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Abstract

Along the western margin of North America, the winter expression of the North

Pacific High (NPH) strongly influences interannual variability in coastal upwelling,

storm track position, precipitation, and river discharge. Coherence among these fac-

tors induces covariance among physical and biological processes across adjacent

marine and terrestrial ecosystems. Here, we show that over the past century the

degree and spatial extent of this covariance (synchrony) has substantially increased,

and is coincident with rising variance in the winter NPH. Furthermore, centuries-

long blue oak (Quercus douglasii) growth chronologies sensitive to the winter NPH

provide robust evidence that modern levels of synchrony are among the highest

observed in the context of the last 250 years. These trends may ultimately be linked

to changing impacts of the El Ni~no Southern Oscillation on midlatitude ecosystems

of North America. Such a rise in synchrony may destabilize ecosystems, expose pop-

ulations to higher risks of extinction, and is thus a concern given the broad biologi-

cal relevance of winter climate to biological systems.
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1 | INTRODUCTION

Biological impacts of climate change have been widely documented

across the world’s biomes, yet such responses are almost exclusively

described in terms of trends in average conditions (Parmesan &

Yohe, 2003; Poloczanska et al., 2013). It is widely acknowledged,

however, that global warming is also likely to increase climate

variance (Coumou & Rahmstorf, 2012; Easterling et al., 2000), the

extent and consequences of which remain poorly understood. Of

concern is that extreme events which often disproportionately influ-

ence biological processes and impart long-lasting effects on ecosys-

tems, may increase in frequency (Jentsch, Kreyling, & Beierkuhnlein,

2007; Thompson, Beardall, Beringer, Grace, & Sardina, 2013). Rising

climate variability may also induce synchrony in the dynamics of
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spatially disjunct populations (i.e., the Moran effect (Moran, 1953)),

thereby reducing the survivorship of potential emigrants available to

“rescue” failing subpopulations in the event of a deleterious climate

event. Such a decrease in the regional diversity of biological

response to climate could potentially destabilize ecosystem pro-

cesses and the services they provide to society (Harrison & Quinn,

1989; Palmqvist & Lundberg, 1998; Schindler, Armstrong, & Reed,

2015). Thus, identifying long-term trends in environmental variability

or synchrony is of critical importance, especially if a given climate

driver is broadly relevant to biology.

Off the coast of western North America, high winter (January–

March) atmospheric pressure (i.e., the North Pacific High; NPH) is

associated with more intense northwesterly, upwelling-favorable

alongshore winds that lift deep, cold, nutrient-rich waters into the

photic zone to stimulate production in the California Current (Huyer,

1983). At the same time, the high pressure ridge deflects Pacific

storms, leading to drought on land. Thus, anomalies in winter NPH

amplitude and positioning induce negative covariance between met-

rics of marine and terrestrial biological productivity that are sensitive

to cool-season climate. For example, years of robust coastal upwel-

ling, high seabird reproductive success, rapid rockfish growth, and

lipid-rich copepod communities are associated with low precipitation

and poor blue oak radial growth on land (Black et al., 2014).

Although there is almost no trend in average values, centennial-

length instrumental records suggest that NPH-induced winter cli-

mate variability has increased substantially over the course of the

20th century (Black et al., 2014) with concomitant effects on

biological indicators (Sydeman, Santora, Thompson, Marinovic, & Di

Lorenzo, 2013). Here, we utilize some of the longest spatially

resolved observational records from western North America to

explore how the geographic extent, magnitude, and coherence of

ecosystem anomalies, including physical and biological indicators,

have changed over the past century. We find that rising variance in

the NPH has synchronized processes not only within but also among

marine, terrestrial, and freshwater systems of western North

America.

2 | MATERIALS AND METHODS

2.1 | Physical data

The winter NPH was defined as mean Jan-Mar Hadley Centre

HadSLP2 sea level pressure [http://www.metoffice.gov.uk/hadobs/

hadslp2/] for the region 25°N–35°N by 125°W–145°W, the approxi-

mate location over which the NPH is centered during the winter

months (Schroder et al., 2013). Although NPH data are available

prior to 1920, time series were truncated at this date due to con-

cerns about relatively low densities of sea level pressure observa-

tions early in the 20th century. Annual water year (October 1 to

September 30) discharge data (referred to as “annual discharge”)

were obtained from the US Geological Survey [https://waterdata.

