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Abstract—This paper describes three metrics used to asses the
filter diversity learned by convolutional neural networks during
supervised classification. As our testbed we use four different
data sets, including two subsets of ImageNet and two planktonic
data sets collected by scientific instruments. We investigate the
correlation between our devised metrics and accuracy, using
normalization and regularization to alter filter diversity. We
propose that these metrics could be used to improve training
CNNs. Three potential applications are determining the best
preprocessing method for non-standard data sets, diagnosing
training efficacy, and predicting performance in cases where
validation data is expensive or impossible to collect.

Index Terms—Convolutional Neural Network, regularization,
normalization, preprocessing.

I. INTRODUCTION

Convolutional neural networks have been demonstrated to
achieve excellent results on a wide variety of supervised learn-
ing tasks. Our goal is to develop useful metrics to understand
and enhance results with these networks. In particular, we
are seeking to improve performance on planktonic images,
which are subjectively more ’subtle’ than full-color, ImageNet
style images. We use four different, balanced data sets to help
explore the generality of the metrics that we developed. The
data from ImageNet is well documented and frequently used
in CNN research; whereas the other two planktonic data sets
represent more specialized images.

Our metrics measure the diversity in the weights of a
network’s first convolutional layer. Since the filters evolve to
minimize training loss, we are unable to directly manipulate
the variance of filters, we use normalization and L2 regulariza-
tion as stimuli since they impact the filter diversity indirectly.
Our metrics may be useful for a variety of purposes, including
diagnosing network performance, identifying over-fitting, and
potentially improving weight initialization for large networks.

II. EXPERIMENTAL DESIGN

A. Data Set Description

We constructed four parallel data sets four our investigation.
Each constructed dataset contains twenty-one classes of 1,000
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images. We re-sized all images, using center-padding and
scaling, to 224x224 pixels with three color channels. Nearly
every class in the parent data sets so the 1,000 were selected
randomly, as long as they were also larger than 224x224.

For each dataset we created twenty target classes plus one
“other” class that contained samples of a variety of other
logical classes that occurred infrequently. Our zooplankton
parent datasets include this construct, but the ILSVRC dataset
does not, so a similar class was artificially generated for the
ILSVRC (All) and ILSVRC (Dog) sets to be consistent.

1) ImageNet (All): The second dataset comes from the Ima-
geNet Large Scale Visual Recognition Competition (ILSVRC)
2015 data set [1] for the object localization challenge. Specif-
ically, from the 1,000 classes (called synsets) used in the
challenge, twenty classes were randomly selected. For the
“other” class, an uneven distribution of fifty other synsets
was used to simulate an approximate equivalent of the other
category found in the plankton dataset.

2) ImageNet (Dogs): The third dataset comes from the
same ILSVRC dataset and is comprised of twenty hand-picked
synsets that are closely related. The intent is to construct a
data set that mirrors the consistent visual similarity between
classes that is present in the plankton data sets. In this case,
all of the classes used were dog breeds. For this dataset, the
“other” class contained uneven distribution of fifty other dog
synsets.

3) Zooplankton: Our zooplankton images are acquired by a
technology called Zooscan[2]. In essence, this is a extremely
fine-tuned monochromatic flatbed scanner which is used on
preserved samples. Example ZooScan images are shown in
(Fig. 1).

Fig. 1. Example ZooScan images: a copepod, jelly, pteropod, and
siphonophore, all preserved and in unnatural postures and various states of
completeness.

As shown, the background of these images is white. Prior



to any normalization, the images in the plankton data set were
centered by calculating the pixel value center of mass and
shifting each sample to place this in the center of the image.
This improved plankton validation and testing accuracy across
all normalization techniques.

4) Phytoplankton: Our phytoplankton images are acquired
by a technology called an Imaging FlowCytobot[3]. This
technology images live cells <10 micrometers through use of
a focused laser. Phytoplankton images are selected from [4],
in a manner consistent with 20 of the major classes identified
in [3]. As shown, the background of these images is noisier
than the zooplankton images which results in the introduction
of an artificial edge, not present in the Zooplankton data set,
between the original background and the center-padding.

Fig. 2. Example FlowCytobot images: three diatoms (Guinardia Striata,
Ditylum and Asterionellopsis, and Flagellate Phaeocystis, imaged alive and
fully in tact.

B. Architecture

The original network architecture was based on the VGG-11
network architecture described in [5]. However, initial trials
and investigation revealed that this architecture vastly over-
fit to the training data. This was observed through analysis
of validation loss curves, visualization of under-utilized input
filters, and empirical testing of smaller network sizes. The final
network selected has similar accuracy to the larger network on
the datasets, while containing substantially fewer layers and
parameters.

