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ABSTRACT OF THE DISSERTATION

Sensitivity analysis, ocean state estimation and diagnostics in the California
Current

by

Hajoon Song

Doctor of Philosophy in Oceanography

University of California, San Diego, 2011

Author Miller, Chair
Bruce Cornuelle, Co-Chair

The effects of sharply different wind forcing patterns on the upwelling system

and upwelling source waters over the California Current System (CCS) are investigated

using adjoint-based sensitivity analyses in the Regional Ocean Modeling System

(ROMS). The wind stress curl field appears to control the locations of the equatorward

flow and cross-shore gradient of isopycnal. A deeper upwelling cell and more remote

source waters for the upwelling are found when the wind stress curl field changes

sharply cross-shore. In contrast, a gradual change of wind stress curl causes a shallower

upwelling and local source waters for the upwelling.

Data assimilation (DA) combines numerical models and data to determine the

xv



best possible estimate of the state of a dynamic system. Data-assimilated ocean states

are prepared using the ROMS four-dimensional variational data assimilation (4D-VAR)

system with satellite and in situ data during four separate upwelling seasons. They are

used for the diagnosis of observed phenomena such as an abrupt change in the Pacific

sardine egg distributions. The ROMS 4D-VAR system adjusts the initial conditions

and surface forcing for one-month time periods and successfully reduced the statistical

differences from the observations. Analysis using optimally estimated ocean states

shows stronger offshore transport during the April 2002 La Niña conditions than during

the weak 2003 El Niño. This partially causes the extension of preferred spawning habitat

for the Pacific sardine but distributes eggs over a broad area, resulting in the lower

sampled egg concentration. The adjoint model runs with passive tracer reveal that the

nutrient richness of the source waters also contributes to the sardine egg distributions.

This dissertation also suggests two new data assimilation approaches to improve

the ensemble representativeness of the true states in the ensemble Kalman filter (EnKF).

These two approaches, an adaptive EnKF (AEnKF) and a four-dimensional AEnKF

(4D-AEnKF), estimate the ensemble statistics better by including new members in the

ensemble. The AEnKF creates new members at the current analysis time step, and the

4D-AEnKF creates new members in the past analysis time step, with the aid of the

adjoint model to enrich the ensemble. The numerical experiments show that these two

new methods improve the filter’s performance significantly.
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Chapter 1

Introduction

1



2

One of the most studied problems in geophysics is sensitivity analysis.

Sensitivity analysis investigates the response of a geophysical system with respect to

perturbations made to background conditions or to dynamical / physical processes.

For relatively simple systems, quantifying the sensitivity can be achieved without the

aid of numerical models. In most cases, however, numerical models are necessary

to address the sensitivity because the dimension in realistic configurations of the

earth system can easily reach more than 108 or 109. Since the development of the

general circulation model, sensitivity analysis using numerical models has been actively

investigated in atmospheric and oceanic sciences with a wide range of topical interests

(Manabe, 1969; Washington and Meehl, 1984; Bryan, 1987). Sensitivity analysis also

reveals future likelihood under global climate change scenarios as discussed in a recent

Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (Hegerl

et al., 2007).

Sensitivity analysis can be largely categorized into two types. The first

sensitivity analysis evaluates the system responses to a certain perturbation using

numerical modeling systems. In other words, when the desired perturbation is added

to the background states, forward integrations of numerical models reveal the changes

of the system due to the perturbation. The result of this type of sensitivity analysis is

a fraction whose denominator is fixed and whose numerator can have any value. Thus,

this is useful to evaluate the effects of a fixed perturbation on the system over time. This

sensitivity analysis is logically straightforward (forward integration) and is not restricted

by time span.

This first type of sensitivity analysis is, however, computationally inefficient

when the influences of all control variables on a given quantity are required. In

other words, when the required sensitivity is a fraction whose numerator is fixed and

denominator can be any control variable in the past, a new type of sensitivity analysis is

necessary. The second type is an adjoint-based sensitivity analysis. The adjoint model,

which integrates the gradient backward in time and computes the sensitivity of a quantity

with respect to control variables, is easily derived from the tangent linear model, which

is a first-order linear approximation of a nonlinear model. One integration of the adjoint

model is enough to investigate the effects of all control variables in the past to the chosen



3

quantity at the present time.

Adjoint-based sensitivity analysis has an innate limitation coming from the

linear approximation. If a process develops in a linear manner, the adjoint-based

sensitivity analysis is correct for infinite time. Otherwise, the length of the adjoint model

integration for the sensitivity is restricted by the point when the linear approximation is

valid. Typically, it is about 3 days in atmospheric disciplines when only dry dynamics

are considered in synoptic scale variability (Errico, 1997). In oceanic disciplines, the

length of the period when the linear approximation is valid is about 14 days only if

mesoscale and larger features are considered (Powell et al., 2008; Veneziani et al.,

2009b).

Chapter 2, which explores the effect of the wind stress curl on upwelling and its

source waters during the upwelling season over the California Current System (CCS),

discusses these two types of sensitivity analysis. The changes in the wind stress curl

field are the perturbation in the sensitivity analysis, and a set of numerical model

simulations reveals the differences in the ocean responses. Then the perturbation is

made to the concentration of the passive tracer at key areas for upwelling at the end of

upwelling season, and the adjoint model computes the sensitivity of the perturbation of

the passive tracer concentration to other control variables. In this case, only the previous

passive tracer concentration affects the final passive tracer concentration without sources

or sinks. Hence, the adjoint model result is interpreted as the source waters. The

processes involved in controlling the passive tracer concentration are linear advection

and diffusion. Thus, the length of the integration of the adjoint model for sensitivity is

not restricted, and 4-month-long adjoint-based sensitivity tests are performed.

An adjoint model serves as an essential tool to solve many other problems such

as optimization problems. Four-dimensional variational data assimilation (4D-VAR), as

one of the least squares optimization problems, seeks the model trajectory that best fits

the observed states (Derber, 1985; Lewis and Derber, 1985; Le Dimet and Talagrand,

1986; Thacker, 1989). Solving these 4D-VAR problems involves a matrix inverse

computation. If the system has relatively small dimension, the optimal solution can

be calculated by directly computing the inverse of the matrix. In realistic atmospheric

and oceanic simulations, however, computing the inverse of the matrix with a huge
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dimension is prohibited with the current computational power. In this case, the adjoint

model in the 4D-VAR system determines the smallest perturbation in the control vector

that can minimize the sum of least square errors between the model and observations.

In the context of 4D-VAR, chapter 3 addresses 4D-VAR in the Regional Ocean

Modeling System (ROMS), and gives examples of estimating ocean states for April

2002, 2003, 2006 and 2007 over the CCS. Chapter 4 explores the application of ocean

data assimilation to diagnosing the observed abrupt changes in Pacific sardine egg

distributions between April 2002 and 2003.

In addition to variational methods, sequential data assimilation methods are also

actively studied and applied for state estimations (Carton and Giese, 2008). Sequential

data assimilation methods, based on stochastic estimation theory, adjust the model states

whenever the observations are available using the statistical information in the model

and observations (Todling, 1999). The Kalman filter provides the optimal estimation of

the states and errors in a linear system (Kalman, 1960). This filter, however, cannot be

applied directly to the realistic atmosphere or ocean data assimilation problems, because

they behave in a nonlinear manner, and their dimensions are huge. The ensemble

Kalman filter (EnKF), proposed by Evensen (1994), has a set of ensemble members

and integrates them with the full nonlinear model. Then, the mean and the covariance of

the ensembles represent the state estimation and the error statistics in the system. Thus,

the ensemble Kalman filter can resolve the issues that the Kalman filter faces, which

are related to nonlinearity and computational burden, when it is applied to realistic

geophysical data assimilation.

Ideally, analysis from the EnKF is accurate if the ensemble size is infinite

(Evensen, 2003). However, the limitation in the ensemble size is inevitable, and

accounting for model error is still a challenging problem in the EnKF, which may

degrade the filter’s performance. In particular, the ensemble omits the information from

observations when the small size of ensemble underestimates the errors in the system. In

order to improve these limitations of the EnKF, we introduce a new method of sequential

data assimilation in chapter 5. In this adaptive ensemble Kalman filter (AEnKF), a new

member is created at every analysis time step to enrich the ensemble’s representation

of the system. This new member carries the omitted information from observations due
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to the misrepresentation of the error covariance, and it significantly improves the EnKF

performance.

Although the AEnKF can improve the EnKF significantly, an estimated new

ensemble member may not be optimal, because a stationary error covariance is used to

estimate a time dependent new member whose error covariance is unknown. Thus, it

is possible that unnecessary features from the stationary error covariance are included

in the ensemble, and true features are still missing in the stationary error covariance.

In chapter 6, we suggest another new method in which the adjoint model is used to

include the model dynamics to reduce the effect of the stationary error covariance

and to improve the ensemble representation. In this adjoint-based AEnKF, an adjoint

model determines the best increments when creating a new member in the past. Then,

a nonlinear model integrates this new member to enrich the ensemble. Numerical

experiments using the Lorenz-96 model show that the adjoint-based AEnKF remarkably

improves the AEnKF’s performance.

In summary, these six chapters explore the application of adjoint models in

severa; sensitivity and state estimation problems for both the real ocean and idealized

systems.



Chapter 2

Changes in upwelling and its water

sources in the California Current

System driven by different wind forcing

6
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Abstract

In the California Current System (CCS), upwelling is one of the most important

features that enrich the coastal ecosystem. It is highly dependent on both wind stress

and wind stress curl, because they contribute to the upwelling system through Ekman

transport away from the coast and Ekman pumping as a result of the surface divergence,

respectively. Various wind stress products are known to contain sharply different

patterns of wind stress, and well-resolved wind forcing products have been shown

to drive stronger upwelling due to their better-resolved wind stress curl in previous

studies. However, sensitivities of upwelling to changes in wind stress patterns, and

each of their control to the source waters and paths of the upwelling cells, are not

yet well known for the CCS. Here we study these effects using the Regional Ocean

Modeling System (ROMS) and its adjoint model under idealized wind stress forcing

patterns representing three widely-used products in addition to a constant wind stress

field (no curl): the NCEP/NCAR Reanalysis, the QuikSCAT satellite observations, and

the Regional Spectral Model (RSM) downscaling.

Changes in currents and isopycnal patterns during the upwelling season are first

studied in ROMS under the four different wind stress fields. The model simulations

show that the locations of the core of the equatorward flow and the gradient of the

cross-shore isopycnals are controlled by the wind stress curl field. The core of the

equatorward flow is found under negative wind stress curl, and a deeper upwelling cell

is found as the gradient from positive and negative wind stress curl increases. Source

waters for the upwelling in each of the four wind stress patterns are investigated using

the ROMS adjoint model. The simulations follow a passive tracer backward in time and

track the water sources for upwelling in two key areas of interest: inshore and offshore

of the Point Sur region of California. The upwelling source waters depend strongly on

the depth of the upwelling cell and the alongshore current location. We further relate

these results to recent studies of the observed trends in upwelling favorable winds and

consequent wind stress curl changes in the CCS.
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2.1 Introduction

One of the distinguishing characteristics of the California Current System (CCS)

is its wind-driven upwelling, which provides nutrient-rich water to the euphotic zone,

supporting a productive ecosystem. Two mechanisms are primarily responsible for this

wind driven upwelling. The first is Ekman transport. As the wind blows equatorward

alongshore with timescales greater than the Coriolis frequency, it pushes the surface

water offshore. As a result, cool, nutrient-rich subsurface water is lifted up to the surface

along the continental slope. It is often referred as coastal upwelling because it occurs

only in narrow regions near the coast. The second is Ekman pumping. With cyclonic

(positive) wind stress curl, divergence of the surface water brings the subsurface water

to the surface in order to conserve mass. This upwelling usually happens in broader

regions where the wind stress curl is positive, and offshore upwelling is associated with

this mechanism. (Chelton, 1982; McCreary et al., 1987).

Developing a better understanding of the intricacies of these mechanisms has

been of great interest to many scientists. Related research includes not only the classic

efforts to understand the upwelling physical processes (Sverdrup et al., 1942; Smith,

1968), but also many recent observational, seagoing and modeling studies. In particular,

the role of the wind stress curl in eastern-boundary upwelling processes has drawn

increased attention.

Pickett and Paduan (2003) used the 9km resolution wind reanalysis data from the

Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS R©) to estimate

the vertical transport by Ekman pumping and Ekman transport at four different locations

along the California coast. They showed that both Ekman pumping and Ekman

transport are important for upwelling in the CCS. Chelton (1982) argued that the

high concentrations of chlorophyll near the coast can be linked to coastal upwelling,

while the maximum of zooplankton biomass at offshore locations during spring-summer

is indirectly related to the offshore upwelling by Ekman pumping. Rykaczewski

and Checkley (2008) found an increasing trend of curl-driven upwelling in their

analysis, while the coastal upwelling remained nearly constant. Also, they noted a

positive correlation between wind stress curl and biological water properties such as

chlorophyll-a concentration, nutricline depth and isopycnal shoaling as well as sardine
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productivity over the last few decades in the CCS.

Wind stress curl is computed from the wind stress field, so the accuracy of

the curl-driven upwelling estimate is dependent on accuracy of the wind stress field.

Winant and Dorman (1997) analyzed seasonal wind stress and wind stress curl over

the Southern California Bight based on data from the California Cooperative Oceanic

Fisheries Investigations (CalCOFI) program and from moored buoys. Using a 0.2◦ grid,

their estimated maximum wind stress curl during the spring is 3× 10−6Nm−3 which

is almost three times the estimate by Nelson (1977) in which a 1◦ grid was used. So

they suggested that wind forcing resolution should include scales of the order of tens of

kilometers in order for models to predict ocean states successfully. Capet et al. (2004)

tested an ocean model (Regional Ocean Modeling System (ROMS)) response to the

alongshore wind stress structure. The model had a secondary upwelling core roughly

15 to 30km offshore, which may indicate open-ocean Ekman pumping associated with

another 9km resolution COAMPS wind stress. This product has a big drop-off in stress

at the coast, resulting in strong changes in alongshore velocity. On the other hand, no

secondary upwelling core was observed in the model with NASA’s Quick Scatterometer

(QuikSCAT) forcing, whose wind stress values within ∼ 50km of the coast must be

filled with an objective analysis, resulting in a weak drop-off of wind stress near the

coast. The wind stress and the wind stress curl can significantly be affected by the

orography. Pickett and Paduan (2003) showed the major coastal promontories along

the California coast can intensify the wind stress and curl in their COAMPS with 9km

resolution. Doyle et al. (2009) showed that their 3km resolution COAMPS produced the

strongest orographic influences on the wind stress curl, compared to the 9km and 27km

meshes.

