep models for semantic compositionality over a sentiment treebank. Empirical methods 

in natural language processing, Proceedings of the 2013 conference on. 1631-1642. 

Sosik, H. M. and R. J. Olson. 2007. Automated taxonomic classification of phytoplankton 

sampled with imaging-in-flow cytometry. Limnology and Oceanography: Methods, vol. 

5, 6:204–216.  

Srivastava, N., G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. 2014. Dropout: 

a simple way to prevent neural networks from overfitting. The Journal of Machine 

Learning Research 15, 1:1929-1958. 

Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and 

A. Rabinovich. 2015. Going deeper with convolutions. Computer Vision and Pattern 

Recognition, Proceedings of the IEEE conference on. 1-9. 

Szegedy, C., S. Ioffe, V. Vanhoucke, and A. A. Alemi. 2017. Inception-v4, inception-resnet and 

the impact of residual connections on learning." AAAI Conference on Artificial 

Intelligence, Proceedings of the Thirty-First. 4:4278-4284. 

Tang, K., M. Paluri, F. F. Li, R. Fergus, and L. Bourdev. 2015. Improving Image Classification 

with Location Context. Computer Vision, Proceedings of the IEEE International 

Conference on. 1008-1016. 

Thompson, C. M., M. P. Hare, and S. M. Gallager. 2012. Semi-automated image analysis for the 

identification of bivalve larvae from a Cape Cod estuary. Limnol. Oceanogr.-Meth. 10: 

538-554  doi 10.4319/lom.2012.10.538 



 

186 

 

Towns, J., T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw, V. Hazlewood, S. 

Lathrop, D. Lifka, G. D. Peterson, R. Roskies, J. R. Scott, N. Wilkins-Diehr. 2014. 

XSEDE: Accelerating Scientific Discovery. Computing in Science & Engineering, 

vol.16, 5:62-74 doi:10.1109/MCSE.2014.80 

van Rossum, G. 1995. Python tutorial, Technical Report CS-R9526. Centrum voor Wiskunde en 

Informatica (CWI), Amsterdam. 

Wagemans, J., J. H. Elder, M. Kubovy, S. E. Palmer, M. A. Peterson, M Singh, and R. von der 

Heydt. 2012. A century of Gestalt psychology in visual perception: I. Perceptual 

grouping and figure–ground organization. Psychological bulletin 138, 6:1172-1217. 

Wang, R., J. Dai, H. Zheng, G. Ji, and X. Qiao. 2016. Multi features combination for automated 

zooplankton classification. IEEE OCEANS 2016-Shanghai. 1-5. 

Watson, J. 2004. HoloMar: A holographic camera for subsea imaging of plankton. Sea Technol. 

45: 53-55.  

Wertheimer, Max. 1923. Untersuchungen zur Lehre von der Gestalt II, in Psycologische 

Forschung, 4:301-350. 

Widmer, G. and M. Kubat. 1996. Learning in the presence of concept drift and hidden contexts. 

Machine learning, 23, 1:69-101. 

Wilkins, M. F., L. Boddy, C. W. Morris, and R. Jonker. 1996. A comparison of some neural and 

non-neural methods for identification of phytoplankton from flow cytomery data. 

Bioinformatics 12, 1:9-18. 

Zeiler, M. D. and R. Fergus. 2014. Visualizing and understanding convolutional networks. 

European Conference on Computer Vision. 818-833. 

Zheng, H., R. Wang, Z. Yu, N. Wang, Z. Gu, and B. Zheng. 2017. Automatic plankton image 

classification combining multiple view features via multiple kernel learning. BMC 

bioinformatics, 18(16): 570. doi:10.1186/s12859-017-1954-8 

 

  



 

187 

 

CHAPTER 7 Summary of the Dissertation 
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Whether strapped to a pier, perched on a lab bench, towed behind a ship, or carried by an 

autonomous vehicle, plankton imaging systems are challenging to develop and deploy (Davis et 

al. 1992; Sieracki et al. 1998; Samson et al. 2001; Benfield et al. 2003; Watson 2004; Sosik and 

Olson 2007; Cowen and Guigand 2008; Gorsky et al. 2010; Picheral et al. 2010; Schulz et al. 