usgs.gov/nwis] for relatively undisturbed watersheds in the western

US states of Washington, Oregon, Idaho, California, Nevada, Arizona,

New Mexico, Utah, and Colorado (Falcone, Carlisle, Wolock, & Mea-

dor, 2010). Over half of the sites (56%) used in the variance and

synchrony analysis (see below) are part of the Hydro-Climatic Data

Network, a subset of US Geological Survey streamgage sites for

which flow of the watercourse is natural and record length suffi-

ciently long to analyze discharge patterns over time (Slack, Jumb, &

Landweh, 1993) (Table S1). The coastal upwelling index represents

the magnitude of offshore Ekman transport (Bakun, 1973; Schwing,

O’farrell, Steger, & Baltz, 1996), and monthly means were obtained

from the National Oceanic and Atmospheric Administration (NOAA)

Pacific Fisheries Environmental Laboratory [http://www.pfeg.noaa.

gov/products/PFEL/modeled/indices/upwelling/upwelling.html].

Monthly averaged sea level data were obtained from the University

of Hawaii Sea Level Center [http://uhslc.soest.hawaii.edu/] for all

records along the west coast of North America that exceeded at

least 30 years in length. All linear trends were removed from sea

level data given their possible association with tectonic processes or

anthropogenic sea level rise. Monthly averaged precipitation data

were obtained from two sources, the first of which was NOAA divi-

sional data for Washington, Oregon, Idaho, California, Nevada, Ari-

zona, New Mexico, Utah, and Colorado, available at (https://www7.

ncdc.noaa.gov/CDO/CDODivisionalSelect.jsp). The second source

was the Climate Research Unit TS3.24 gridded 0.5° precipitation

data for North America (Harris, Jones, Osborn, & Lister, 2014). With

the exception of river discharge, winter (January–March) means were

used in all analyses.

2.2 | Tree-ring data

Blue oak (Quercus douglasii) tree-ring data were obtained through

the NOAA International Tree-Ring Databank [http://www.ncdc.noaa.

gov/paleo/treering.html]. Only growth chronologies that significantly

(p < .01) correlated with the winter NPH, extended past 2003, and

had measurement time series >400 years in length were retained

(n = 16 time series). Measurements were standardized using negative

exponential detrending in the program ARSTAN (Cook & Krusic,

2005). The Expressed Population Signal (EPS) was used to quantify

how well the chronology developed from a given number of trees

represents the theoretical population from which it was sampled.

The “standard” chronology was retained and truncated where the

Expressed Population Signal (EPS) fell below 0.85 (Wigley, Briffa, &

Jones, 1984). Albeit arbitrary, an EPS ≥ 0.85 is often used as a

threshold at which the chronology is considered sufficiently robust

for climate reconstruction.

2.3 | Trends in variance and synchrony

The focus of this study was on those variables that related to the

NPH. Thus, time series were screened for a winter NPH Pearson

correlation at values of r < �.4 for river discharge, r > .4 for upwel-

ling, r < �.5 for sea level and NOAA divisional precipitation, and

r < �.6 for CRU gridded precipitation) over the interval 1948

through 2015. These thresholds accounted for the fact that some
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variables were inherently more strongly correlated with NPH than

others, which helped focus the geography of the analysis. Note that

the findings of this study were insensitive to a single correlation

threshold of 0.4 (data not shown). Prior to subsequent analysis, all

time series were normalized to the common interval of 1948–2015.

To identify trends in the variance structure of time series, a run-

ning standard deviation was calculated in a 31 year window and

then averaged for each variable (e.g., upwelling, sea level, river dis-

charge, etc.). Trends in synchrony were quantified by calculating

mean pairwise correlation in a running 31 year window and then fit-

ting the resulting time series with a linear regression. Mean pairwise

running correlation (r) was calculated within each variable (e.g., the

eight upwelling time series and then the five sea level time series,

etc.). Next, r was calculated among the means of each variable type

(NPH, mean river discharge, mean upwelling, mean sea level, and

mean CRU precipitation) to identify trends in synchrony across mar-

ine, terrestrial, and freshwater systems. For the blue oak, r (syn-

chrony) was calculated for each subset of chronologies, beginning

with all 16 and then repeating with the 15 longest, the 14 longest,

etc., to maximize the length of the synchrony history. Results were

highly consistent for 14 or more chronologies, but became less

stable at lower sample depths (data not shown). This is likely due to

the concentration of relatively short chronologies to the north and

the resulting changes in geographic representation farther back

through time.