Although it was confirmed that curl-driven upwelling could vary depending on

the wind stress resolution, the details of how it changes the upwelling source waters

and the mechanisms that are responsible for bringing the upwelled water from depth are

still unclear. This lack of understanding is partially because strong mesoscale eddies

and frontal features, irregular coastlines, coastal orographic structures, and strongly

variable winds combine to produce an intricate circulation that can be best understood by

analyzing observations and model simulations together. The two upwelling mechanisms
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complicate the attribution of upwelling water sources. The coastal upwelling is

associated with the equatorward flow of cold water (Di Lorenzo, 2003), while the Ekman

pumping drives the poleward flow of warm water (McCreary et al., 1987). Combined

with the upwelling, it is not simple to quantify the contribution of water sources to the

upwelling zone with a conventional forward model.

Identifying the upwelling water sources is important because the characteristics

of upwelling water depend on where the water originates. Marchesiello et al. (2003)

identified the characteristics of the large-scale currents that comprise the California

current system. As shown in figure 2.1, low salinity, low temperature, high oxygen

and nutrient-rich Pacific subarctic water arrives from the north, high salinity, high

temperature, nutrient-poor, and low oxygen North Pacific Central water enters from

the west, and high salinity, high-temperature, low oxygen, nutrient-rich California

undercurrent comes from the south. Thus, the upwelled water could have the

characteristics of any of these three sources, or a combination of them.

Finding the upwelled water source is particularly important to understand several

biogeochemical processes that have drawn attention in recent years. Historically a

thin oxygen minimum zone has been found in water deeper than −400m in the CCS

(Helly and Levin, 2004). In recent years, however, the oxygen minimum zone has been

shallower and hypoxia, in which the dissolved oxygen (DO) is less than 1.4 ml l−1,

has been observed along the west coast of North America (Bograd et al., 2008). Even

anoxia has been reported on the inner shelf off the Oregon coast (Chan et al., 2008).

Hypoxic water is deadly to marine life, and the reasons for these phenomena are under

investigation, focused on changes in upwelling water source, wind forcing, as well as

other factors (Checkley and Barth, 2009).

Adjoint methods have been used to identify source waters in various parts of the

world ocean (Fukumori et al., 2004; Chhak and Di Lorenzo, 2007). In particular, Chhak

and Di Lorenzo (2007) used the ROMS adjoint model with passive tracers to show that

the upwelling cell depth for the cold phase of Pacific Decadal Oscillation is deeper than

that for warm phase of Pacific Decadal Oscillation. Following their methods to identify

the water sources, we investigate the changes of upwelling source waters under several

different wind stress fields in this study.
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The paper is organized as follows. First, the dependence of the wind stress curl

on the wind forcing resolution is discussed in section 2.2. Then section 2.3 describes the

details of the model setting for the simulation including the adjoint model with passive

tracers. Results of the forward model and the upwelling water source for the different

wind stress curl regimes are presented in section 2.4 and section 2.5, respectively,

followed by a general discussion to conclude in section 2.6.

2.2 Surface wind forcing

Many wind forcing products with various resolutions are available over the CCS

region. Among them, we choose three wind forcing products for comparison. Those are

the 2◦ resolution NCEP/NCAR Reanalysis (NNR) (Kalnay et al., 1996), 0.5◦ resolution

QuikSCAT mean wind fields over uniform grid points constructed by CERSAT, at

IFREMER, Plouzané (France) and a 10km resolution Regional Spectral Model (RSM)

wind product (Kanamitsu and Kanamaru, 2007) that is dynamically downscaled from

NNR.

Summertime mean wind stress and wind stress curl from the three wind forcing

products interpolated by bicubic splines to the 9km grid have different structure and

magnitude (Fig. 2.2). The direction of the wind stress is similar in all three wind forcing

products, generally toward the southeast along the coastline, but the low resolution wind

forcing product generally has weaker wind stress than the higher resolution wind forcing

product. In particular, the maximum of the wind stress in NNR is about half the value

in the other products.

Another obvious difference is the distance of the wind stress maximum from the

coast. The NNR has the maximum wind stress about 250km from Point Sur (red dot

in Fig. 2.2). As the resolution of the wind forcing product increases, the wind stress

maximum occurs closer to the coastline - about 80km from the coast in the QuikSCAT

and about 40km offshore in the RSM.

The location of the wind stress maximum anticipates the wind stress curl field.

The bottom panels in figure 2.2 show the regions with positive wind stress curl, which

occurs in the area between the coast and the location of the wind stress maximum.
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The NNR has a broad area of positive wind stress curl, but its magnitude is smaller

than the others. The QuikSCAT product has a smaller positive area than the NNR

with a similar magnitude of wind stress curl. However, the RSM has the strongest

wind stress curl, almost 10 times the maximum of the other two, concentrated near the

coastline. This maximum wind stress curl value is comparable to the value from the

CalCOFI observations (Winant and Dorman, 1997) and from 9km resolution COAMPS

(Capet et al., 2004). Since the positive wind stress curl drives the upwelling via Ekman

pumping, the magnitude of the upwelling will be different depending on which wind

forcing is used.

The wind forcing also controls the features of the CCS. In the South California

Bight, Di Lorenzo (2003) compared three ocean model runs forced by three different

wind forcing products - 2◦×2◦ resolution Comprehensive Ocean-Atmosphere Data Set

(COADS), 1◦× 1.5◦ resolution of NCEP Pacific Ocean Analysis data, and the 10km

resolution RSM reanalysis. He found that the model integration with downscaled RSM

reanalysis was able to best reproduce the nearshore recirculation shown in CalCOFI

observations.

These differences in wind stress and wind stress curl among three wind forcing

products are expected. Since the NNR has a resolution of 2◦, there are only two values

roughly every 200km, so all features in the wind forcing less than 400km, which is twice

the grid spacing, will not be resolved. The QuikSCAT product can represent features

larger than 100km, while the RSM can resolve features smaller than 100km.

In this study, we do not argue that the low resolution wind forcing is

inappropriate, but we examine the effect of the location of the wind stress maximum,

which determines the wind stress curl field. In particular, we try to answer these two

questions - How different is the upwelling as the wind stress maximum moves closer to

the coast, and what are the subsurface regions that supply the upwelling water sources?

In order to answer the first question, we use the forward model of the CCS under

idealized winds. In order to answer the second question, we use the adjoint model

of the CCS with a passive tracer.
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2.3 Model description

2.3.1 Model

The ocean model used for the experiments is the Regional Ocean Modeling

System (ROMS). It is a split-explicit, free-surface, hydrostatic model with

terrain-following vertical coordinate system, solving the primitive equations (Haidvogel

et al., 2000; Shcheptkin and McWilliams, 2004; Haidvogel et al., 2008). ROMS has

been used for many studies over various regions of the North Pacific Ocean, especially

the California Current System (Marchesiello et al., 2003; Di Lorenzo, 2003; Capet et al.,

2004; Di Lorenzo et al., 2005; Seo et al., 2007; Di Lorenzo et al., 2008; Veneziani et al.,

2009a; Broquet et al., 2009). Given the successful simulations of long-term variability

of this region, we follow Chhak and Di Lorenzo (2007)’s model configuration.

The model has a one-way nested domain shown in figure 2.3, covering central

and southern California coastal areas. The parent domain has 18-km resolution with

30 vertical levels, and its initial and boundary conditions come from the 1999-2004

monthly averaged Estimating the Circulation and Climate of the Ocean (ECCO) analysis

whose resolution is 1◦ (Stammer et al., 2002; Köhl et al., 2007). The ocean states are

integrated for 6 years, with the last 5 years considered in these experiments. This parent

grid simulation provides the initial and boundary conditions for the child domain with

a resolution of 9km and 30 vertical levels. The surface heat flux and fresh water flux

are prescribed from a climatology, with the surface heat flux modified to include a space

and time dependent Newtonian damping term that relaxes the model SST to the monthly

SST climatology from the National Oceanic and Atmospheric Administration (NOAA)

(Smith and Reynolds, 2004). The details are described in Chhak and Di Lorenzo (2007).

The surface wind forcing will be discussed in the following subsection.

2.3.2 Idealized wind forcing

In order to isolate the effect of the wind stress curl on the upwelling and its

water sources, we first idealize the surface wind forcing based on the features seen in

the realistic forcing discussed in section 2.2. We create four idealized wind stress fields

as shown in figure 2.4-(a, b, c, d). All four have the wind stress parallel to the coastline,
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with the wind stress at the coastline set to be the same for all of them. The first idealized

forcing called “Const” has uniform wind stress over the domain. During the upwelling

season (from April to July), the other three forcing fields have the alongshore wind stress

τa(x) in cross-shore direction defined as

τa(x) =


a1 if x <−2d
a2−a1

d x+(2a2−a1) if −2d ≤ x <−d

−a2−a3
d x+a3 if −d ≤ x < 0

a3 if x≥ 0

, (2.1)

where d is the distance from the coast to the wind stress maximum, a1 is the offshore

wind stress, a2 is the wind stress maximum and a3 is the wind stress at the coast.

The cross-shore wind stress τc is zero everywhere, and the wind stress is rotated by

31.5◦ to be approximately parallel to the coast line. Over the ocean (x < 0), the wind

stress maxima (a2) are set to be the same in all three forcing fields, but at different

distances from the coast. In these experiments, the parameters a1, a2 and a3 are set

to be 0.04 Nm−2, 0.1 Nm−2 and 0.02 Nm−2, respectively. The locations of the wind

stress maxima, d, are 350km, 100km and 50km offshore based on the NNR, QuikSCAT,

and RSM. The idealized products are labeled as simulated NNR or “sNNR”, simulated

QuikSCAT or “sQSCAT” and simulated RSM or “sRSM”, respectively. All of them

have an identical seasonal cycle in amplitude: the wind stress is reduced by a factor of

1/2 after the upwelling season, and becomes zero during the winter (from November to

January). Then the wind stress linearly increases to the upwelling season values during

the early spring.

Figure 2.4-(e, f, g, h) shows only the positive wind stress curl for the four

idealized wind forcing fields, so the white areas offshore have either negative or zero

wind stress curl. As expected, wind stress curl is zero in Const. The other wind stress

curl fields are determined by the location of the wind stress maximum. In the sNNR,

a broader area has positive wind stress curl, but the magnitude is the weakest among

the idealized wind forcing products. sQSCAT has stronger positive curl than sNNR, but

over a narrower area. The sRSM has the strongest positive wind stress curl, almost five

times stronger than sNNR, but the positive curl areas are the smallest and they are near

the coastline.
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Table 2.1: Estimated maximum Ekman pumping vertical velocity using the maximum

wind stress curl values in the three idealized wind forcing fields

sNNR sQSCAT sRSM
Max. wind stress curl, ∇× τ (µN/s3) 0.24 0.85 1.70

Max. Ekman pumping velocity
(µm/s) 2.82 9.91 19.84
(m/day) 0.24 0.86 1.73

Given the wind stress curl, we can estimate the Ekman pumping velocity (EPV)

(Gill, 1982) assuming that the divergence of water transported laterally by wind stress

should be balanced by vertical transport.

w =
1

ρs f
k · (∇× τ), (2.2)

where ρs is seawater density, f is the Coriolis parameter and k · (∇× τ) is the vertical

component of the wind stress curl. Table 2.1 shows the maximum of the positive wind

stress curl and its corresponding EPV for each idealized wind forcing. Shifting the

wind stress maximum close to the coastline increases the wind stress curl and EPV. The

largest EPV comes from the sRSM: 1.984× 10−5ms−1. For comparison, Winant and

Dorman (1997) estimated the maximum EPV over the Southern California Bight (SCB)

as 4×10−5ms−1 using CalCOFI observation.

2.3.3 Adjoint model with passive tracer

Although adjoint models are widely used in variational data assimilation

(Derber, 1985; Lewis and Derber, 1985; Le Dimet and Talagrand, 1986; Thacker, 1989),

they are also “powerful tools for many studies that require an estimate of sensitivity of

model output with respect to input” (Errico, 1997). The adjoint model integrates the

sensitivity of a quantity to perturbations backward in time, so the output is the sensitivity

of that quantity to all state variables at all timesteps (Moore et al., 2004). In other words,

the adjoint model simply yields the sum of all the Green’s function corresponding to the

quantity. It is worth noting that the sensitivity test using the adjoint model is valid only

if the linear approximation holds.
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We consider here the linear function J defined as the sum of scalar quantity Ji

over the time range (tn ≤ ti ≤ tN),

J =
N

∑
i=n

Ji =
N

∑
i=n

hT
i x(ti), (2.3)

where x(ti) is a vector with control variables that can include external forcing and open

boundary conditions, and hi is a vector that relates the state variables to the function Ji

at time ti. Under the linear approximation, a small perturbation δx to x can be integrated

by the tangent linear model M that is the first order approximation of that full nonlinear

model. Hence δx(ti) can be written as

δx(ti) = M(t0, ti)δx0 (2.4)

using a tangent linear model M(t0, ti) that integrates δx0 from t0 to ti. Then the

sensitivity of Ji to δx0 can be expressed using the adjoint model operator MT ,

∂Ji

∂x0
= MT (ti, t0)hi. (2.5)

Therefore, the total sensitivity is

∂J
∂x0

=
N

∑
i=n

MT (ti, t0)hi. (2.6)

It is computationally effective when only the sensitivities of J with respect to

all other control variables are needed, because this requires only a single integration

of the adjoint model. Since it is valid only if the assumption of linearity holds, a long

integration of the adjoint model can be prohibited by nonlinearity in the model, and a

linearity test is usually done prior to adjoint experiments.

If we consider J as a measure of perturbation of the concentration of passive

tracers, the results from the adjoint model can be interpreted as the source water. The

passive tracer without sources and sinks evolves in time following

∂C
∂ t

= −u ·∇C +∇ ·κ∇C, (2.7)

where C is the passive tracer concentration, u is the three-dimensional velocity with

components (u,v,w), and κ is the diffusion coefficient. Since the passive tracers
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only move via advection and diffusion in the absence of the sources and sinks, high

sensitivity means that changes in passive tracer concentration in the past are able to

induce perturbations of J. The adjoint model with passive tracers is valid for infinite

time because the passive tracers evolve linearly in time as in (2.7).