2010; Thompson et al. 2012; Briseño-Avena et al. 2015; Ohman et al. 2018 – See Fig. 7.1). As 

scientific instruments, these systems aim to provide objective quantification of plankton, thereby 

facilitating better understanding of ocean processes and furthering our understanding of Earth’s 

functions, condition, and resources. Therefore, it is important that the contents of these images be 

accurately assessed, in an increasingly efficient and automated way. 

This dissertation investigates an end-to-end sequence of steps for efficiently extracting 

and classifying plankton images. In preparatory steps, I provide new approaches to image 

processing in order to optimize and segment plankton images. I show how to incorporate context 

metadata as a new modality in the field of plankton image classification, in order to markedly 

improve classification accuracy.  Context metadata prove beneficial for both convolutional 

neural networks (CNNs) and for conventional feature-based machine learning algorithms. I 

compare different architectures for incorporating context metadata into CNNs, which should 

facilitate adoption of this approach by others.  I also show the importance of optimizing 

hyperparameters in order to maximize the performance of all machine learning methods 

considered.  In addition to improving biological object classification and providing new 

approaches that advance the field of machine learning, as a by-product, this dissertation 

hopefully serves as a sufficient primer in machine learning to facilitate a plankton ecologist 

adopting and implementing machine learning technology. 
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Figure 7.1: Example plankton images from Sosik and Olson (2007), Gorsky et al. 

(2010), Cowen and Guigand (2008), Ohman et al. (2018), Briseño-Avena et al. (2015), 

Thompson et al. (2012), Briseño-Avena et al. (2015). 

 

All supervised machine learning algorithms require features. Chapter 2, “A Review of 

Feature Extraction Techniques for Automating Biological Object Classification in Images,” 

describes dozens of types of machine learning features relevant to biological object 

classification, and provides an organizational structure to consider more precisely the underlying 

concepts each feature type is attempting to quantify. All types have been used to classify 

plankton images with varying degrees of success (Grosjean et al. 2004; Blaschko et al. 2005; Hu 

and Davis 2005; Sosik and Olson 2007; Gorsky et al. 2010; Luo et al. 2011; Ellen et al. 2015).  
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Figure 7.2: Three types of features used for plankton image classification 

 

Features that quantify shape seem particularly promising to consider in the future, 

particularly because recent publications in that area have yet to be implemented with respect to 

plankton classification. As individual organisms with distinct boundaries, planktonic shapes 

always form a closed perimeter and there should be a large amount of intra-class similarity in 

that perimeter in addition to the interior pixel contents. Shape contexts (Belongie et al. 2002; 

Ling and Jacobs 2007) attempt to match shapes that are similar but deformed, and strands 

(Temlyakov et al. 2010) and spike counts (Nguyen et al. 2013) are methods that create features 

that describe the protrusions and elongated structures that are common in most types of plankton 

(e.g. legs, tentacles, antennae, pseudopodia, frustules). Certain types of features may outperform 

others based on image acquisition characteristics, such as texture features outperforming shape 
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features for images with irregular illumination (Hu and Davis 2005; Hu 2006). However, the 

choice of feature type is not mutually exclusive so unless available computation is extremely 

limited, many features should be included as possible for best results (Sosik and Olson 2007; 

Luo et al. 2011; Ellen et al. 2015).  

Available computation has roughly doubled every two years for the past 50 years, a 

phenomenon, known as “Moore’s Law” (Moore 1965), and this roughly applies not just to 

computation speeds, but also to memory capacity and power consumption. Therefore, feature 

types that seemed intractable or low value as recently as 10 years ago are potentially easy to 

implement today. Even if Moore’s Law is abating, as suggested by Waldrop in “The chips are 

down for Moore’s law”, (Waldrop 2016) there is still an accretion of more efficient 

implementations and new ideas to assess as the field of machine learning continues to evolve and 

mature. Additionally the resolution of plankton images continue to increase (Picheral et al. 2010, 

Grossmann et al. 2015; Gallager 2017; Orenstein and Beijbom 2017; Ohman et al. 2018), so 

plankton images will continue to increase in fidelity, allowing for more accurate and innovative 

feature extraction algorithms. 

Whether explicitly calculated geometric features as in Chapter 2, or implicitly evolved as 

CNN filters, computing effective features from plankton images requires clear images as a 

starting point, and accurate segmentation is required to produce accurate geometric features. 