Significance of trends in r was evaluated by comparing observed

slopes in r to those in simulated, bootstrapped data (n = 10,000 itera-

tions). For each iteration, time series of identical number, length, and

autocorrelation as the observational records were generated after

which r was calculated and fit with a linear regression. The r regres-

sion slope from observed data was compared to the distribution

slopes in the simulated data. To verify the cause of synchrony trends,

each instrumental time series was regressed against winter NPH and

the running correlation and regression analysis repeated on the resid-

uals. The r slopes were compared between the observed (unaltered)

data and that from which the NPH signal had been removed.

3 | RESULTS

3.1 | Rising variance and synchrony

Running standard deviations indicate that variance has increased

over the 20th century within our network of marine, freshwater, and

terrestrial indicators (Figure 1a). Patterns in exceptionally long sea

level records at San Francisco and San Diego closely track those in

regional precipitation and the NPH (Figure 1a). Furthermore, centen-

nial-length trends in rising variance are accompanied by rising syn-

chrony, calculated within each variable type (rivers, upwelling,

precipitation, etc.) as mean pairwise correlation (r ) (Figure 1b). Strik-

ingly, synchrony not only rose within these variable types but also

among them (Figure 1c,d). Collectively, these findings suggest that

climate-driven covariance is strengthening concurrently across

marine–terrestrial–freshwater environments. Observed directional

changes in synchrony are unlikely due to chance alone, as confirmed

by comparing slopes in r to those in simulated data (see Methods;

Figure S1, Table S3). When NPH signals were removed from

instrumental records, trends in synchrony were no longer significant

(Table S3), indicating that variability in NPH was a dominant

factor driving synchrony among time series considered in this

study.

3.2 | Enlarged NPH footprint

Coincident with rising r , the climatological “footprint” of the winter

climate pattern has expanded as evidenced by stronger correlations

across the region between NPH and sea level, upwelling, precipita-

tion, and river discharge during the latter half compared to the first

half of the instrumental record (Figure 2). What was previously a sig-

nal specific to north-central California has in recent decades

extended across the southwestern United States and northern Mex-

ico. Moreover, river discharge at many sites in Oregon and Washing-

ton that were positively correlated with the NPH early in the 20th

century now negatively correlate, and agree in sign, with rivers far-

ther south in California (Figure 2). A similar landscape-level pattern

of correlations occurs if the closely related (r = �.85; p < .0001) and

consistently sampled record of sea level at San Francisco is substi-

tuted for the NPH (Figure S2). Notably, those pairs of variables that

correlated the least with one another at the beginning of the record

experience the greatest increase in r over time (Figure S3). This sug-

gests that the spread of the NPH signal across the region is likely a

key driver of rising synchrony as is the intensification of this NPH

signal in those areas where NPH has been historically important.

Pairs of variables that are well-correlated early in the record remain

as such over time (Figure S3).

3.3 | Historical context

The 16 blue oak tree-ring chronologies are highly sensitive to winter

climate and strongly correlate with winter precipitation (Black et al.,

2014; Stahle et al., 2013), the NPH, and sea level at San Francisco

(Table S2). Variance has risen in these chronologies over the past

century (Black et al., 2014), as has synchrony among them (Figure 3),

suggesting that environmental patterns have affected biotic phenom-

ena, increasing coherence in interannual variability of tree growth.

Indeed, the uniquely long history provided by the blue oak suggests

that levels of synchrony (r ) in the 20th century have risen to among

the highest levels in the multicentennial context (Figure 3). Although

r varied considerably over the past 250 years, and in tandem with

levels of variance, confidence intervals around maximum r values

(peaking in the 31 year window of 1972–2002) at least marginally

exceed those of all other decades in the proxy record (Figure 3).