In these experiments, we define J as the passive tracer concentration (like

injecting the passive tracer in the adjoint model) in two different boxes over the shelf.

The first box (a) extends from 36 to 63km offshore and 63km in alongshore direction near

the Point Sur. The second box (b) extends from the coast to 36km offshore and 63km in

alongshore direction near the Point Sur. These boxes are marked in white with letters

‘a’ and ‘b’ respectively in figure 2.3. The onshore and offshore passive tracer are meant

to track the source waters of coastal upwelling and open ocean upwelling, respectively.

Passive tracer is injected at the top three levels which range from the surface down to

−10m depth and for 15 days at the end of the upwelling season (July) in order to average

over the effects of any specific eddies. Hence, the hi in (2.3) is a vector with 0 elements

except for the elements corresponding to the passive tracer within the areas ‘a’ or ‘b’

whose values are 1, and J = ∑
N
i=(N−n) Ji, where N corresponds to the end of July and

n is 15 days, is the sum of all passive tracer concentration in the target region. Hence,

J is the 15 day integral of tracer concentration over the two target regions ‘a’ and ‘b’.

The adjoint model is integrated backward in time for 4 months during the upwelling

season from July to April. This 4-month adjoint experiment with adjoint forcing during

the last 15 days of July is repeated for each of the 5 years, and the sensitivity results are

averaged over all cases.

2.4 Upwelling in the forward model

2.4.1 Sea surface

During the upwelling season, the four months from April-July, we force the

ocean with the idealized steady wind stress shown in figure 2.4, and the resulting mean

sea surface height (SSH), surface current and sea surface temperature (SST) are shown

in figure 2.5.

The SSH and the surface current in figure 2.5-(a, b, c, d) show two main features.
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First, offshore transports are observed over much of the domain in all cases as a result

of Ekman transport. Second, the equatorward currents are present in all cases although

their spatial distribution differs. Without wind stress curl (Fig. 2.5-(a)), the core of the

equatorward current can be found near the coast. As the wind stress curl field changes,

the location of the core of the equatorward flow also changes, and moves closer to the

coast as the wind stress maximum approaches the coast. The positive and negative wind

stress curl leads to divergence and convergence of the surface water, respectively. As

a result, SSH under the positive (negative) wind stress curl is lower (higher) than the

SSH field with no wind stress curl in figure 2.5-(a). This modifies a cross-shore SSH

gradient, resulting changes in location of an equatorward geostrophic current. Hence,

the location of the core of the equatorward flow depends on the wind stress curl fields.

SST looks very similar in all cases. This is because the climatological surface

heat flux is modified to force the model to follow the monthly NOAA SST. Although

the contours of the isotherms appear to be affected by the surface current, the effect of

wind forcing on the upwelling is obscured by the SST nudging. In a separate simulation

without the nudging term in the heat flux calculation, the SST fields show that the coastal

upwelling by the Ekman transport occurs only in a narrow region near the coast, with

stronger upwelling occurring as the wind stress maximum approaches the coast (not

shown). However, since the specified (non-interactive) surface heat flux can induce

a modification of the surface current in the cases where SST deviated strongly from

climatology, we choose to incorporate the SST nudging for these experiments to keep

SST close to climatology.

2.4.2 Vertical section

The vertical sections of density in figure 2.6 are useful to discuss the relation

between the upwelling rate and the resolution of the wind product. The upper small

panels in figure 2.6 show the cross-shore profile of the alongshore wind stress. Wind

stress values are negative, meaning equatorward as shown in figure 2.4. Lower panels

show vertical sections of the upwelling season mean density from the surface to −500m

depth along the cross-section A-B in figure 2.3.

The density vertical sections show stronger coastal upwelling with higher
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resolution wind forcing. In the sQSCAT and sRSM case (Fig. 2.6-(c) and (d)), the

σ = 25 kgm−3 isopycnal outcrops at the surface, but not in the Const and sNNR (Fig.

2.6-(a) and (b)). Although several factors (i.e. mixing) determine the isopycnals, Ekman

pumping changes in isopycnal depth by lifting and depressing it with positive and

negative wind stress curl, respectively (Gill, 1982). This is observed not only near

the surface but also in the interior of the ocean. The isopycnal displacements might

indicate a different rate of upwelling at the coast. In the sNNR case, the gradient of the

cross-shore 25 isopycnal is more gradual than in either sQSCAT or sRSM case, resulting

in the shallower and slower coastal upwelling. As the wind stress maximum approaches

to the coast, the cross-shore gradient of the isopycnal depth becomes steeper because of

both the proximity and the strength of the positive and negative wind stress curl. Hence,

we can expect the upwelling is the fastest and deepest in the sRSM case.

This is supported by figure 2.7 that shows the vertical velocity averaged over

the upwelling season in four cases. Although pressure gradient error due to the

terrain-following coordinate in ROMS can add undesired features to the vertical velocity

field, the mean vertical velocity is positive (upward) along the coast as a result of the

coastal upwelling in all cases. It is also upward under the positive wind stress curl, while

the negative wind stress curl drives downward vertical velocity as a result of Ekman

pumping. The intensity of the vertical velocity is closely related to the strength of the

wind stress curl according to (2.2), and this relation is well observed in the model, too.

The upward vertical velocity in all cases is faster than the EPV (Table 2.1).

Figure 2.8 shows the vertical section of alongshore current in four different

cases. Blue and red colors mean equatorward and poleward, respectively. Three main

features can be pointed out from the alongshore current vertical section. First, we

observe an equatorward surface current in all cases, although the locations are different.

As discussed in 2.4.1, the core of the equatorward flow depends on the location of

the wind stress maximum. Without the wind stress curl in Const case, the core of the

equatorward flow is very close to the coast (within 50km). In the other cases, the location

of the core of the equatorward flow gets closer to the coast as the wind stress maximum

shifts to the coast (Fig. 2.5-(a, b, c, d)). Although it is not seen in this figure, sNNR

has equatorward flow farther than 250km offshore as well as near the coast as shown
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in figure 2.9, which is the mean current fields with depth during the upwelling season.

However, the strength of the equatorward flow is not related to the strength of the wind

stress curl. Second, there is a surface poleward current under the positive wind stress

curl, and an equatorward surface current under the negative wind stress curl. This is

more obvious when the magnitude of the curl is stronger (Fig. 2.8-(c) and (d)). Last, the

poleward undercurrent on the continental slope is present in all cases, even when there is

no curl. The poleward flow is partially due to the open boundary conditions from ECCO

and is present even in case with no wind forcing (not shown).

These results are consistent with previous research. McCreary et al. (1987) saw

both an equatorward flow and a poleward undercurrent when the wind forcing has no

curl in their model solutions, supporting the idea that wind stress curl does not drive

the undercurrent. When they included curl in the wind forcing, they saw a poleward

surface current near the coast, and an equatorward current farther offshore. This can

be explained by the Sverdrup balance, which has northward transport under the positive

wind curl, and equatorward transport under the negative curl.

2.5 Upwelling water source

In order to identify the upwelling source waters, we introduce perturbations into

the adjoint passive tracer equation at the end of July each year from the surface to−10m

in the areas of interest labelled as ‘a’ and ‘b’ in figure 2.3, and run the adjoint model

for four months backward during the upwelling season in each of the last 5 years of the

forward run. Then we average the adjoint model solutions from each year and explore

the upwelling source waters for the coastal and offshore passive tracer patches under the

four different idealized wind forcing scenarios.

Figures from 2.10 to 2.13 show the three-dimensional view of the 5-member

ensemble mean of 4-month adjoint model runs. The colors in the figures show the

log10(
1
J ∂J/∂x(ti)), where J is the sum of all passive tracer concentration for the

last 15 days of July in the top three levels of the white area shown in figure 2.3 as

explained in 2.3.3. This represents the normalized sensitivities of J to the passive tracer

concentrations at other areas at previous times over the 4-month period. For example,
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if the log10 sensitivity at a certain grid point at time ti is −2, the total cost function

J can be increased by 1% with a perturbation of 1 at that grid point at time ti. Each

figure has two rows and four columns. The top and bottom rows show the results for

perturbations initiated at the onshore and offshore locations, respectively. The columns

show the snapshot of the adjoint model results at every month at different depths. Since

the adjoint model integrates the sensitivity backward in time, the results of the adjoint

model runs were plotted from July (left) to April (right) with one month interval.

The sensitivities for passive tracers can be interpreted as the source waters

because sensitivity results only from advection and diffusion, unless there are sources

or sinks, as discussed in section 2.3.3. Thus the “sensitivity” of the passive tracer

concentration will henceforth be called the passive tracer “concentration”.

2.5.1 Coastal upwelling source water

In each case, vertical advection is the significant process for July coastal

upwelling. Although vertical advection is obscured by the equatorward surface

advection in Const (figure 2.10-(a)) and sNNR (figure 2.11-(a)), and by the poleward

subsurface advection in sQSCAT (figure 2.12-(a)) and sRSM (figure 2.13-(a)), it is

evident that the vertical advection plays an important role by the small patch of passive

tracer concentration deeper than−10m depth below the area where the tracer is injected

(black contour at the top two levels in the subplots from (a) to (d) in Fig. from 2.10

to 2.13 and white area (b) in Fig. 2.3). This is the time when the direct effect of the

wind on the passive tracer distribution is the strongest. The horizontal advection in

Const appears as important as the vertical advection as considerable source waters are

found in the north. The horizontal advection from the north in Const and sNNR is by

the equatorward flow along the coastline, while sQSCAT and sRSM have the source

water coming from the south due to the influence of subsurface poleward flow along

the coast (Fig. 2.8). The speed of the vertical advection increases with stronger wind

stress curl as seen in figure 2.7. Const and sNNR have upwelling speeds less than

about 1m/day in general, while the upwelling speeds in sQSCAT and sRSM are greater

than 1m/day for July. The depth from which water is being upwelled to the upper

−10m in July is consistent with the theoretical Ekman layer depth, which ranges from
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Table 2.2: Percentage (%) of the passive tracer remained in the domain.

July 1st June 1st May 1st April 1st

Onshore

Const 100 89.00 52.62 31.44
sNNR 100 99.47 89.21 80.91

sQSCAT 100 99.91 93.64 74.15
sRSM 100 93.75 70.80 53.38

Offshore

Const 99.94 82.49 49.69 29.25
sNNR 100 96.10 85.96 79.84

sQSCAT 100 98.66 89.70 72.75
sRSM 99.53 86.80 68.28 56.78

26m under the weakest wind to 55m under the strongest wind at 36◦N if the sea water

density, air density and the drag coefficient are assumed to be 1027kg/m3, 1.25kg/m3

and 2.6×10−3, respectively (Stewart, 2005).

Earlier in the upwelling season, horizontal advection and diffusion become

important mechanisms affecting the coastal upwelling water sources, and figure 2.8 and

figure 2.9 are useful to explain the distribution of the upwelling water sources. In Const

(Fig. 2.10), the upwelled water is transported from the north at −110m ∼ −30m depth

by the strong equatorward flow (> 0.1ms−1) near the coast (Fig. 2.8-(a) and 2.9-(a)). As

a result, only about 30% of the initial passive tracers remained inside of the domain as

seen in Table 4.1, which shows the percentage of the passive tracer found inside of the

domain at the first day of each month. sNNR has the weakest advection, and most of the

coastal upwelling water sources are local, showing the highest percentage of the passive

tracer left inside of the domain at April 1st , which is the end of the adjoint run (Table

4.1). This is because the core of the equatorward flow occurs more than 250km from

the coast, and there is no strong current at the surface and subsurface near the coast

to affect the upwelling water source (Fig. 2.9-(b)). Although both Const and sNNR

have the poleward undercurrent deeper than −120m (Fig. 2.8-(a) and (b)), it does not

affect the upwelling water sources because the upwelling cell is shallower than −120m.

sQSCAT in figure 2.12 has coastal upwelling water sources both from the south and the

north at the subsurface. The distribution of the passive tracer concentration reflects the

subsurface equatorward flow at about 150km from the coast and subsurface poleward
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flow along the coast (Fig. 2.8-(c) and 2.9-(c)), supporting the idea that the subsurface

flows play the most important role in determining the water sources. High sensitivity

at −50m depth near Pt. Conception in Fig. 2.12-(b) indicates that the mixing of two

flows occurs at the south of the key area. Then it is transported to the north and upward

at the same time. Thus the upwelling water may mix the characteristics of water both

from the south and the north. The passive tracer concentration in sRSM in figure 2.13

also reflects the subsurface equatorward flow with the core at about 75km from the coast

(Fig. 2.8-(d) and 2.9-(d)), which implies strong horizontal advection from the north as

well as the subsurface poleward transport. As will be more evident from the results of

section 2.5.2, the upwelling cell in both sQSCAT and sRSM is deeper than in the other

two cases. This means that the poleward undercurrent can bring water from the south

toward the areas of interest.

Four months earlier (April), the depth of the coastal upwelling cell exhibits a

dependence on the strength of the wind stress curl. The subplot (d)s in figure 2.10 to

2.13 show the tendency of a deepening coastal upwelling cell with stronger curl. In

Const, the upwelling cell is shallower than −150m, but it is deeper than −150m in

sRSM. As seen in figure 2.7, sRSM has the strongest upward velocity near the coast

due to the strongest positive wind stress curl. Thus, the upwelling is the fastest and the

upwelling cell is the deepest among four cases. In contrast, sNNR has broad areas of

upward velocity, but the intensity is less than half of that in sRSM. This is also reflected

by the cross-shore isopycnal gradient discussed in section 2.4. Const and sNNR have flat

isopycnals near the coast (Fig. 2.6), indicative of their upwelling cells being shallower

and more diffusive than sQSCAT or sRSM. The strongest positive and negative wind

stress curl near the coast and their proximity make the cross-shore isopycnal gradient in

sRSM the greatest, providing the circumstances for the deepest upwelling cell.