The final network architecture selected is as follows:
Input (224x224 RGB image) → Conv3-16 → MaxPool2

→ Conv3-32 → MaxPool4 → Conv3-64 → MaxPool-4 →
FC-1024 → FC-21 → Softmax.

All convolutional layers listed as “Conv〈receptive field
size〉-〈number of channels〉” use a stride and padding of one.
All fully-connected layers listed as “FC-〈number of nodes〉”
use .50 dropout rate (except for the final fully-connected
layer). Max pooling layers are listed as “MaxPool-〈pool size〉”.

During our investigation several training batch sizes were
compared. Initially a batch size of 50 was used with the larger
network architecture. Lower batch sizes could only be used at
the expense of additional training time. After reducing the size
of the network substantially, it was found that the batch size
could be reduced, yielding improved training accuracy with a
negligible increase in training time.

We believe our implementation, although it uses a smaller
amount of data and a smaller network than ImageNet provides
a roughly equivalent testbed since our implementation pro-
vides similar accuracy to support vector machines as reported

TABLE I
ACCURACY PER NORMALIZATION TECHNIQUE

(AVERAGED ACROSS ALL TRIALS)

Dataset Per Image Per Pixel ZCA
ImageNet(All) 56.85 63.21 58.26
ImageNet(Dogs) 30.44 36.11 32.53
Zooplankton 71.06 69.18 65.68
Phytoplankton 79.25 79.70 73.93

for both the zooplankton [6] and phytoplankton data [3]. Using
less images facilitates more trials.

III. NORMALIZATION INVESTIGATION

Pixel values need to be normalized before used as input to a
Convolutional Neural Network. For images where each pixel
value is considered to be a feature and not independent from
its neighbors, there are many strategies to normalize the input.
One option is to normalize all the values within a particular
image, this per image normalization is frequently referred to
as “Global Contrast Normalization”. Another strategy is to
normalize each pixel location across the whole stack of images
separately, this per pixel normalization is frequently referred to
as “Standardization”. Another option is to decorrelate features
and normalize their variance, whitening and Zero-phase Com-
ponent Analysis, which is frequently called “ZCA whitening”.
ZCA whitening is commonly used for images. A fourth option
is to normalize pixel values across patches of a single input,
rather than the whole set of features, and this is referred to
as “Local Contrast Normalization”[7]. We implemented all of
these, and we found that per image normalization and per pixel
normalization worked the best on our data.

A. Normalization Results

Normalization was applied by first separating the data into
a training (80%) and testing (20%) set. Five of these splits
were generated for each of the datasets. Once separated, the
normalization parameters were fit on the training portion of
the split, then applied to the entire split. We applied each
of our normalization techniques separately to the three color
channels.

Loss = Etrain(W ) + λW 2 (1)

We used L2 regularization which applies a weight λ to
the squared values of the network’s weights W and adds it
the training error Etrain to compute the loss value that is
used to update the network. For each L2 regularization weight
examined five trials were conducted (each using a unique split)
for each dataset and normalization pair. As shown in Table I,
per pixel normalization worked best for the color images, and
per image normalization worked best for zooplankton, with the
phytoplankton exhibiting no significant difference between the
three types of normalization.

Note that the phytoplankton images, with a moderately
noisy background, show very little difference per normaliza-
tion method, and therefore our dataset may not be diverse



enough or have a sufficient quantity of training images for the
normalization strategy to matter.

To investigate further why zooplankton normalization was
different, we examined a confusion matrix of the results of the
zooplankton data to ascertain why per image normalization
worked better than per pixel normalization. Our data shown
use a particular split (so the images are exactly the same for
each normalization strategy). The results are shown in (Fig.
3).

Fig. 3. Histogram illustrating the difference in distribution of filter diversity
between normalization techniques.

The three zooplankton classes which improve the most
with per image normalization are polychaetes, nauplii, and
pteropoda; three classes which have delicate, feathery ap-
pendages as their most distinguishing feature between them

and their closest neighbor in shape (chaetognath, copepods,
and eggs respectively). This property intuitively suggests that
a more ’subtle’ normalization technique would yield greater
accuracy, such as per image normalization. This intuition is
supported by the results presented in the confusion matrices.
For the purpose of more quantitatively determining the best
normalization technique (besides simply examining accuracy)
we introduce metrics to quantify filter diversity.

IV. FILTER VARIANCE

For the rest of this paper, we will refer to the sets of weights
from the first layer of the network as filters. These filters serve
as the lowest level detectors, and they often evolve to respond
highly to changes in intensity, such as edges.

Fig. 4. Normalized Examples of top performing Zooplankton filters; per
image normalization on the left, per pixel on the right.

Fig. 5. Normalized Examples of top performing ImageNet (All) filters (red
channel only); per image normalization on the left, per pixel normalization
on the right.