3.4 | Origins of rising synchrony

The century-length rise in variance and synchrony within and among

western North American ecosystems may have linkages to the
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tropical Pacific. The winter NPH has in recent decades become much

more strongly related to low-latitude atmospheric pressure fields in

the vicinity of the western Pacific warm pool (Figure 4). Correlations

between these regions are negligible over the 1920 through 1966

interval, intensifying to highly significant (p < .001) levels over the

more recent 1967 through 2013 interval (Figure 4). This suggests

that covariance between the NPH and the tropical Pacific has sub-

stantially increased over the past hundred years. To better explore

the timing and nature of these changing relationships, mean Jan-Mar

Hadley Centre HadSLP2 sea level pressure was extracted from the

region of the tropical western Pacific over which correlation with

the NPH has increased (15°S–20°N by 110°E–145°E). A running

(31 years) correlation between sea level pressure in the tropical Paci-

fic and the NPH indicates a sharp increase in coupling beginning in

the mid-1960s (Figure S4). However, this strengthening relationship

occurs as soon as the 31 year running window of correlation envel-

ops the extreme El Ni~no event of 1983. Given their leverage on cor-

relation coefficients, subsequent El Ni~no events in 1992 and 1998

help to maintain these strong relationships through present.

4 | DISCUSSION

4.1 | Evidence in biological indicators

Rising variance in the amplitude of the NPH in winter has induced a

pervasive signal of rising variance and synchrony among marine, ter-

restrial, and freshwater ecosystems of western North America. Bio-

logical impacts consistent with such trends have been previously

documented in terrestrial environments of California. Near San Fran-

cisco, extreme variability in interannual precipitation-induced
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F IGURE 1 Trends in variance and synchrony for winter climate indicators in western North America. (a) Running std dev (31 year window)
for the North Pacific High, annual river discharge (n = 7), winter sea level (n = 5), winter upwelling (n = 8), winter precipitation across NOAA
climate divisions (n = 13) and winter precipitation across CRU gridded data (n = 76). (b) Mean running pairwise correlations (31 year window)
within time series of annual river discharge, winter sea level, winter upwelling, winter NOAA precipitation, and winter CRU gridded
precipitation. (c) Mean running pairwise correlations (31 year window) between all possible combinations of the North Pacific High (NPH), sea
level averaged across five sites (SL), annual river discharge averaged across seven sites (rivers), upwelling averaged across eight sites (UW), and
CRU precipitation averaged across 76 grid cells (precip). (d) Mean running pairwise correlation among these five variables (all) and a subset of
the longest four variables (rivers, sea level, NPH, and CRU precipitation). Dotted line is linear trend for the “longest” subset; slope = 0.005;
p = .04
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temporal mismatches between larval development and the availabil-

ity of host plants, collapsing two populations of checkerspot butter-

fly (Euphydryas editha bayensis) (Mclaughlin, Hellmann, Boggs, &

Ehrlich, 2002). Along a 700 km latitudinal gradient from San Diego

to San Francisco, Artemisia californica shrubs from sites in which

interannual precipitation regimes are highly variable have greater
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F IGURE 2 Correlation between winter North Pacific High and winter climate indicators during the first half of the record and the second
half of the record. (a) First half of the record: CRU gridded winter precipitation (1920–1967), annual river discharge (1940–1977), winter
upwelling (1946–1980), winter sea level (1935–1974), and blue oak tree-ring chronologies (1920–1961). (b) Second half of the record: CRU
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F IGURE 3 A multicentennial history of synchrony. (a) Mean running pairwise correlations (r ) for 16 blue oak chronologies as well as
instrumental records of winter precipitation and sea level. Dotted horizontal line is the lower confidence interval for 1987, the year with the
maximal r value (corresponding to an r window of 1972 through 2002). (b) Relationship between average running standard deviation and
running r for blue oak
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capacity to exploit favorable moisture conditions compared to indi-

viduals from sites in which precipitation regimes are relatively stable

(Pratt & Mooney, 2013). However, over the past several decades,

variability in interannual precipitation has increased, and to the

greatest extent at historically stable sites where plants are less well

adapted to accommodate such change (Pratt & Mooney, 2013).

With respect to the marine environment, variance in the (1)