2.5.2 Offshore upwelling source water

Unlike the case for coastal upwelling, the lateral transport at the surface is one

of the important mechanisms that supply water to the area ‘a’ in figure 2.3 in July as

well as at the subsurface shallower than −50m in all cases. Const and sNNR show

similar water sources for coastal upwelling as the lateral transport from the north is
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dominant, although their source waters for the offshore patch are shallower. sNNR

obviously shows Ekman pumping as the passive tracer patch is found at −30m depth

immediately below the initial offshore passive tracer injection area (Fig 2.11-(e)). Both

sQSCAT and sRSM should have offshore upwelling, but it is not clearly observed in

figure 2.12-(e) and 2.13-(e) because onshore lateral transport at the subsurface is also

significant (not shown).

During April and June, lateral transport has more importance than in July in

determining the horizontal distribution of the passive tracer patches. In Const (Fig.

2.10), most of water sources come from the north from the surface to −110m depth,

reflecting the equatorward flow near the coast (Fig. 2.8-(a) and 2.9-(a)). Similar to the

case for coastal upwelling, more than 70% of the passive tracers came from outside

of the domain in April 1st (Table 4.1). The source waters in sNNR also can be found

from the surface to −110m depth. However it has a weaker equatorward alongshore

current near the coast than Const. As a result, about 80% of the passive tracer remains

inside of the domain at the end of 4-month adjoint model run. sQSCAT and sRSM

have very similar water sources for the area ‘a’ and ‘b’ in figure 2.3, although more

concentration can be found at shallower depth. Figure 2.12-(h) shows that subsurface

water is transported both from the north and the south along the equatorward flow

offshore and along poleward flow near the coast for sQSCAT case. This is very similar to

the water sources map for coastal upwelling in figure 2.12-(d). sRSM also shows very

similar water sources for coastal upwelling and offshore upwelling as seen in figure

2.13-(d) and 2.13-(h), reflecting the major role of the equatorward flow.

As expected, the offshore passive tracer patches have water sources shallower

than the onshore patches in all cases. There is still a tendency that strong wind stress

curl deepens the upwelling water sources. The water at −150m can reach the surface in

both sQSCAT and sRSM case, but Const and sNNR cannot bring up water at −150m

depth to the surface in 4 months (subplot (h)s in Fig. from 2.10 to 2.13). This is also

consistent with the upwelling season mean vertical velocity in figure 2.7, which shows

the strongest vertical velocity in sRSM.
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2.6 Discussion

We considered the effects of different wind forcing datasets on the strength

and character of upwelling cells in the California Current System. We focused on

idealized versions of three key wind forcing datasets, the NCEP/NCAR Reanalysis,

the QuikSCAT, and the regional downscaling via RSM. In these three cases, the

upwelling-favorable wind has a different structure that significantly depends on the

resolution of the wind forcing product that is being idealized. This also results in sharply

different wind stress curl patterns in each case, which mimic structures seen in the real

products.

In order to isolate the effect of wind stress curl from coastal Ekman transport

on the consequent upwelling, we forced an ocean model with the three idealized wind

products during the upwelling season. Our analysis included forward and adjoint

simulations to see how changes in ocean states control the source waters, paths, and

depths of upwelling cells.

The main result from this paper is the tendency of deepening the upwelling cell

with sharp changes in wind stress curl and its effects on the upwelling source waters.

This is summarized with the schematic diagram in figure 2.14. The structure of wind

forcing changes the location of the core of the equatorward flow. When the wind

stress has a variability in space so that wind stress curl is introduced, the location of

the equatorward flow core is determined by the wind stress curl, as shown in figure

2.14. The equatorward flow is present under the negative wind stress curl (blue), and

the poleward flow under the positive wind stress curl (red), which are consistent with

the Sverdrup balance. All cases have a poleward undercurrent, which is specified in the

boundary condition. However, the positive wind stress curl strengthens the undercurrent

as it drives poleward Sverdrup transport.

A cross-section of isopycnals (black) in figure 2.14 shows that more upwelling

occurs with stronger wind stress curl. The positive wind stress curl can lift the isopycnal

up, and the negative wind stress curl can deepen it, resulting in a steeper cross-shore

gradient. When the positive and negative wind stress curl are strong and close to

one another, as in figure 2.14[A], the cross-shore gradient of the isopycnal is steep,

indicating a deeper upwelling cell. When the positive curl covers a broad area, as in
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figure 2.14[B], the gradient of the isopycnal is more gradual, resulting in a shallower

upwelling cell. When the equatorward flow is located farther offshore than the area

where the water can diffuse in a 4-month period (Fig. 2.14[B]), the water sources

for coastal upwelling are local. When the equatorward flow is close to the coast (Fig.

2.14[A]), most of the water sources can be found upstream of the flow. The undercurrent

may or may not affect the water sources of the upwelling, depending on the depth of the

upwelling cell.

The offshore patch defined here is meant to track the open-ocean upwelling

water sources by Ekman pumping. Although there is evidence of Ekman pumping (Fig.

2.11-(e)), onshore and offshore lateral transport make it difficult to distinguish the two

Ekman upwelling mechanisms. As a result, the water sources are similar for both coastal

and offshore upwelling, especially in the strong wind stress curl cases. The upwelling

cell for the offshore patch is generally shallower than the coastal upwelling cell in all

cases.

Although these experiments are executed with idealized wind stress fields,

they provide insight into the mechanisms that may explain the trends observed in the

California Current System. Di Lorenzo et al. (2005) observed a freshening of subsurface

water near the equatorward flow with an intensification of the geostrophic current over

the last 50 years of the CalCOFI data. In their wind forcing, there was a tendency for

wind stress curl strengthening with a positive anomaly nearshore and a negative anomaly

offshore. Therefore, the changes in wind stress curl result in more lateral transport from

the north as seen in the experiments here, possibly yielding freshening the subsurface

water near the core of the flow.

The results from these experiments can also provide some intuition about

possible changes in upwelling and its water sources under global warming scenarios.

Previous studies (Bakun, 1990; Snyder et al., 2003) anticipate an intensification of

upwelling favorable wind and wind stress curl in Eastern boundary current regions

with global warming. Thus, in that scenario and based on the experiments here,

we can anticipate the following in the CCS; deepening of the upwelling cell, a

larger contribution of the California Undercurrent to upwelled water, shifting of the

equatorward flow toward the coast and more southward transport by the equatorward
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flow resulting in freshening the CCS near the core.

This may cause changes in the dissolved oxygen (DO) as the remote areas have

more influences on the water characteristics than at present. Bograd et al. (2008)

argued that the observed declining trend of DO in the CCS is related to inefficient

vertical oxygen transport due to the surface-warming-induced stronger stratification

under global warming scenarios. The advection of the consequent low DO water along

the California Current from the north, and the advection of historically low DO water

along the California Undercurrent from the south also contribute the observed low DO in

the CCS. Thus we may anticipate even lower DO levels in the CCS since the experiments

in this study anticipate more remote influence on the CCS upwelling system from both

the north and the south.
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PSW(Low S, T and
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nutrients)

NPCW
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and Low oxygen)
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California Current Water masses

Wednesday, March 24, 2010

Figure 2.1: Three water masses that contribute the California Current System, and their

characteristics. Pacific Subarctic water (PSW) that has low salinity, temperature and

high oxygen, nutrients comes from the north, North Pacific Central water (NPCW)

that has high salinity, temperature, nutrients and low oxygen comes from the west

and California undercurrent (CUC) that has high salinity, temperature and low oxygen,

nutrients comes from the south.
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Figure 2.2: The summertime mean wind stress (top) and wind stress curl (bottom) from

NCEP/NCAR Reanalysis (left), gridded QuikSCAT (middle) and downscaled RSM

(right). Only the positive values of wind stress curl are shown at the bottom panels

so the white regions indicate either zero or negative curl. The strength of the wind stress

is indicated by the color of the vectors, and red dot is the location of Point Sur.
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Figure 2.3: Model domain. 9km horizontal resolution inner domain (black square) is

nested to the outer grid whose horizontal resolution is 18km. Line A-B represents the

cross-shore vertical section line, and white area ‘a’ and ‘b’ represent the area where the

perturbation of the passive tracer concentration is given.
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Figure 2.4: Four idealized wind stress fields (a, b, c, d) and the wind stress curl fields

(e, f, g, h) during the upwelling season. Both color and length of the arrow in the wind

stress fields (a, b, c, d) represent the magnitude of the wind stress. Const has an uniform

wind stress, and sNNR, sQSCAT and sRSM have a cross-shore variability in wind stress.

The maximum wind stresses set to be the same, but the distances from the coast vary. In

the wind stress curl fields (e, f, g, h), only positive values are shown in color, and areas

of negative or zero wind stress curl are masked with white. Black boxes represent the

inner grid.
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Figure 2.5: Upwelling season mean sea surface height with surface current in arrows

(a, b, c, d) and mean sea surface temperature (e, f, g, h) in four cases
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Figure 2.6: Upwelling season mean cross-shore vertical profiles of alongshore wind

stress and density along the line A-B in figure 2.3 in four cases. Negative wind stress

means the equatorward.



36

Figure 2.7: Three-dimensional upwelling season mean vertical velocity at from−2m to

−120m depth in four cases. Positive (negative) shown in red (blue) represents upward

(downward) vertical velocity.
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Figure 2.8: Upwelling season mean cross-shore vertical profiles of alongshore wind

stress and alongshore current along the line A-B in figure 2.3 in four cases. Negative

values in alongshore current (blue) mean equatorward and positive values (red) mean

poleward.
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Figure 2.9: Three-dimensional upwelling season mean current at from −120m to −2m

depth in four cases. Arrows representing current weaker than 0.05ms−1 are in white

and, hence, invisible.
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Figure 2.10: Normalized sensitivity of passive tracer concentration in logarithmic scale

when the Const forced the ocean. Top row (a,b,c,d) shows the four-month time series of

passive tracer concentration sensitivity backward in time when the initial perturbations

of passive tracer were defined in ‘b’ in figure 2.3. Bottom row (e,f,g,h) shows the same

four-month time series, but when the initial perturbations were defined in ‘a’ in figure

2.3.



41

Figure 2.11: Same as figure 2.10 when the sNNR forced the ocean.
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Figure 2.12: Same as figure 2.10 when the sQSCAT forced the ocean.
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Figure 2.13: Same as figure 2.10 when the sRSM forced the ocean.
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Figure 2.14: Simplified cartoon to illustrate the relation between the wind stress curl and

upwelling and its water sources. Wind stress values are negative meaning equatorward.

Corresponding wind stress curl are represented in colors - red for positive wind stress

curl and blue for negative wind stress curl. The saturation of the color represents the

intensity of the curl. Thick black lines represent the isopycnals. The equatorward flow

(circle with dot) can be found under the negative curl, and poleward current (circle with

cross) under the positive curl. Blue and red arrows represent the upwelling water sources

from the north and the south, respectively.
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Abstract

The estimation of the ocean states for April from four different years (2002,

2003, 2006 and 2007) over the California Current System (CCS) is performed using

the four-dimensional variational data assimilation (4D-VAR) package in the Regional

Ocean Modeling System (ROMS). In particular, the incremental strong constraint

4D-VAR (I4D-VAR) is employed for the state estimation using both along-track

remotely sensed data and in situ hydrographic data collected over one month period.

The one-month ROMS I4D-VAR simulations successfully improve the state

estimation by adjusting the initial conditions and the surface forcing. The normalized

absolute misfit between the observations and the corresponding model states is reduced

close to the observational error range. Other statistical measures comparing model with

observations are also improved. Applications of the data-assimilated ocean states are

also presented.
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3.1 Introduction

The California Current System (CCS) is one of the most studied regions in the

world. Its characteristic active upwelling, with nutrient-rich, and hence, productive

waters, has drawn attention, and great efforts were put into theories, measuring

various quantities, and numerical simulations to understand the mechanisms behind it.

(Sverdrup et al., 1942; Smith, 1968; Lynn and Simpson, 1987; McCreary et al., 1987;

Batteen, 1997; Bograd and Lynn, 2003; Di Lorenzo, 2003).

The California Cooperative Oceanic Fisheries Investigations (CalCOFI) revealed

many important features in the CCS with its rich time series extending more than sixty

years. Although a unique observation program, the spatial and temporal limitations of

the observing system limit a full understanding of the observed features. Theoretical

and modeling approaches help us understand the observed features in the CCS, but their

representativeness of the realistic ocean is still a challenging problem. Thus, the need

for combining the observations and the model for thorough investigations of the CCS is

necessary.

Data assimilation (DA) yields the best estimation of the state after combining the

observations and numerical model according to the relative weight from the estimated

error (Ghil and Malanotte-Rizzoli, 1991). Based on the methods of approach to the

problem, two schools of DA have been formed. The first school is the variational

methods group that searches for the model trajectory based on the optimal control

technique so that the model trajectory fits the data the best over a given time span (Le

Dimet and Talagrand, 1986). The other school is the sequential methods group that

merges the data and the model based on their respective uncertainties whenever the data

are available (Todling, 1999). This dissertation discusses both methods. The variational

methods are the basis of chapter 3 and 4, and chapter 5 and 6 introduce new sequential

methods.

The four-dimensional variational method (4D-VAR) uses all available

observations within a definite time period to adjust the model trajectory so that the

new model trajectory follows the observed states closely. It has been widely applied

to general circulation models and successfully improved the state estimation (Rabier

et al., 2000; Stammer et al., 2002; Rawlins et al., 2008). As a widely used oceanic
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numerical model, the Regional Ocean Modeling System (ROMS) was recently equipped

with several 4D-VAR packages, and they were applied to several regions for different

objectives. (Powell et al., 2008; Broquet et al., 2009; Zhang et al., 2010; Broquet et al.,

2011; Moore et al., 2011b)

In this study, we conduct one month DA experiments and estimate the CCS

states using ROMS 4D-VAR system for April 2002, 2003, 2006 and 2007. The

ROMS 4D-VAR system successfully reduces the misfits between the observations

and the model states that are interpolated to the observation locations. Also, the

data-assimilated ocean states become statistically closer to the observed states by other

quantitative measures. Thus, ROMS 4D-VAR is shown to provide the ocean states that

are dynamically consistent and statistically close to the observed states over one month.