Chapter 3, “Improving Object Detection and Segmentation for In Situ Plankton Images,” 

illustrates a technique for improving the images captured by Zooglider. The flat-fielding 

algorithm presented in Chapter 3, adopted from astronomy, clearly improves image contrast and 

uniformity. The segmentation algorithm I present is based on a Canny (1986) edge detector, but 
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uses an original two pass approach that segments plankton from Zooglider images with higher 

fidelity that conventional single pass applications  

 

Figure 7.3: A raw zooglider image (upper left) is first flatfielded (upper right), then 

segmented by two different Canny edge detectors to perform detection and 

segmentation of thin and transparent objects (bottom left). Small ROIs are only 

enumerated, while large ROIs are both enumerated and image tiles are retained. 

 

Just as CNNs do not require a priori heuristics to encode as features, and instead evolve 

filters to perform classification, supervised Deep Learning segmentation algorithms such as 

DeepEdge (Bertasius et al. 2015) and holistically-nested edge detection (Xie and Tu 2015), do 

not use a priori heuristics to identify intensity discontinuities, but instead evolve hierarchical 

features to determine segmentation boundaries. As with CNNs, these supervised algorithms 
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require human annotations for validation, but like CNNs they also outperform most non-deep 

learning segmentation benchmarks (Bertasius et al. 2015) and can even achieve this accuracy 

with minimal computation time per image (Xie and Tu 2015). There is no indication that these 

Deep Learning segmentation algorithms would achieve lower segmentation accuracy on 

biological objects than the natural objects in the published papers. 

Chapter 4, “Quantifying California Current Plankton Samples with Efficient Machine 

Learning Techniques,” increases the number of training examples uses with conventional 

feature-based algorithms until an asymptote is reached in accuracy at roughly 4,000 examples 

per class. However, increasing the number of examples disproportionately increases the amount 

of training time for feature-based algorithms: for example, the relationship between number of 

examples and computational complexity is worse than quadratic (Cortes and Vapnik 1995; 

Pedregosa et al. 2011). To mitigate this impact, I evaluate size fractionation, partitioning the 

training data by the area feature into non-overlapping subdivisions (e.g. small, medium, and 

large). As expected, this procedure greatly reduces the computation time, and I find this strategy 

of training multiple smaller models achieves nearly the same accuracy as a single model (Ellen et 

al. 2015). In turn, this size fractionation approach should allow for larger training sets to be 

employed, which should result in higher accuracy. 
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Figure 7.4: For an 8-way classification problem of Zooscan images, Support Vector 

Machines with a Radial Basis Function (SVM_RBF) performed the best (top). Recall 

by class remained consistent regardless of the number of examples per class (bottom 

left); and having fewer classes resulted in higher accuracy, with all trials with greater 

than 10 classes having very similar recall.  

 

Data set augmentation is a strategy to effectively increase the number of available 

images. For plankton, transformations such as rotation and reflection do not alter the class label, 

and can be utilized without reservation, and have been found to increase accuracy (Dieleman et 

al. 2015). Another augmentation strategy is to select additional images with similar visual 

content (Johnson et al. 2015) or metadata (MacAuley and Leskovec 2012), an approach that 
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becomes increasingly viable as the number of available images increases. Future work with non-

deep learning algorithms is important because these algorithms are better suited than CNNs to 

remote, on-board, low-power deployments. On board assessments performed by machine 

learning algorithms, even if suboptimal compared to CNNs, enable real-time adaptive sampling 

capabilities during the execution of a sampling mission, such as detection of zooplankton thin 

layers in the ocean or recognition of an unexpected population, such as a bloom, that would be 

valuable to sample again.  

Before being classified by a CNN, images are typically normalized in some manner so 

that raw pixel intensities are converted into a range expected by a typical CNN library. Chapter 

5, “Correlating Filter Diversity with Convolutional Neural Network Accuracy,” examines three 

aspects of training CNNs on a new domain of images. This includes image normalization, 

deciding whether to train networks from scratch, and examining the first layer of filters to 

determine what the CNN model is learning. We find that a common technique for many image 

classification tasks, zero-phase component analysis or ZCA whitening (LeCun and Ranzato, 

2013) does not perform best on our plankton images. Instead we find that per image 

normalization, sometimes referred to as global contrast normalization (GCN), works best on our 

plankton images (Graff and Ellen, 2016). We find that training our networks from scratch results 

in better accuracy than attempting to transfer networks from another domain. These two findings 

hold not only for our own images, but also for a set of phytoplankton images acquired with a 

flow-through cytometer (Sosik and Olson 2007). We also find a correlation between the diversity 

of filters and accuracy for trained models.  
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Figure 7.5: First layer filters (upper left) evolve throughout training. After training 

multiple replicates on multiple types of images, the distribution of means of the 

standard deviation of filters (lower left) is lower for the per image normalization. 