reproductive success (offspring raised per pair) of a seabird, the Cas-

sin’s auklet (Ptychoramphus aleuticus) at the Farallon Islands, Califor-

nia, and (2) the abundance of Sacramento River fall run Chinook

Salmon (Oncorhynchus tshawytscha) have increased (Sydeman et al.,

2013), as have the variance and synchrony in survival rates of Coho

(O. kisutch) and Chinook Salmon from Alaska through California (Kil-

duff, Di Lorenzo, Botsford, & Teo, 2015). Rising variance in these

marine populations has been attributed to rising variance in the

North Pacific Gyre Oscillation (NPGO), a mode of climate variation

that correlates to patterns of nutrients, salinity, and plankton dynam-

ics in the northeastern Pacific (Di Lorenzo et al., 2008; Sydeman

et al., 2013). In turn, the variance increase in the NPGO has been

linked to stronger expressions of Central Pacific El Ni~nos (Kilduff

et al., 2015), which energizes the low-frequency variability in NPGO

(Di Lorenzo et al., 2010). The forcing pattern of the NPGO is an

atmospheric pressure dipole with a climatological low centered on

Kodiak, Alaska, and a climatological high that overlaps considerably

with the winter NPH (Di Lorenzo et al., 2008). Thus, rising variance

in the NPGO and NPH are likely related, although the NPH is much

more strongly coupled with the geophysical indicators in this study,

as well as a wide range of biological indices (Black et al., 2011; Gar-

cia-Reyes et al., 2013; Schroder et al., 2013; Thompson et al., 2012).

Our ability to detect trends in variance or synchrony in observational

biological records is, however, hindered by the lack of records that

span multiple decades.

4.2 | Origins of rising synchrony

Strengthening correlations between the winter NPH and atmo-

spheric pressure in the western Pacific warm pool suggest that rising

synchrony and variance may be linked to changes in tropical climate

and/or teleconnections to western North America. The NPH is clo-

sely coupled with a region of climatological low pressure north of

Australia (Hartmann, 2015; Schwing, Murphree, & Green, 2002; Sea-

ger et al., 2015), the same area for which correlations between SLP

and winter NPH have increased in recent decades (Figure 4). Both

the NPH and western tropical Pacific are centers of action for North

Pacific Hadley/Walker atmospheric circulation, which are heavily

influenced by ENSO (Di Lorenzo et al., 2010; Furtado, Di Lorenzo,

Anderson, & Schneider, 2012; Schwing et al., 2002), the variability

of which has been increasing over the past hundred years to unusu-

ally or unprecedentedly high levels in the context of the past several

centuries (Cai et al., 2015; Cobb, Charles, Cheng, & Edwards, 2003;

Li et al., 2011; Liu et al., 2017). Thus, greater amplitude in ENSO is

likely to be associated with rising variability in the winter NPH and

synchrony among associated physical and biological populations in

western North America. Indeed, rising variance in the tropics has

been associated with a rapid succession of recent climate extremes

in western North America including record-breaking El Ni~no events

in 1982–1983, 1997–1998, and 2015–2016, and the unusually per-

sistent 2014–2015 North Pacific Ocean heat wave known as “The

Blob,” which was linked to the recent exceptional California drought

(Bond, Cronin, Freeland, & Mantua, 2015; Di Lorenzo & Mantua,

2016; Griffin & Anchukaitis, 2014; Wang, Hipps, Gillies, & Yoon,

2014; Williams et al., 2015). The apparent step-change in connectiv-

ity between the NPH and sea level pressure in the western topical

Pacific appears to coincide with this series of extreme events begin-

ning with the 1983 El Ni~no. Other possible mechanisms include

changes in ENSO phenology or expression (Ashok & Yamagata,

2009; Zhou, Xie, Zheng, Liu, & Wang, 2014) as well as interactions

with other broad-scale climate phenomena such as the Pacific

Meridional Modes (Liguori & Di Lorenzo, 2018), Pacific decadal vari-

ability (Mantua & Hare, 2002), or North Pacific Gyre Oscillation (Di

Lorenzo et al., 2008), among others. Ultimately, how these factors

interact to influence apparent changes in the connectivity between

the NPH and the tropics is unknown and worthy of study. However,

the balance of evidence suggests that part of the rise in NPH
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variability and related patterns of synchrony have origins in the trop-

ics, and that the intensity of these relationships has changed over

the past century.

4.3 | Historical context

Blue oak tree-ring chronologies confirm that the level of variance

(Black et al., 2014), and especially synchrony, have risen over the

past hundred years to levels that are among the highest of the

250 year reconstruction. A conspicuous feature of this longer term

history, however, is the occurrence of three low-synchrony events.

The most recent of these occurs in the late 1950s and 1960s and

is associated with a period of relatively low variability between the

large 1941 and 1983 El Ni~no events. Comparisons with North Paci-

fic climate variability is complicated by poor agreement among

existing reconstructions (Kipfmueller, Larson, & St George, 2012).