The data-assimilated ocean states are further used for the diagnostics of abrupt

changes in the Pacific sardine eggs observed in April 2002 and 2003, which are

described in chapter 4. Also, it can improve the forecast by providing the updated

initial condition that represents the true states better than the background states. ROMS

4D-VAR system is also able to quantify the impact of each observation on the quantity

of interest. (Moore et al., 2011a)

In this chapter, we briefly introduce ROMS 4D-VAR system and summarize

the results of the DA experiments that are used in chapter 4. Chapter 3 is organized as

follow. First, the ROMS 4D-VAR system is briefly introduced in section 3.2. Section 3.3

specifies the details of the ROMS 4D-VAR setting for the experiments. The descriptions

of the observations that are used for the experiments are in section 3.4. The results of

the experiments are presented in section 3.5, and a discussion follows in section 3.6.

3.2 Variational method in ROMS

The 4D-VAR method estimates the control vector so that misfit is reduced

between the model states and observations for a given time span. The ROMS 4D-VAR

system is currently equipped with several 4D-VAR schemes. An Incremental strong

constraint 4D-VAR (I4D-VAR) seeks solutions in the model space (primal space), while

a physical-space statistical analysis system (4D-PSAS) and the representer-based variant
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of 4DVAR (R4D-VAR) seek solutions in the data space (dual space). This section, as a

brief introduction to the ROMS I4D-VAR system used in this study, discusses the basic

formulation of the I4D-VAR method closely following Moore et al. (2011c) that has a

complete description of the ROMS 4D-VAR system.

ROMS takes the state x(ti−1), surface forcing f(ti) and open boundary conditions

b(ti) to integrate the state from time ti−1 to the next time step ti using the nonlinear model

M(ti, ti−1)

x(ti) = M(ti, ti−1)(x(ti−1), f(ti),b(ti)). (3.1)

The strong constraint ROMS I4D-VAR system uses an incremental approach, which

estimates the increment vector δz such that a new model trajectory minimizes the misfit

between the model states and data. The vector δz includes the increments in the initial

conditions, surface forcing, and open boundary conditions, hence it can be written as

δz = (δxT (t0),δ fT ,δbT )T . The δz may include model error terms, but the strong

constraint assumes perfect model (or no errors in the model). The optimal increment

vector δz yields the minimum of the cost function J that is defined as

J(δz) =
1
2

δzT D−1
δz+

1
2
(Gδz−d)T R−1(Gδz−d). (3.2)

D is the error covariance matrix in which the error covariance of the initial condition,

surface forcing, and open boundary conditions form the blocks along the diagonal.

The matrix G includes the operator M that integrates the increments linearly, and

the operator H, a linear approximation of the observation operator H that maps the

integrated increment vector from the model space to data space. The vector d represents

the innovation that is the difference between the data y and corresponding model state.

The matrix R represents the observational error covariance.

The solution that minimizes the cost function satisfies ∂J/∂δz = 0, hence it is

δz = (D−1 +GT R−1G)−1GT R−1d. (3.3)

Then the δz is added to the background control vector zb = (x(t0), f,b) to produce the

dynamically consistent, and the best estimated model states in a least-square sense. If the

system has a huge dimension so that the matrix inverse computation is demanding, one
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can solve this minimization problem using iterative optimization schemes. The ROMS

4D-VAR system uses the conjugate gradient descent method formulated on the Lanczos

algorithm and avoids the computation of the matrix inverse. The cost function J in (3.2)

is quadratic, and the ROMS 4D-VAR system can find the local minimum with multiple

inner-loops. Then it updates the control vector z by adding δz to zb, and computes the

nonlinear cost function

JNL =
1
2
(z− zb)T D−1(z− zb)+

1
2
(y−H(x))T R−1(y−H(x)). (3.4)

This is repeated number of outer-loop times. If the system is linear, the JNL is the

same as J from the final inner-loop of the previous cycle, hence multiple outer-loops

are unnecessary. Other key processes such as preconditioning and the estimation of the

error covariance D are well described in Moore et al. (2011c).

3.3 Model

The DA experiments over one month are performed for April 2002 (0204), April

2003(0304), April 2006 (0604), and April 2007(0704). April is one of the key months

when the most active upwelling occurs, which makes the ocean nutrient-rich. Also, the

observation network is relatively dense in April as the scientific cruises and launches of

the measuring instruments happen frequently in that month.

DA runs for 0204 and 0304 use different grids for 0604 and 0704, although they

are in the region of the California Current System (CCS). The domain for the 0204 and

0304 assimilations is a subdomain of the one by Broquet et al. (2009), and it extends

from 30◦N to 38◦N and 126◦W to 116◦W (Fig. 3.1-(a)). The domain for 0604 and 0704

has two levels and the inner domain extends from 29.5◦N to 39◦N and 133◦W to 115◦W

(Fig. 3.1-(b)). They have an approximately 9km grid interval and 42 terrain-following

vertical levels that are concentrated more at the surface and ocean bottom.

The surface forcing for the earlier two time periods is different from the latter

two. The 9km resolution Coupled Ocean/Atmosphere Mesoscale Prediction System

(COAMPS R©) (Hodur et al., 2002; Doyle et al., 2009) provides forcing for 0204

and 0304, and the 10km resolution Regional Spectral Model (RSM) (Kanamitsu and
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Kanamaru, 2007) provides forcing for 0604 and 0704. All cases use the bulk formulation

for both wind stresses and surface heat fluxes (Fairall et al., 1996).

Background states are critical to extending the assimilation window. The ROMS

I4D-VAR seeks the optimal δz by repeatedly running two linear models - the tangent

linear model and its adjoint model. Thus, the smaller initial δz is, the longer the linear

assumption holds. This results in the extension of the assimilation window.

Background states for 0204 and 0304 are extracted from the data set of Broquet

et al. (2009). These states are already data-assimilated, but the assimilation window is

7 days, which causes dynamical inconsistency every 7 days when the initial conditions

are re-set. The background state for 0604 is obtained after a one year and three months

spin-up run started from the Ocean Comprehensible Atlas (OCCA) data set (Forget,

2010). The OCCA is also data-assimilated on the 1◦ grid, hence we employ the one-way

nesting to reduce any significant inconsistencies due to resolution differences. The

OCCA provides the initial and boundary conditions to the 18km resolution outer-grid,

then the 9km resolution inner-grid takes the solution from the simulation of the

outer-grid for the initial and boundary conditions. The background state for 0704 is

obtained after running model freely after May 2006 when the one month assimilation

for 0604 ends.

In the ROMS 4D-VAR system, the estimation of the background error covariance

D, which can change the assimilation results significantly, requires users to provide

the model standard deviation and decorrelation length scales for the error correlation

diffusion operator. The balancing operator can be included if the user wants to include

the balance relations between the oceanic variables. For 0204 and 0304, the model

standard deviation is adopted from the data set of Broquet et al. (2009), which was

computed after a 5-year run. For 0604 and 0704, the balancing operator is applied, and

the unbalanced part of the standard deviation is computed based on a 3-year run. The

decorrelation length scales are the same for all cases: 30km and 30m for horizontal and

vertical decorrelation length scale for the oceanic variables, respectively, and 50km for

the atmospheric forcing decorrelation length scale.

The ROMS I4D-VAR used in this study adjusts the initial condition and surface

forcing using the various remotely sensed and in situ data over a one-month period by
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invoking 3 outer-loops and 15 inner-loops. The eddy viscosity coefficients in the tangent

linear model and the adjoint model are five times greater than the nonlinear model to

prevent the errors associated with small scale features from growing rapidly.

3.4 Observations

3.4.1 Remotely sensed data

Sea Surface Temperature (SST) data are obtained from the 4km resolution

advanced Very-High-Resolution Radiometers (AVHRR) Pathfinder version 5 SST data

set. This data set is created by merging the data from several polar orbiting satellites

with infrared channels. Those satellites measure the SST twice a day, but the exact time

of the measurement is obscured after the merging process. Although clouds prevent

the satellite with the infrared channels from measuring SST, the advantage of AVHRR

infrared channel is the capability of measuring SST near the coast. The errors of the

SST are estimated as the quarter size of the model standard deviation interpolated to the

observation point. The minimum of the estimated observational error is set as 0.1◦C.

Along-track Sea Surface Height (SSH) anomaly observations are obtained from

the data set produced by Ssalto/Duacs and distributed by AVISO. In the experiments,

the assimilation efforts go to SSH anomaly correction for eddy activities instead of

adjusting SSH. Thus, the along-track SSH anomaly data are added to the mapped

temporal mean dynamic topography. Then, the spatial mean of the observation is set

to be the same as the model spatial mean. The observational errors are estimated such

that the observational errors are 4/10 of the model standard deviation. If the estimated

observational error is smaller than 0.01m, it is fixed to 0.01m.

3.4.2 Hydrographic data

The subsurface temperature (T) and salinity (S) data are provided by various

observational programs, and figure 3.2 shows the spatial coverage of the subsurface

observations during four separate periods.

The CalCOFI program has repeatedly measured T and S from the surface down



53

to−500m or to the bottom if the ocean depth is shallower than−500m for more than 60

years. The measurement occurs roughly at the same location in April 2002, 2003, 2006

and 2007 cruises, covering the Southern California Bight. The Continuous Underway

Fish Egg Sampler (CUFES) (Checkley et al., 1997, 2000), which is intended to measure

pelagic fish eggs by pulling up the water from −3m, measures T and S at the same

time. It usually shares the CalCOFI lines, but it also has additional lines in between the

CalCOFI lines or extends further north from the CalCOFI. These two programs provided

T and S data for all four assimilation periods. Argo floats can measure T and S from the

surface down to −2000m. The horizontal distributions of the Argo floats keep changing

as the floats drift freely in the currents. The density of the observation coverage has

been increased in time, but the number of available Argo floats in the model domain

does not reflect this trend (Fig. 3.2) as more available Argo profiles are found in 0604

than in 0704. Argo data are available for 0304, 0604, and 0704. For 0604 and 0704,

Spray gliders provides T and S with high horizontal resolution data from the surface

down to −500m (Sherman et al., 2001). For 0704, the California Current Ecosystem

Long Term Ecological Research (CCE LTER) cruise provides additional T and S near

Point Conception (http://cce.lternet.edu/data/).

Except for the Argo floats that have their own error estimation, the observational

errors for T are estimated in the same manner as the SST data. The observational errors

for S are also one-quarter of the size of the model standard deviation, but the minimum

value is set as 0.01psu.

3.4.3 Processing of observations

If the observations have features whose scales are smaller than the model can

represent, the reduction of the misfit may not be achieved through DA. Hence, all

observations inside of a certain number of grid cells can be averaged with respect to

the errors if they occur in the same time period. This “super observations” process

eliminates all small-scale features in the observations that cannot be resolved by the

model. Figure 3.3 shows an example of the super observations of the SST data when the

size of bins for merging are 1×1 (left) and 3×3 (right). Both super observations agree

well with large-scale patterns in the SST with similar observation coverage, although
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the sharp SST changes are only shown in the super observation with 1×1 grid cell. In

this series of DA experiments, we adopt the super observation with 3× 3 grid cells

and put more emphasis on the fitting of large-scale features. This also enables the

assimilation window to be extended, because the highly nonlinear features by small

scales are omitted in the fitting.

3.5 Results

3.5.1 Linearity

As discussed in section 3.2, the ROMS 4D-VAR system is based on the tangent

linear approximation. Thus, the length of the assimilation window is determined as the

period when the linear assumption is valid. One of the possible tests for validation is to

compare two model states: one is when δz is integrated by a tangent linear model M, and

the other is the difference between two trajectories when z and z+δz are integrated by

a fully nonlinear model. If these two states are near, the tangent linear approximation is

valid. As expected, the smaller δz is, the longer the assimilation period can be achieved

(Veneziani et al., 2009b).

Another possible test is to compare the cost function of the final inner-loop and

the nonlinear cost function of the following outer-loop. If the system is linear, those

two cost functions are identical. Figure 3.4 shows the changes in the cost function with

iterations from all four experiments. The cost function J(n) at nth iteration is normalized

by the initial cost function J(1). Although JNL are higher than J at the previous iteration

in all assimilation periods, the degree is negligible compared to the reduction of the cost

function. In all cases, the cost function converges. This indicates that the model state

is close to the solution for the optimization problem. Hence an additional iteration after

the convergence of the cost function does not give much improvement.

3.5.2 Normalized absolute error reduction

The normalized absolute error (NAE) is useful to evaluate the ROMS I4D-VAR

performance. It is a quantity to measure the distance between the observations and the



55

model states normalized by the errors in the observations. If the NAE is below one,

it means that the distance between the observation and the model state is within the

observational error range. It is worth noting that the optimal solution can have NAE > 1,

because the solution is determined by the relative weight of the model and observation

errors.

The NAE changes for each variable are plotted in figure 3.5. The reductions of

the NAE are shown in all variables from all assimilation experiments. The percentages

of the reduction averaged over all variables are different in each period (70%, 62%, 54%

and 30% for 0204, 0304, 0604 and 0704, respectively). In general, the reductions of the

NAE are greater when the initial errors are bigger (0204, 0304 and 0604). The T in the

upper 100m has the biggest NAE both before and after the assimilation. NAEs for other

variables are reduced to approximately the observational error level.

Figure 3.6 shows the time series of the NAE averaged over all variables from four

assimilation runs. The NAEs of the background model states are greater than one in all

periods (blue lines in Fig. 3.6). After DA, however, the NAEs are reduced to close to one

(red lines in Fig. 3.6). The NAEs for the background model states have fluctuations with

time, but the degree has been decreased significantly after DA by ROMS I4D-VAR. The

updated model trajectory by ROMS I4D-VAR should yield the least square-error over

time and the reduced fluctuations of NAE after DA reflect this. The reduction in NAE

fluctuation can be partially achieved by adjusting the surface forcing, too.

3.5.3 Taylor diagram

Taylor diagrams (Taylor, 2001) offer a way to compare the performances of

several models with respect to the observations by showing their standard deviation,

correlation, and the centered root-mean-square (RMS) difference. The centered RMS

difference E ′ is given by

E ′ =

[
1
N

N

∑
n=1
{( fn− f̄ )− (rn− r̄)}2

]1/2

, (3.5)

where N is the total number of observation r and f is the model state at the observation

location. f̄ and r̄ represent the mean of f and r, respectively. If the model represents the
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observed states perfectly, it should have the same standard deviation as the observation.

Also, the correlation between the model and the observation should be one, and the

difference in RMS should be zero.

Figure 3.7 shows the changes in normalized statistics for SSH, T and S on

the Taylor diagrams for each assimilation period. In the diagrams, the observations

are placed at the bottom of the diagram where the correlation coefficient is 1 and the

normalized standard deviation is 1. The arrows indicate the changes in normalized

statistics after data assimilation. SSH, T and S are shown with arrows in red, black

and blue, respectively.