Across four different data sets, the zooplankton images are the only image type that 

evolved higher mean of filter standard deviation using per image normalization than per 

pixel normalization (upper right). This matched with zooplankton images being the only 

image type that had a higher accuracy using per-image normalization than per pixel 

normalization (bottom right).  

 

If the diversity metric could in some way inform the design or selection of randomly 

initialized filters, it would potentially be useful for achieving higher accuracy, reducing 

computation time, or both. For example, when training a new network it would be useful to 

know which of two sets of filters was more likely to have higher accuracy or converge faster. 

Another potential accuracy gain could be obtained from algorithms that are designed to further 

exploit the rotational invariance or relative scale of plankton images, such as power spectra 

(Torralba & Oliva 2003), or rotating images of plankton to a uniform alignment before assessing 

them, as has been done to improve facial recognition (Taigman et al. 2014). 
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Once images are normalized, they can be used as training data for a convolutional neural 

network. Chapter 6, “Improving Plankton Image Classification Using Context Metadata,” 

determines which configuration of layers, connectivity, filter size, and dropout works best with 

plankton images to establish a baseline for classification by a CNN. The accuracy of the CNN far 

exceeds the accuracy of feature-based classifiers, and accuracy of all algorithms increases as the 

number of training examples increases, up to 5,000 for most of the 27 categories, and 350,000 

images total.  

A major result of this dissertation is that accuracy is improved for all algorithms when 

geotemporal and hydrographic metadata are included. Accuracy for the CNN improves the most 

when the geometric features are included with the geotemporal and hydrographic metadata. The 

context metadata not only include measurements from the Spray glider platform on which 

Zooglider is based, but also includes acoustic backscatter from the dual frequency Zonar (Ohman 

et al. 2018).  

In Chapter 6, I also consider multiple architectures for inclusion of metadata. The best 

performing architecture uses multiple hidden layers to allow for interaction between the metadata 

features first, and then a second layer of interaction with the features extracted from the pixels. 

The best performing model achieves an accuracy of 92.3%, with metadata providing the final 

one percentage point improvement (which equates to ~15% error reduction). Also, while fine 

tuning (Chu et al. 2016) or domain transfer (Orenstein and Beijbom 2017) are techniques for 

taking a CNN trained on one type of data and adapting it to a new type of images, I consistently 

found that training our own networks de novo provided the best results with our images (Graff 

and Ellen 2016).  
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Additionally, even the smallest CNNs considered have performance beyond feature-

based approaches, a result that is notable for two reasons.  First, it allows for someone new to the 

domain (whether experienced or not) to iterate quickly to determine at a broad level what 

characteristics will be successful with their particular images. Second, efficiency is a concern, 

because there is still a significant gap in the number of images used in our training set compared 

to the rapidly expanding rate at which the images can be acquired. If a particular enhancement or 

algorithm provides superior accuracy over a more efficient algorithm, but the more accurate 

algorithm cannot be put into use, as described in Robinson et al. 2017, then the enhancement is a 

mere novelty and does not achieve the end goal of helping sort images.  

 

Figure 7.6: Including any of geometric features, geotemporal metadata, and 

hydrographic metadata improves CNN classification accuracy; including all three yields 

the highest accuracy. 
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Here, the metadata used included acoustic backscatter measurements. This kind of multi-

modal machine learning will likely continue to be of interest as systems are developed that 

include multiple modalities such as acoustic (Briseño-Avena et al. 2015; Ohman et al. 2018) or 

fluorescence signatures, in addition to reflected light (Beijbom et al. 2016). One of the 

advantages of CNNs over previous feature-based algorithms is that the CNNs are intended to 

resolve issues such as recognizing objects under varying illumination, scale, and stretching 

(LeCun et al. 2015). These are not only a challenge for plankton images (Hu and Davis 2005) but 

for most image types. However, one limitation of CNNs is that they rely on patterns of pixels 

that are similar to previously seen pixels in training examples. These images are just a projection 

of a momentary posture and position of the real-world object, not just for plankton, but for any 

image captured by a camera (as opposed to a PowerPoint slide or abstract painting). Newer 

architectures, such as “deformable part descriptors” (Zhang et al. 2013) are designed to address 

this deficiency, and showed 6% improvement. CapsNet is a potential successor to the CNNs 

presented in this dissertation, a CapsNet contains a network of recursive capsules that not only 

learns maximally discriminative filters like a CNN, but also learns transformation matrices to 

represent pose and part-whole relationships (Sabour et al. 2017).  