The pairs of filters presented in (Fig. 4) and (Fig. 5) are
similar because they are trained on the same split and ordering
of the images. The values were transferred to the 0−255 range
for visualization for each image separately, so generalizations
about intensities between images are invalid, however, they
illustrate not only the nature of the filters, but also the relative
difference between corresponding pairs of filters in the per
image vs per pixel normalization strategies.

First we consider the variance within the weights of an
individual filter. We hypothesize that this will correlate to
how sharply adjacent features vary within a particular image.
Second we consider the variance within the weights of a
particular set of filters built by a single model. We hypothesize



that this will correlate to how much feature values vary
within all regions of all images in a particular dataset. Third
we consider the variance between individual filters within a
model. We hypothesize that this will also correspond to the
variety of the values of features within a particular data set.

All filters are generated for an individual channel. The
ImageNet images are standard RGB images, and the plank-
tonic data sets are single-channel due to their acquisition
mechanisms, so in order to use the same number of parameters
per network, we copy their input across all three channels
so all networks are operating on 3-channel 224x224 images.
While each channel in the ImageNet is marginally different
from the other two, overall the pattern of our results holds
and for simplicity we present all ImageNet results as the
average across all three color channels rather than R, G, and
B separately.

A. Variance within Individual Filters
First, we consider the variance within individual filters. Each

of our filters has 9 weights (3x3) and we use the standard
deviation of these 9 values as a measure of the variance
within the filter. Since we have 16 filters learned per model
trained, we take a simple arithmetic mean of these values to
provide a single number reflecting the variance learned by that
particular model, σF , which is shown in (Eq. 2)1, where xi
is an individual weight for filter f .

σF =
1

16

16∑
f=0

√√√√1

8

9∑
i=1

(xf,i − x)2 (2)

Our results are shown in (Fig. 6).

Fig. 6. The regression lines indicate a positive correlation between accuracy
and σF across all datasets.

Each datum in (Fig. 6) corresponds to a single model trained
as described in our Normalization Experimentation section.

1Given our small sample, we use Bessel’s correction when calculating our
standard deviation

Also shown are regression lines for each set of data points.
Correlation results are in (Table II), and the last column,
Combined PCC, refers to the regression lines in (Fig. 6).

TABLE II
PEARSON CORRELATION COEFFICIENT OF ACCURACY VS σF FOR EACH

NORMALIZATION

Dataset Per Image PCC Per Pixel PCC Combined PCC
ImageNet(All) 0.717 0.581 0.844
ImageNet(Dogs) 0.512 0.742 0.700
Zooplankton 0.809 0.874 0.824
Phytoplankton 0.669 0.687 0.491

Given that some of the trials had different data splits, and
the noise present in the learning process, we do not expect
a strict tolerance in the results, so we interpret values above
0.8 to indicate a very strong correlation, and values above
0.6 to indicate a strong correlation between accuracy and
σF . Table II also shows that the correlation holds whether
considering across both normalizations, as pictured in (Fig. 6)
or considering the effects of a single normalization strategy.

If there is a causal relationship between σF and accuracy,
then to maximize accuracy, we should try to intentionally
increase σF .

The data points in (Fig. 6) are on a fixed size network for a
particular data set. Many network hyperparameters were held
constant, including the initialization of the weights. The only
three things creating variation are the type of normalization,
the amount of regularization, and the split of the data.

The effect of regularization on σF is straightforward. The
filters are the solution to an optimization problem of re-
sponding most strongly to the image patches that are most
diagnostic of discriminating between classes. An individual
filter having a higher σF means that its individual weights
are more spread out. Since regularization is designed to reduce
the magnitude of the weights, any filter weights with a high
standard deviation must be very rewarding to avoid being
regularized. This relationship is evident in (Fig. 7).

Individual data points represent separate trials with the same
parameters on different splits of the data, and the lines drawn
connect the average values of each data set. The bimodal distri-
bution is due to the two different types of normalization. As the
regularization increases, σF decreases. Since there is a high
correlation between accuracy and σF , the same relationship
exists between accuracy vs. regularization as shown in (Fig.
8).

Again, the trials are the individual data points and the lines
connect the averages. The lines of (Fig. 8) appear to be more
flat than the lines in (Fig. 7), but this is because of the scale
of the y-axis. But both graphs peak in similar places, as we
would expect with them being highly correlated. The shape
of this graph is well known, and why the optimal amount
of regularization is sought via a search. But our investigation
provides insight into the mechanism for this behavior.



Fig. 7. The relationship between σF and regularization across all trials for
all datasets.

Fig. 8. The relationship between accuracy and regularization across trials for
all datasets.