The statistics for the background states show a few patterns that are consistent

in all periods. The standard deviations of SSH and S are smaller than the ones in

the observations, while the standard deviation of T is greater than the one in the

observations. SSH has the smallest correlation coefficient in all periods. T and S have

correlation coefficients higher than 0.8 in all periods. The RMS differences are smaller

than 1 for all variables in all periods with the greatest value in SSH.

The data assimilation improved the statistics for all variables in all periods.

The arrows for all variables head to the observation point, meaning the statistics of

variables become more similar to the observations. The improvements are obvious

in the correlation coefficient and the RMS difference. In all cases, the correlation

coefficients approach 1. The correlation coefficients for T and S are greater than 0.95

after data assimilation in all cases. Although the improved correlation coefficient for

SSH is smaller than 0.9, the percentage of the improvement is the greatest in 0204 and

0304. The RMS difference improvements are also clearly seen in all cases. After data

assimilation, the RMS differences for T and S are reduced to under 0.25 in all cases.

Similar to the case of correlation coefficient, the improvements of RMS difference in

SSH are not as great as in other variables, and the final normalized RMS differences are

greater than 0.5. The standard deviations of the data-assimilated variables approach 1

in most cases, meaning their variabilities are similar to those of the observations. The

standard deviations of T become close to 1 in all assimilation periods. The degrees

of the standard deviation improvement are also the greatest in T except in 0304. The

improvements of the standard deviation for S are seen in all periods but 0604, and SSH
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standard deviation was improved in 0304 and 0704. It is interesting to observe that

the final statistics for each variable have similar patterns in all cases independent of the

background statistics.

3.6 Discussion

The powerful ROMS DA packages perform data assimilation on both primal

and dual space. The ROMS I4D-VAR used in this series of one-month assimilation

experiments searches for the solution of the optimization problem in the primal space.

Although dual space assimilation provides more diagnostic tools, the I4D-VAR allows

us to do more effective computation as it has proven to give faster convergence of the

cost function (Moore et al., 2011c).

One-month DA experiments over the CCS have been successfully conducted for

April 2002, 2003, 2006 and 2007 using the observations from both remotely sensed data

and in situ data. ROMS I4D-VAR reduced the normalized absolute error (NAE) near

the observational error level for all variables except for the upper level temperature. The

time series of the NAE during the assimilation window showed that ROMS I4D-VAR

reduced the temporally fluctuating error significantly. It is possible that adjusting surface

forcing contributes to the stable NAE in time. The statistical information of SSH, T and

S plotted in the Taylor diagram showed the improvement of the correspondence between

the data-assimilated model states and observed states.

Data-assimilated ocean states have several applications. DA provides the

estimations of the variables that cannot be measured directly. The estimations are from

the dynamically balanced states and are expected to be more accurate than the one from

the simulation without data assimilation. For instance, the heat transport, which has

extreme importance in understanding the global heat budget, or the upwelling rate that

significantly affects the ecosystem are both easily computed using the data-assimilated

data set.

DA benefits the extensive analysis of observed phenomena such as abrupt

changes in the distribution of the Pacific sardine eggs between April 2002 and 2003. As

the Pacific experiences the La Niña in 2002, the sardine eggs are found further offshore
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compared to normal years. However, the size of the spawning areas were significantly

shrunken in 2003 when the Pacific experienced a weak El Niño. The data-assimilated

ocean states can provide the link between the physical variables and the abrupt changes

in biological variables. This is addressed in chapter 4.

DA also benefits the forecast of ocean states. More accurate specification of

the initial condition should yield better forecasts if the model dynamics is correct. A

preliminary test of the hindcast for May 2006 (not shown) showed that the skill for

SST is improved by roughly 30% with the initial condition produced by the 0604 fit.

The root-mean-square errors for subsurface temperature and salinity were also reduced

by 34% and 39%, respectively, when they are compared with the data from May 2006

CCE LTER cruise. The ROMS 4D-VAR package allows an evaluation of the impact of

individual observations on the reduction of the forecast error, which will be studied in

the future.
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Figure 3.1: Depth of the domains for (a) April 2002, 2003 runs and (b) April 2006,

2007 runs. One-way nesting is applied for April 2006 and 2007 experiments. Black box

in (b) represents the inner- grid.
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Figure 3.2: Subsurface observation locations for four assimilation periods. Black

circles, red dots, blue crosses, green dots and magenta plus signs represent the

observation locations of the CalCOFI, CUFES, Argo, Glider and LTER, respectively.
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Figure 3.5: The normalized absolute error (NAE) for SSH, SST, T at upper −100m

(Tu), T at below −100m (Tl), S at upper −100m (Su) and S at below −100m (Sl) from

four assimilations. Blue and orange bars represent the NAE before and after the data

assimilation, respectively.
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Figure 3.7: Taylor diagrams showing the changes in statistics for the sea surface height

(SSH), temperature (Temp) and salinity (Salt) from four assimilation experiments. The

diagram compares the statistics of the observations and the model by examining their

standard deviation (black lines), the correlation between them (blue lines) and the

root-mean-square(RMS) difference between them (green lines). The standard deviation

and the RMS difference are normalized by the size of the observation standard deviation.

The observations are placed where the standard deviation is 1, the RMS difference is 0

and the correlation coefficient is 1. The arrows in red, black and blue arrows show

the changes in statistics before and after the data assimilation for SSH, Temp and Salt,

respectively.
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Abstract

The Pacific sardine (Sardinops sagax) egg data from Continuous Underway Fish

Egg Sampler (CUFES) over the California Current System (CCS) in April 2002 and

2003 showed significant differences in both the horizontal distribution and concentration

of eggs as the Pacific went through the La Niña state to a weak El Niño. We investigate

possible causes for these differences using dynamically consistent data assimilation fits

of the available physical oceanographic observations during these two months. These

fits are executed using the Regional Ocean Modeling System (ROMS) four-dimensional

variational assimilation (4D-VAR) platform along with adjoint model runs with a

passive tracer to deduce source waters for the areas of interest. Sardine spawning habitat

(associated with 12.5−15◦C surface temperatures) differs in area and location between

the two years. Analysis using the data-assimilation model runs reveal that during April

2002 unusually strong equatorward wind forcing drives stronger upwelling and offshore

transport. This causes offshore SST to span the range 12.5− 15◦C and contributes

to relatively higher levels of offshore chlorophyll-a that year, extending the preferred

spawning habitat for sardine farther offshore in 2002 compared to 2003. The model

analysis suggest that the higher egg concentrations observed in April 2003 are associated

with a smaller spawning habitat area, as well as convergence of surface water which

concentrated eggs, and higher levels of chlorophyll-a brought into the region by the

source waters. Results explain why sardine spawning habitat is located at the transition

area between the coastal upwelling zone and the California Current, which is farther

offshore during La Niña and nearer shore during El Niño conditions.
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4.1 Introduction

The California Current System (CCS), which is one of the most studied eastern

boundary currents, is characterized as an active upwelling and biologically productive

region, providing a good habitat for small pelagic fish. The ecosystem in the CCS is

closely linked to ocean environment variations on various time scales through solar flux

effects, oceanic temperature effects, lateral advection effects, vertical mixing effects and

upwelling (Miller et al., 2004; Checkley and Barth, 2009).

The Pacific sardine (Sardinops sagax), which is a key forage species supporting

fisheries landing of 37,578 t worth $5.6 million in 2009 in California, is strongly

affected by environmental variability. From the rich time series of the California

Cooperative Oceanic Fisheries Investigations (CalCOFI) program, it is well known that

the spawning biomass and spawning habitat of sardine vary considerably between years

(Lo et al., 2005; Reiss et al., 2008; Weber and McClatchie, 2010). Among climatological

variations, El Niño/Southern Oscillation (ENSO) events on interannual timescales have

altered the ecosystem environment significantly in the CCS (Miller et al., 2004). For

example, the size of the spawning habitat, based on the egg distributions, was changed

by an order of magnitude during the transition from 1998 El Niño to 1999 La Niña (Reiss

et al., 2008). However, the strongest contrast between sardine egg densities across an

ENSO transition since 1997 was observed from 2002 and 2003 (Bjorkstedt et al., 2010).

The North Pacific High has been stronger than normal since 1998-99 La Niña

(Schwing et al., 2002b), which caused anomalous anticyclonic wind over the Pacific in

early 2002 (Schwing et al., 2002a). This resulted in stronger than normal equatorward

wind over the CCS. Thus the CCS had stronger upwelling than average causing a

negative sea surface temperature (SST) anomaly. Then the Pacific experienced the shift

from a La Niña to a weak El Niño. An abnormally strong Aleutian Low in summer

2002 caused anomalous cyclonic wind over the Pacific, which continued until spring

2003. This resulted in weaker than normal equatorward wind over the CCS, causing the

upwelling to weaken in response. As a result, 2003 April showed a warm SST anomaly

(Venrick et al., 2003).

During that transition, the Pacific sardine spawning habitat responded in the

same way but opposite direction compared to the 1998-1999 transition. During the
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1998-1999 transition, the spawning habitat expanded significantly, reaching to the west

end of the CalCOFI stations (Reiss et al., 2008). During the 2002-2003 transition,

however, the size of the spawning habitat shrunk significantly.

Data assimilation is a technique that combines the data and the models to

determine the best possible estimate of the state of a dynamical system (Ghil and

Malanotte-Rizzoli, 1991). The variational method represents one of two groups in

data assimilation methodologies, and it is based on optimal control theory which seeks

the model trajectory that best fits the data over a given period of time (Le Dimet

and Talagrand, 1986). We used the variational method in this study to combine the

observations of sea surface height, SST and hydrographical temperature (T) and salinity

(S) data, with the physical ocean model. The solutions are then used to diagnose the

mechanisms behind the observed variations in the sardine egg sampling data.

In this study, we examine the observed dramatic changes in the Pacific sardine

egg distributions using both observational data and data-assimilated ocean states. We

address these two questions from a physical oceanographic standpoint; 1. Why do

April 2002 and April 2003 show different horizontal distributions of Pacific Sardine

eggs? and 2. Why do those two time periods show different egg concentrations? The

analysis includes the link between distribution and egg concentration, and the physical

variables such as large-scale atmospheric forcing, oceanic states and characteristics of

water sources.

The paper is organized as follows. First, the sardine egg sampling data in 2002

and 2003 April are discussed in section 4.2. Then section 4.3 describes the details of the

model setting and gives a short description about the data assimilation system and the

adjoint model. The discussion for the horizontal distribution of sardine egg and the egg

concentration are in section 4.4 and 4.5, respectively, followed by general discussion to

conclude in section 4.6.

4.2 Data

Since 1997, fine scale Pacific sardine egg monitoring has become routinely

available using Continuous Underway Fish Egg Sampler (CUFES) (Checkley et al.,
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1997, 2000). Attached to the ship, CUFES samples Pacific sardine eggs with other

pelagic fish eggs at 3m depth, providing pelagic fish egg distributions (egg/m3) that

can be used to study the sardine spawning habitat. CUFES stations in 2002 April (0204)

and 2003 April (0304), marked with black dots in figure 4.1-(a, b), covered the Southern

California Bight (SCB) and central California. They included the CalCOFI stations (red

dots) plus additional cruise lines that were different in those two months.

Figure 4.1-(c, d) show the Pacific sardine egg horizontal distributions in (c)

0204 and (d) 0304. Black dots represent the CUFES station that sampled at least

one sardine egg per m3. Blue, green and red dots represent the CUFES station that

sampled the sardine eggs more than 100, 500 and 1000 per m3, respectively. In 0204,

sardine eggs were found over a broader area compared to 0304 when the horizontal

distribution of eggs was confined closer to the coast. However, it is during 0304 that

higher concentrations of eggs were observed. There were no stations that observed

sardine eggs greater than 500 eggs/m3 in 0204, but a couple of stations in 0304 observed

eggs exceeding 1000 eggs/m3.

The top and bottom plots in Figure 4.2 show temperature-salinity diagrams of

CUFES survey in 0204 (blue) and 0304 (red) over the total CUFES survey from 1997

to 2011 (gray), respectively. In 0304, the total egg count is 45158, which is more

than twice in number compared to 0204. However, the temperature range in which

the sardine eggs were found in 0204 and 0304 is not significantly different, showing

approximately 12.5◦-15◦C. This is comparable to the previously reported temperature

range of 12◦C-14◦C (Lo et al., 2005) and the one of 12.5◦C-16◦C (Checkley et al.,

2000). The difference in salinity ranges for sardine eggs in 0204 and 0304 is also

insignificant, showing roughly 32.6 to 33.4 psu. This is also comparable to the salinity

range of 32.6-33.5 psu from Checkley et al. (2000).

Since the horizontal egg distributions in 0204 and 0304 are significantly different

(Fig. 4.1-(c, d)), the T and S at CUFES stations for those time period show different

patterns. In 0204, the temperature range of the CUFES stations is colder than that

in 0304, supporting the idea that either stronger upwelling by anomalous equatorward

wind or lateral transport from the north occurred. The salinity of 0204 CUFES stations

is distributed toward higher values than 0304. Thus, the intensity of the upwelling is a
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possible factor in determining the different water properties in 0204 and 0304, instead of

lateral transport from the north that makes the water cold and fresh. Although the T and

S values at CUFES stations are in different ranges, the stations with high egg density

have similar T-S ranges in those two time periods, suggesting an existence of preferred

sardine spawning habitat.

Chlorophyll-a data is useful to diagnose other factors affecting the sardine egg

data. Weber and McClatchie (2010) suggest that the probability for capturing eggs

generally increases with chlorophyll-a level unless it is very high and in a bloom state.

From the analysis by Reiss et al. (2008), most of sardine eggs were found in the

water whose chlorophyll-a level is roughly 1mg/m3. Monthly averaged near-surface

chlorophyll-a data was obtained from the NASA Sea-viewing Wide Field-of-View

Sensor (SeaWiFS) for 0204 and 0304, and plotted in logarithmic scale in figure 4.3.

The chlorophyll-a level at the coast is generally greater in 0304, but the level offshore is

greater in 0204. In 0204, the equatorward wind was stronger, which can cause stronger

offshore transport. Thus, it is plausible that the high level of chlorophyll-a coastal water

was spread over a broader area, decreasing the coastal chlorophyll-a level and increasing

offshore chlorophyll-a level.