Convolutional Neural Networks clearly outpace the previous state of the art for general 

purpose image classification, posting annual performance gains in excess of 10 percentage points 

and rapidly approaching human level performance on these tasks (He et al. 2015). Part of the 

reason for their wide adoption is that they generalize exceptionally well. Specific features or 

heuristics are not required a priori, and not just the same algorithm as a design template, but the 

trained model can be used with very little modifications from one image data set to the next 

(Sermanet et al. 2013; Zeiler and Fergus 2014; LeCun et al. 2015). This included tangential 
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domains, such as using a model trained on RGB images being used to successfully perform 

object recognition and pose estimation from RGB-D images, which include a depth channel 

(distance from the object to the image plane), which is a common image format within robotics 

(Schwarz et al. 2015). Even within plankton classification, Orenstein and Beijbom (2017) found 

that using a model pre-trained on ImageNet images provided better classification accuracy than a 

model trained using only the plankton or phytoplankton images. As the concept of CNNs 

matures, including hybridizations and successors such as CapsNet, and as more practitioners 

become familiar with implementing these algorithms, an open question is whether this type of 

domain transfer is truly optimal, or just a convenient starting point, as general purpose CNN 

models have often been trained on data sets such as the 1.2 million images in the ImageNet 

dataset, whereas the size of most plankton datasets numbers in the tens of thousands.  

The answer to this question may come from deep learning theorists, or it may be 

determined empirically. While the utility of a CNN is determined by a metric such as accuracy 

on recognizing objects within images, there is no specific mathematical notation to represent the 

power or expressiveness of a CNN (Bengio and Delalleau 2011). Empirical evidence of the 

power of CNNs is that their success was greatly increase when they were artificially dampened 

with dropout (Srivastava et al. 2014), which would not be the case unless they were more 

significantly more expressive than the variety in current data set.  

If the expressiveness of a CNN is very large, it is possible that using a CNN pre-trained 

on common objects before being fine-tuned to plankton data would be analogous to how a 

human expert progressing from infancy to plankton expert gradually learns to describe and 

recognize broad shapes and colors before being able to identify the most subtle taxonomic keys. 

However, it is also possible that, similar to dropout being required, that a CNN trained on 
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ImageNet data may be overly specialized. For example, a CNN that has been trained on 

thousands of classes from ImageNet, or trained to recognize pedestrians from a self-driving car, 

or trained to identify facial features to unlock a mobile phone may not have evolved to be able to 

discriminate between more subtle features such as differentiating the internal organs of nearly 

transparent gelatinous organisms. Until there is sufficient evidence, domain practitioners will try 

to decide for themselves, as evidenced by the Tajbakhsh et al. (2016) paper entitled 

“Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning?”  

In conclusion, deep learning, including convolutional neural networks, has proven 

successful in advancing the state-of-the-art for audio, video, speech, and image processing 

(LeCun et al. 2015), so it is not surprising that CNNs significantly improve accuracy for 

classifying plankton images. Even though CNNs tend to require more training images than 

previous algorithms and require greater computational overhead, even moderately sized CNNs 

with a small amount of training data outperform previous plankton processing algorithms, and 

are readily adaptable to microcomputers with graphical processing units (GPUs). Additionally, 

inclusion of context metadata is more effective per unit of computation than the CNN itself, and 

is not difficult to implement, especially since many of the context data measurements are likely 

to be acquired in conjunction with the imaging process. The inclusion of context metadata also 

significantly improves the accuracy of non-CNN algorithms, reducing errors by ~30% on 

average. Moreover, the inclusion of context metadata and geometric features significantly 

improves accuracy of even the optimal CNN architecture, reducing errors by ~15% on average. 

Each of the four chapters above with original results (Chapters 3, 4, 5, and 6) contained 

some degree of blending or borrowing, leveraging existing concepts. In this sprit, additional 
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ensemble approaches that blend the best of different algorithms and concepts are likely to further 

increase classification performance.   
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