However, the relatively asynchronous period of the 1760s in the

blue oak record coincides with a period of quiescence in several

ENSO reconstructions that span marine and terrestrial archives

across both hemispheres and provide at least some corroborating

evidence that this was a time of low tropical variability (Braganza,

Gergis, Power, Risbey, & Fowler, 2009; Wilson et al., 2010). Yet

the record with the greatest similarity appears to be a reconstruc-

tion of the North Atlantic Jet (NAJ) positioning derived from Euro-

pean tree-ring chronologies (Trouet, Babst, & Meko, 2018). All

three periods of low synchrony in the blue oak record correspond

to periods of low interannual NAJ variability. Further mirroring pat-

terns in blue oak synchrony, NAJ variability is conspicuously ele-

vated during the 1790s and also sharply increases late in the

record, beginning around 1960 (Trouet et al., 2018). This suggests

that general patterns of midlatitude variability may be coherent

across broad spatial domains.

4.4 | Broader implications

The effects of climate variability on biological synchrony are widely

documented. For example, growth synchrony is a central principle of

modern dendrochronology that not only enables the exact dating of

growth-increment time series, but also illustrates the pervasive influ-

ence of climate among individuals, habitats, and species from high-

elevation forests to marine fish, corals, and bivalves (Black et al.,

2016; Douglass, 1941; Fritts, 1976). Beyond growth rate, climate

variability has also been linked to synchrony among population sizes

with examples from insects (Allstadt, Liebhold, Johnson, Davis, &

Haynes, 2015; Jepsen, Hagen, Karlsen, & Ims, 2009; Mclaughlin

et al., 2002; Ojanen, Nieminen, Meyke, Poyry, & Hanski, 2013;

Sheppard, Bell, Harrington, & Reuman, 2016) to vertebrates (Hansen

et al., 2013; Post & Forchhammer, 2002). The synchronizing effects

of climate on biology are particularly apparent following climate

regime shifts, such as occurred in the North Pacific in 1977 or on an

even broader global scale in the 1980s, with the potential to pro-

foundly reorganize ecosystem structure and functioning across a

range of trophic levels and spatial scales (Anderson & Piatt, 1999;

Defriez, Sheppard, Reid, & Reuman, 2016; Mantua & Hare, 2002;

Reid et al., 2016).

Less common are studies that document directional trends in

biological synchrony. Beyond those examples specific to this study

region (Kilduff et al., 2015; Mclaughlin et al., 2002), the spatial

synchrony in North American wintering bird species has increased

as a consequence of rising synchrony in maximum air tempera-

tures (Koenig & Liebhold, 2016). In Eurasia, tree-ring records indi-

cate that forests in central Siberia have become more

synchronous with those in Spain via the effects of long-term

warming on growing-season length in the north and drought

intensity in the south (Shestakova et al., 2016). Thus, over these

broad scales, physical and biological synchrony have been

enhanced by rising temperatures. Furthermore, rising temperatures

have also enhanced the synchrony of snowpack as well as the

occurrence of wildland fire across western North America (Kitzber-

ger, Brown, Heyerdahl, Swetnam, & Veblen, 2007; Pederson,

Betancourt, & Mccabe, 2013). As for the winter climate pattern

described in the present study, there is no evidence that regional

temperature is a factor in synchrony trends. Instead, synchrony

trends appear to be driven by variability in the North Pacific High

and its effects on precipitation and meridional winds. This is con-

sistent with Ganguli and Ganguly (2016) who found that drought,

as defined only by precipitation and not temperature, had over

the past century increased in spatial coverage across the south-

western region of the United States.

Ultimately, the bottom-up forcing by the NPH illustrates that

rising synchrony can be far-reaching and pervasive, simultaneously

impacting marine, terrestrial, and freshwater systems. Thus, not

only is this an issue within but also among ecosystems, and species

that utilize more than one of these habitats to complete their life

cycle may be particularly vulnerable. One notable example is Pacific

salmon, for which increasing temporal and spatial synchrony may

lead to decreased population production and viability (Schindler

et al., 2010, 2015). Given the limited length of observational bio-

logical records and even instrumental records, high-resolution prox-

ies will be key to establishing preindustrial, baseline ranges of

synchrony as well as assessing the extent to which resilience, the

stability of ecosystem processes, and diversity of biological

responses to climate are reduced. Considering their possibly wide-

spread prevalence and biological relevance, such trends in variance

and synchrony should be more broadly quantified and prominently

addressed in the mitigation and management of climate change

impacts.
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