4.3 Physical Ocean Model Simulations

In this experiment, the ROMS four-dimensional variational data assimilation

(4D-VAR) system (Moore et al., 2011c) is used to estimate the ocean states for

0204 and 0304. The model domain covers 30◦N to 38◦N and 126◦W to 115.7◦W

with an approximately 9km grid interval. It has 42 terrain-following vertical levels

that are concentrated more at the surface and ocean bottom. Background initial and

boundary conditions were extracted from the data-assimilation data set of Broquet et al.

(2009), and the surface boundary conditions were given from 9km resolution Coupled

Ocean/Atmosphere Mesoscale Prediction System (COAMPS R©) (Hodur et al., 2002;

Doyle et al., 2009) using bulk formulation (Fairall et al., 1996).

The ROMS 4D-VAR system collects observations over a defined assimilation

time window and can adjust the initial condition, surface forcing, boundary conditions
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and model itself with given errors. In this experiment, data assimilation has been done

using SST data from the 4km resolution advanced Very-High-Resolution Radiometers

(AVHRR), along-track SSH anomaly data produced by Ssalto/Duacs and distributed by

AVISO, hydrographic T and S from the CalCOFI program, Argo profiles and CUFES

surveys. The fit is achieved by adjusting the initial condition and surface forcing to

allow the model simulation to fit the observed data in a least square sense.

The data set by Broquet et al. (2009) is already data assimilated, but the

assimilation time window is 7 days, which causes dynamical inconsistency every 7 days

when the initial conditions are re- set. We here set the assimilation window to be one

month, which guarantees a dynamically balanced ocean state for the experiment time

period. Also the observations used in the data assimilation experiment are different from

the dataset by Broquet et al. (2009). We use along-track satellite sea level height data

instead of gridded satellite data that were used in the data set by Broquet et al. (2009).

While we use the SST data from satellite, Broquet et al. (2009) chose COAMPS R© data

set as SST observations. T and S from CUFES survey are added in the data assimilation,

too. Details of data assimilation for 0204 and 0304 are described in chapter 3.

A one month run of the ROMS adjoint model is also used to track the water

sources for the areas of interest. The adjoint model gives the gradient of defined scalar

quantity with respect to model variables at every grid point over time. Thus, it is a

great tool for a sensitivity test. If we define the passive tracer concentration as a scalar

quantity (like injecting the passive tracer in the adjoint model), then the adjoint model

results can be interpreted as the source waters if there are no sources or sinks because

the passive tracer is only either advected by the current or diffused by the concentration

difference (Fukumori et al., 2004; Chhak and Di Lorenzo, 2007; Song et al., 2011). The

adjoint model can further quantify the contribution of the source waters to the area of

interest.



73

4.4 Horizontal distribution of eggs

4.4.1 Wind forcing and surface current

As a result of an anomalously strong North Pacific High in 2002,

upwelling-favorable wind became stronger than normal over the CCS in 0204. In 0304,

an unusually strong Aleutian Low drove the upwelling-favorable wind to be weaker

than normal over the CCS. This is shown in figure 4.4, which plots the wind stress (a,

b) and wind stress curl (c, d) during 0204 and 0304 after the ROMS 4D-VAR system

adjusted the COAMPS R© wind forcing. The direction of the wind stress is equatorward

in both months, but the magnitude of the wind stress is stronger in 0204 than in 0304

(Fig. 4.4-(a,b)), resulting in more coastal upwelling. In figure 4.4-(c, d), only the

positive values of the wind stress curl are plotted in order to indicate the areas with

upwelling by Ekman pumping. The wind stress curl in 0204 shows higher values near

Point Conception than in 0304, and it is positive over a broader area between Point

Conception and Monterey Bay. This implies the divergence of the surface water and

more upwelling by Ekman pumping.

Anomalous upwelling-favorable wind drives more offshore transport in 0204.

Figure 4.5 shows the surface current in two different months with the horizontal

distribution of sardine eggs. Comparing to 0304, the surface current in 0204 has a

direction from the coast to offshore. This flow can carry the upwelled water with a high

level of chlorophyll-a to the offshore in 0204 (Fig. 4.3-(a)), resulting in an extension

of the favorable spawning habitat for sardine. The offshore transport, however, cannot

be directly responsible for the horizontal distribution of eggs. Eggs are usually hatched

in 72-96 hours after spawning in 12− 14◦C water (Lo et al., 1996), so they can travel

less than 70km with a current of 0.2ms−1. For comparison, most of CalCOFI stations

are about 74km apart (Weber and McClatchie, 2010). In 0304, the main feature of the

surface current is equatorward flow whose location roughly coincides with the offshore

edge of the sardine eggs distribution.
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4.4.2 Sardine spawning habitat

As addressed in Reiss et al. (2008), the Pacific sardine spawning habitat is

strongly influenced by the SST field. Figure 4.6-(a, b) shows the data-assimilated

SST and Pacific sardine eggs distribution, compared with the AVHRR monthly mean

data (Fig. 4.6-(c, d)). First of all, SST from the ROMS data assimilation system

shows a similar pattern and scale to the observed SST. While the infrared AVHRR has

missing values in the monthly mean SST due to the contamination by clouds or by

errors in processing the data, the data-assimilated SST can provide a complete picture

of time-dependent SST, and follow the observed one closely.

Monthly averaged April SST in 2002 is colder than in 2003 by 0.7◦C. Although

SST can be affected by the surface properties, colder SST is mainly due to more

upwelling in 0204 as is evident in figure 4.2. Since the offshore transport is stronger

in 0204, upwelled, cooler water can be transported farther offshore, resulting in

gradual cross-shore SST changes. Stronger Ekman pumping in 0204 also can make

the cross-shore SST gradient reduced by pulling up the cool subsurface water to the

surface. In contrast, the SST in 0304 shows a pattern parallel to the coastline, which

can be evidence of weaker offshore transport. As discussed earlier, temperature is a

determining factor for spawning habitat. In both 0204 and 0304, most sardine eggs

were also found in the areas of the temperature in the range of 12.5-15◦C, explaining

the horizontal distribution of the Pacific sardine spawning habitat well.

Checkley et al. (2000) characterized the spawning habitat of the Pacific sardine

as a transition zone from the newly upwelled water near the coast to the California

Current offshore. Figure 4.7, which shows the vertical section of water density (filled

contour) with alongshore wind stress (black solid line) and the sardine egg counts (blue

bars), agrees well with the previous study. In 0204, stronger coastal upwelling causes the

isopycnal of 25 to outcrop at about 100km offshore, while it outcrops at less than 50km

from the coast in 0304. This indicates that newly upwelled water occupies a broader area

near the coast in 0204 than in 0304. The width of the coastal upwelling zone, which is

from the coast to about 60km offshore in 0204 and from the coast to about 25km shore

in 0304, appears to determine the area with no sardine eggs. Stronger offshore transport

may be responsible for the observed eggs offshore in 0204 as it can carry upwelled
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nutrient rich water farther offshore and broaden preferred spawning habitat.

Broader sardine spawning habitat in 0204 appears to be related to the wind

stress curl, too (Rykaczewski and Checkley, 2008). In 0204, positive wind stress curl

occurs from the coast to nearly 120km offshore, forcing the surface water to diverge and

inducing open-ocean upwelling. In contrast, the positive wind stress curl is seen only

from the coast to 50km offshore in 0304. Then the curl becomes close to zero farther

offshore. Combined with strong offshore transport, stronger open water upwelling in

0204 is capable of increasing the nutrients level near the surface, which might be another

possible explanation of the observed sardine eggs farther than 200km offshore.

4.4.3 Adjoint model results

As discussed in section 4.3, the adjoint model with a passive tracer can not only

identify the location for source waters for the area of interest, but also quantify the

relative contribution of the source waters. In order to spot the source waters to the

western edge of the observed sardine spawning area in 0204, we introduce perturbations

to the passive tracer from the surface down to −10m at two different areas marked as A

and B in figure 4.8 on April 30th of both years, and execute the adjoint model for one

month backward. Although the time scale of the adjoint model run is much longer than

the sardine egg lifespan (< 3 days), identifying the source waters is useful to explain the

water properties that can be linked to the sardine egg distribution.

Figure 4.8 shows the results of the adjoint model run on April 1st in 2002

(left two columns) and 2003 (right two columns) at −3m (top), −20m (middle) and

−75m depth (bottom). Colors represent the normalized sensitivity of passive tracer

concentration in log10 scale. If the sensitivity in log10 scale at a certain grid point is −2,

a perturbation of 1 at that grid point can induce a perturbation of 10−2 or 1% changes in

passive tracer concentration summed over the area of interest.

The water sources for the offshore areas of interest can be found mostly from

onshore areas in 0204 (left two columns in figure 4.8). After a month of adjoint model

simulation, 64.27% and 98.89% of the initial passive tracer concentration still remain in

the model domain for A and B, respectively (Table 4.1). In 0304, the patches of passive

tracer reflect the surface current as an indication of advection (Fig. 4.5-(b)). Although
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Table 4.1: Percentage (%) of the passive tracer remained in the domain on April 1st of

2002 and 2003. The initial perturbation was set up at A, B, C and D in figure 4.8 and

4.10 on April 30th of 2002 and 2003, and the adjoint model computes the percentage

of the passive tracer concentration left inside of the domain on April 1st by running

backward in time. The percentage of the passive tracer in upper −3m (sfc) and below

−3m (sub) on April 1st of 2002 and 2003 are also computed.

A B C D
sfc sub sfc sub sfc sub sfc sub

2002 April
64.27 98.89 99.92 100

38.90 61.10 39.33 60.67 32.64 67.36 6.62 93.38

2003 April
42.11 76.96 90.58 99.60

28.68 71.32 32.48 67.52 28.22 71.78 3.41 96.59

the water in the areas of interest is generally supplied from onshore, a significant portion

of passive tracer comes from outside of the domain by showing less percentage of

passive tracer concentration found in the domain on April 1st (Table 4.1).

The passive tracer is also found subsurface on April 1st in both 0204 and 0304. In

fact, the contribution of the subsurface water to the areas of interest is greater than the

surface water (Table 4.1). It is, however, due to vertical diffusion rather than Ekman

pumping as the wind stress curl is not positive (Fig. 4.4). Thus, strong offshore

transport is likely the primary reason for the roughly 1mg/m3 level of chlorophyll-a

in the offshore region (Fig. 4.3- (a)), and the consequent extension of the spawning

habitat, by carrying the nutrient rich water to offshore in 0204, rather than open ocean

upwelling.

4.5 Concentration of eggs

4.5.1 Size of spawning habitat

Although the sardine eggs were found over broader areas in 0204, the egg

concentration was higher in 0304 as some stations sampled more than 500 eggs/m3
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(Fig. 4.1). The total number of eggs was also higher in 0304, with the samples showing

more than double the total number of the one from the 0204 cruise. One of several

possible explanations for high concentration of eggs is the size of spawning habitat. If

we consider the areas whose temperature is between 12.5−15◦C as the Pacific sardine

spawning habitat, the size of total spawning habitat in 0304 is much smaller than in 0204

(Fig. 4.6). Although it is hypothesized that high population of the sardine expands its

occupying areas (Reiss et al., 2008), it is obvious that smaller size of spawning habitat

can result in higher concentration of the Pacific sardine eggs if the spawning biomass

is comparable. Thus, combined with the greater numbers of eggs, the smaller size of

spawning habitat in 0304 can lead to the high concentrations of sardine eggs.

4.5.2 Convergence of the surface water

Another possible explanation for higher egg concentrations in 0304 is the surface

water convergence. Once the spawning occurs, sardine eggs can drift along with the

current. During the approximately 3 days between spawning and hatching (the time to

hatching is temperature-dependent), eggs can be transported up to 75km by a current

of 0.3ms−1. This is approximately the distance between standard offshore CalCOFI

stations (hence not responsible for the horizontal distribution of eggs), and the eggs

can be re-distributed within that range. The sardine eggs are neutrally buoyant and

floating near the surface, hence it is plausible to find higher concentration of eggs at the

convergence areas.

Figure 4.9 shows the mass divergence (ρ∇ · u) at the surface for 0204 (a) and

0304 (b). Only the areas with negative values of divergence (or convergence) are plotted

in blue with the sardine eggs distribution in black dots. In both months, converging

areas are observed near the coast as the coastal upwelling complicates the convergence

/ divergence patterns. Compared to 0204, offshore converging areas appear closer to

the coast in 0304, and high concentrations of sardine eggs are roughly aligned with that

convergence zone (Fig. 4.9-(b)). The autocorrelation of the divergence generally decays

to zero after 3-day lag (not shown), which is the egg lifespan. Thus, it is plausible that

the convergence of the surface water can increase the concentration of the sardine eggs.

In 0204, the offshore convergence zones are farther from the coast as the stronger wind
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leads to stronger offshore transport than in 0204. Hence the sardine eggs are more likely

to be spread over broader areas, which might result in lower concentration of the sardine

eggs.

4.5.3 Water properties at the sources

The other possible explanation for higher sardine egg concentrations in 0304 is

the properties of the source waters. Figure 4.10 shows the adjoint model results when the

passive tracer is injected into C and D (black boxes) where the high egg concentration

is observed in 0304. As mentioned earlier, the adjoint model results can be interpreted

as the source waters, hence it is useful to diagnose the source waters’ properties.

The passive tracer patches on April 1st for the offshore initial perturbation, C, are

generally distributed on the northern part of the domain. However, it is only in 0304 that

the coastal areas near San Francisco supply the water to the initial perturbation location.

This reflects the equatorward California Current that is located closer to the coast in

0304 (Fig. 4.7). As seen in figure 4.3, chlorophyll-a level is higher at the coastal area

due to the coastal upwelling. Thus, nutrient rich water can be supplied to the area C in

0304. The high abundance of eggs at other stations located at the areas of source waters

at −3m depth for C also supports the nutrient richness of water. 0204 and 0304 show

similar source waters for D. Upwelling is the primary mechanism to bring the subsurface

water to the area of D (Table 4.1), and its source can be found onshore from both the

north and the south where high levels of chlorophyll-a occur (Fig. 4.3). However, the

water in D may be more favorable for the Pacific sardine to spawn due to the fact that

the chlorophyll- a level in the source waters in 2003 is generally greater than in 2002.