B. Variance Between Filters

As another metric we quantify the distribution of the feature
values within a particular image on the weights by calculating
the model’s global filter standard deviation, specifically the
standard deviation of all 144 weights in the first layer of the
matrix as shown in (Equation 3).

σ∀F =

√√√√ 1

143

16∑
f=0

9∑
i=1

(xf,i − x)2 (3)

We also want to investigate the variance between filters
within an individual model. Since the 3x3 weights comprising
our filters in our convolutional neural network are always
applied in the same orientation, simple matrix subtraction is
appropriate, and will function similar to a Hamming Distance,

roughly describing how far apart the two filters are. We
calculate this distance in (Equation 4).

∆F =

∑16
f=0

∑16
g=f

∑9
i=1 |xf,i − xg,i|

16P2
(4)

We then calculate these metrics for our data, as shown in
(Fig. 9).

Fig. 9. Bar graph demonstrating increased diversity when using per pixel
normalization.

(Fig 9) shows all three metrics, σF , σ∀F , and ∆F averaged
across all trials, including all regularization strengths. In 11 out
of 12 cases, per pixel normalization yields higher values for
filter diversity than per image normalization. And this is not
just an artifact of considering each image set individually, but
also occurs when considering the trials in aggregate as shown
in the histogram (Fig 10).

Given the diversity of our image types, we feel this would
hold for any types of images. The second pattern is that for
both σ∀F and ∆F , the values are larger for the two ImageNet
data sets than for the two planktonic data sets. This supports
an intuition that the two planktonic data sets are more ‘subtle’
than the ImageNet data sets. This explains why they their
better overall higher accuracy, they have lower filter diversity
in two metrics.



Fig. 10. Histogram illustrating the difference in distribution of filter diversity
between normalization techniques.

In summary, regularization strength is known to be a hyper-
paramter. In (Fig. 8), we see that for each of our data sets, the
maximum accuracy occurs when the regularization strengths is
around 0.001. (Fig. 7), the relationship between regularization
and σF shows that the inflection point for σF is at nearly the
same regularization strength around 0.001 for our 4 data sets.
It is our hypothesis that this correlation could be used as a
gauge for network training: rather than using a holdout set to
assess accuracy, the σF of the filters can be examined, and
hyperparameter optimization can stop when σF has achieved
a local maxium.

If our metric could help reduce the size of the valida-
tion/holdout set, then those images could be used for training
instead. There is a class of supervised classification problems,
particularly in the scientific domain (such as medical imaging),
for which many thousands or millions of training examples
would be difficult or impossible to obtain. While strategies
such as leave-one-out cross validation attempt to overcome
this lack of data, they require as many models to be computed
as folds of the data. This potentially makes grid search and
other operations prohibitively expensive. Instead, we propose
that filter diversity could potentially be used to assess the best
performing model. More investigation on larger and diverse
data sets would be required to fully verify this claim.

V. IMPLICATIONS OF FILTER VARIANCE ON
CLASSIFICATION ACCURACY

As shown in (Table I), normalization strategy has a clear im-
pact on accuracy. We found that one method of normalization
generally outperformed the other regardless of regularization
strength and other experiments not included for succinctness,
such as network size. The superficial conclusion is therefore
that one type of data is better suited to a particular normaliza-
tion strategy than another. Our investigation sheds light on why
this is the case. Figure 9 isolates the effect of normalization
on all three of our metrics.

In every case where per pixel normalization results in higher
σF than per image normalization, per pixel normalization also
results in the highest accuracy. Agreeably, zooplankton is the
one data set for which per image normalization had higher σF

than per pixel normalization, and it correspondingly achieves
better accuracy using per image normalization. Therefore, σF

is correlated with accuracy across a variety of conditions.
We also propose that knowledge of this metric could be used

to assist in training large networks. Our network, along with
many others, uses uniform He initialization[8]. This initializa-
tion strategy, along with many others, is designed to speed the
convergence of the network. We propose a modified strategy
that generates a number of different candidate initializations,
calculates the σF for each one, and selects the one with the
highest σF as the best candidate. This one-time calculation
would trivially add to the network run time. As our network
was relatively shallow, and our convergence times fast, we did
not assess this with our data.

VI. CONCLUSION

In this paper, we described three metrics used to asses the
filter diversity: σF , σ∀F , and ∆F . These metrics are intended
to measure the diversity within a single filter, as well as across
all filters. For all four of our data sets, we found a strong
correlation between our devised metrics and accuracy. We feel
that these metrics could potentially be used in a variety of
ways to improve training models as well as determining the
best model for deployment. This include identifying the best
preprocessing method for non-standard data sets, potentially
improving convergence time, and predicting performance in
cases where validation data is valuable because it is expensive
or impossible to collect.
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