4.6 Discussion

The California Current System (CCS) experienced dramatic changes during

the transition from 2002 La Niña to 2003 El Niño. Equatorward upwelling favorable

wind was stronger than normal in 2002 April (0204) and a negative SST anomaly was

observed. Then, the unusually strong Aleutian Low weakened the upwelling favorable

wind, and it resulted in a positive SST anomaly in 2003 April (0304). In order to
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investigate the physical processes that occurred in the CCS due to these basin scale

climate forcing influences, we executed the ROMS simulations using the 4D-VAR

system. The fits assimilated sea surface height, sea surface temperature (SST) and

hydrographic temperature and salinity data for April of both years.

The Pacific sardine egg data sampled by CUFES showed different patterns in

horizontal distribution and egg concentration in 0204 and 0304. The sardine eggs were

found over a broader area offshore in 0204. The data assimilation using the ROMS

4D-VAR system for 0204 and 0304 successfully provided the dynamically consistent

physical ocean states as well as the adjusted atmospheric surface forcing to interpret

these conditions. Although it provided only the physical variables, it is useful to

understand the link between the observed interannual variance of the sardine spawning,

and the variance of basin scale atmospheric forcing and the oceanic responses. The

adjoint model runs with passive tracer were also beneficial in identifying the source

waters for key areas of interest to sardine spawning.

Anomalously strong equatorward wind forcing drove stronger offshore

transport, resulting in the extension of the preferred spawning habitat for sardine.

Schwing et al. (2002b) also pointed out upwelling filaments and relatively high surface

chlorophyll concentration as two main causes for the sardine eggs found offshore in

0204. The location of the California Current core also limits the spawning habitat. The

higher concentration of egg and the total sampled egg number in 0304 can be partially

explained by (a) the smaller size of spawning habitat, (b) the convergence of the surface

current and (b) the nutrient richness of the source waters. These three effects were

quantified using the model fits of the limited observations.

There are, however, still many unknown factors that can control the sardine egg

distribution. Sampling timing is an important factor to affect the observed distribution

of eggs. CUFES April surveys are not necessarily executed at the peak spawning period.

In some years, spawning can happen early spring while it happens late spring in other

years. Thus the total egg number and the concentration of eggs can be different if the

sampling misses the peak of spawning. The limitation in the spatial coverage of the

cruise can change the apparent horizontal distribution as well. In 0204, the areas with

temperature between 12.5◦C and 15◦C extended farther offshore beyond the western
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limits of the transects. Thus it is plausible that more eggs could be sampled if the cruise

had gone farther to the west, and this eventually affects the total number of sampled

eggs.

Lack of zooplankton data also prohibits the thorough analysis of the sardine

egg distribution. Lynn (2003) showed a positive correlation between the zooplankton

distribution and the sardine egg distribution. Hence the data of zooplankton can provide

us with valuable information about the feeding condition for sardine and the spawning in

two time periods. These dynamically consistent physical ocean states can now provide

the basis for running ecosystem models during these time periods to better represent

lower trophic level response to changing physical ocean conditions. This aspect of the

response will be explored in future work.
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Figure 4.1: CUFES stations and subsurface observation locations used in the data

assimilation for April 2002 (a) and 2003 (b), and the pacific eggs counts at each CUFES

station in 2002 (c) and 2003 (d) April. Colors and the sizes represent the eggs/m3 in (c)

and (d).
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Figure 4.2: Temperature-salinity diagram from April 2002 (top) and 2003 (bottom)

CUFES surveys. Dots represent T and S at all CUFES stations, and filled circles, and

squares represent T and S at stations where the eggs number is greater than 100 eggs/m3

and 500 eggs/m3, respectively. Grey colored marks on both top and bottom panels show

the whole CUFES data from 1996 to 2010. Blue (red) colored marks on the top (bottom)

panel represent the CUFES data in 0204 (0304).
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Figure 4.3: Surface chlorophyll-a from SeaWIFS for 2002 (a) and 2003 (b) April. The

chlorophyll-a levels are plotted in log10 scale. White gaps show the areas with bad data

quality.
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Figure 4.4: Wind stress (top) and wind stress curl (bottom) averaged over April in 2002

(left) and 2003 (right) after data assimilation. In (c) and (d), only positive values of wind

stress curl are plotted in order to indicate the areas of Ekman pumping upwelling.
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Figure 4.5: Pacific sardine eggs distribution and the surface current in 2002 (a) and

2003 (b) April. Bigger red dots represent more sardine eggs found. The magnitude of

the surface current is shown with color. The darker the arrow is, the stronger the current

is.
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Figure 4.6: Pacific sardine eggs distribution over the SST from the data assimilated

model (a, b) and SST from AVHRR monthly mean (c, d) for 2002 (a, c) and 2003 (b,

d) April. White gaps in (c, d) mean the areas with bad data quality. White and black

contour lines represent 12.5 and 15◦C isotherms.
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Figure 4.7: Alongshore wind stress (black solid lines), sardine egg counts (blue bar)

and density (filled contour) from the surface to −100m depth along the section A-B in

figure 4.1 for 2002 (top) and 2003 (bottom) April. The values for wind stress is negative,

meaning equatorward.
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Figure 4.8: Results of the one month ROMS adjoint model experiments at −3m,

−20m and −75m depth during 2002 and 2003 April. Colors represent the normalized

sensitivity of passive tracer concentration in log10 scale at April 1st . Passive tracers

were injected in two different areas (block boxes) at the surface at April 30st . Black dots

represent the CUFES survey locations where the Pacific sardine eggs count is non-zero.
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Figure 4.9: Mass divergence (kgm−3s−1) at the surface for 2002 (a) and 2003 (b) April.

Only the areas with convergence (negative) are plotted in blue. White color represents

the areas with divergence.
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Figure 4.10: Same as figure 4.8 with initial perturbation of passive tracer placed in

different areas.
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Abstract

A new approach is proposed to address the background covariance limitations

arising from under-sampled ensembles and unaccounted model errors in the ensemble

Kalman filter (EnKF). The method enhances the representativeness of the EnKF

ensemble by augmenting it with new members chosen adaptively to add missing

information that prevents the EnKF from fully fitting the data to the ensemble. The

vectors to be added are obtained by back-projecting the residuals of the observation

misfits from the EnKF analysis step onto the state space. The back-projection is done

using an optimal interpolation (OI) scheme based on an estimated covariance of the

subspace missing from the ensemble. In the experiments reported here, the OI uses a

pre-selected stationary background covariance matrix, as in the hybrid EnKF/3DVAR

approach, but the resulting correction is included as a new ensemble member instead of

being added to all existing ensemble members.

The adaptive approach is tested with the Lorenz-96 model. The hybrid

EnKF/3DVAR is used as a benchmark to evaluate the performance of the adaptive

approach. Assimilation experiments suggest that the new adaptive scheme significantly

improves the EnKF behavior when it suffers from small size ensembles and neglected

model errors. It was further found to be competitive with the hybrid EnKF/3DVAR

approach, depending on ensemble size and data coverage.
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5.1 Introduction

Data assimilation (DA) combines numerical models and data to determine the

best possible estimate of the state of a dynamical system (Ghil and Malanotte-Rizzoli,

1991). DA methods were historically grouped into two categories: variational methods

based on optimal control theory which seek the model trajectory that best fit the data

over a given period of time (Le Dimet and Talagrand, 1986), and sequential methods

based on statistical estimation theory which optimally combine model outputs and the

most recent data according to their respective uncertainties (Todling, 1999).

The Kalman filter (KF) is a sequential DA scheme that provides the optimal state

estimate for linear models with Gaussian errors (Kalman, 1960). The KF alternates

a forecast step to integrate the most recent estimate forward in time with an analysis

step to update (and correct) the forecast with new observations. However the use of

the KF for realistic atmospheric and oceanic problems is not feasible for two reasons

(Ghil and Malanotte-Rizzoli, 1991): the nonlinearity of these systems, and the huge

state dimensions (typically of the order of 108− 109). The first means that the KF is

not optimal, and the second makes the computational burden for manipulating the error

covariance matrices needed for the filter algorithm prohibitive.

The Ensemble Kalman filter (EnKF) has been introduced by Evensen (1994)

to solve the problems with the KF. It represents the uncertainties around the KF

state estimates by an ensemble of state vectors, in place of computing the filter error

covariance matrices. The time update of the uncertainties is carried out through the

integration of the ensemble with the full nonlinear forward model, avoiding some of

the problems that arise from the linearization of the system (Evensen, 1994). The

current uncertainty in the model parameter estimates is represented by the sample

covariance matrix of the ensemble, also known as the background covariance. Accurate

description of the background covariance matrix is critical for the performance of any

data assimilation scheme as it describes the spatial and multivariate structure of the

analysis increment (Lorenc, 2003; Hamill and Snyder, 2000).

Accounting for model deficiencies and small ensemble size remain a significant

problem for EnKF assimilation, as they limit the accuracy of the estimated background

covariance. Neglecting model errors results in underestimates of the background
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covariance matrix and ensemble spread, which degrades the fit to observations (Hamill

and Whitaker, 2005). Various techniques (e.g. covariance inflation and relaxation, and

additive stochastic noise) have been used to partially compensate for the negative effects

of model errors in the EnKF (Hamill and Whitaker, 2005; Hoteit et al., 2007). These

techniques require a priori knowledge about the nature and the statistics of all sources of

uncertainties in the model which is not often available. Despite continuous progress in

computing capabilities, application of the EnKF to computationally demanding models,

such as realistic atmospheric and oceanic models, still incurs large computational costs

for integrating the ensemble forward in time. This sets severe limits on the size of

the ensemble that can be used in practice. Running a small ensemble implies that the

EnKF sample covariance matrices will have “low rank” 1, meaning that they only span

a small region of the state space. Because the KF correction is only applied along the

N − 1 directions (where N is the size of the ensemble) of the subspace generated by

the ensemble (Pham, 2001; Hoteit et al., 2002), the filter’s correction may not be able

to efficiently fit the observations. This problem, called the rank deficiency problem

of the EnKF (Houtekamer and Mitchell, 1998; Hamill and Snyder, 2000), can impair

the performance of the filter analysis in realistic applications where the number of

members that can be integrated by the model is much smaller (typically of the order

of 10− 100 members) than the rank of the state error as reflected by the misfits with

observations (can be of the order of thousands). Localization of the filter correction

was first used in the context of the EnKF by Houtekamer and Mitchell (1998) as a way

to “artificially” increase the effective rank of the covariance matrix without using more

ensemble members. Localization should be used carefully because it might introduce

undesirable artifacts into the analysis (Hamill and Snyder, 2000) and eliminate real

non-local correlations created by the sampling and the dynamics (Hoteit et al., 2001).

Neglecting model errors and the use of small ensembles generally mean that a

significant part of state space is not represented by the ensemble, producing unrealistic

confidence in the filter forecast. In both cases, important features may be omitted from

the EnKF analysis, which might degrade the filter behavior or even lead to divergence

in certain situations. The hybrid EnKF/3DVAR (or EnKF-OI) approach was introduced

1The rank of the sample covariance matrix is at most equal to the size of the ensemble minus one
(Pham, 2001).
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by Hamill and Snyder (2000) to reduce the impact of ensemble sampling errors in the

EnKF. This method adds an empirical, stationary covariance matrix B to the EnKF

“flow-dependent” sample covariance matrix (see Wang et al. (2007) for a review). The

matrix B is assumed to represent the gravest modes of the system, ensuring that they

are represented in the EnKF correction subspace. Although augmenting the ensemble

by the modes of B in an ad hoc manner is not optimal, it at least guarantees that the

EnKF correction is not discarding important features of the system. Adding B to the

background covariance ideally also accounts for model errors. Hence the choice of B

is crucial and different forms have been tested in practice (Hamill and Snyder, 2000;

Lorenc, 2003; Buehner, 2005).

In this work, we introduce a new, but closely related, adaptive approach to

improve the representativeness of the EnKF ensemble by “enriching” it with members

estimated from the missing part of the state space that prevents the EnKF from fitting

the data. Adaptivity has been already used by Mitchell et al. (2002), but in the context

of the EnKF to estimate parameters controlling the model error covariance matrix while

tuning the innovation covariance matrix. The vectors that will be added to the ensemble

are obtained by back-projecting the residuals of the analysis step from data space to

state space. The transformation to state space is achieved using an optimal interpolation

(OI) scheme based on pre-selected stationary background covariance matrix B, as in the

hybrid EnKF/3DVAR approach. In contrast with the hybrid approach, the new approach

targets specific directions of B to enrich the EnKF ensemble. This should minimize the

unnecessary structure in the analysis by limiting the augmentation of the background

covariance matrix B. The EnKF and OI analysis steps are further applied separately

which offers more numerical and implementation flexibility. For instance, a 3DVAR

step can be used instead of an OI for complex forms of B.

The paper is organized as follows. After briefly recalling the characteristics of

the EnKF, the new adaptive EnKF is described in section 5.2. Section 5.3 presents

a theoretical derivative and justification of the adaptive approach and compares it to

the hybrid EnKF/3DVAR. Results of numerical experiments with the Lorenz-96 model

(Lorenz and Emanuel, 1998) are then presented and discussed in section 5.4, followed

by a general discussion to conclude in section 5.5.
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5.2 The adaptive ensemble Kalman filter (AEnKF)

Starting from an initial set of ensemble states that supposedly represents the

uncertainties about the initial state estimate, the EnKF operates as a succession of two

steps: a forecast step to integrate the ensemble with the model forward in time, and an

analysis step to update each member of the forecast ensemble with the new observations.

After an analysis or a forecast step, the mean of the ensemble is the filter estimate. The

EnKF analysis is linear and is based on that of the KF. The analysis ensemble can be

written in matrix form as Evensen (2003)

Xa = X f +K
(

Y−HX f
)

, (5.1)

where Xa and X f are the matrices whose columns are the analysis and forecast

ensembles, respectively. Y is the matrix whose columns are the observation vector yo

perturbed with independent random noise generated from the probability distribution

function of the observational errors. The perturbed observations are introduced so that

the EnKF analysis exactly matches the KF analysis (Burgers et al., 1998). H is the

linearized observational operator relating the model state to the observations. K is the

weighting matrix, also called the Kalman gain. It provides the best analysis among

linear estimates and is given by

K = PHT (HPHT +R
)−1

, (5.2)

where R is the observational error covariance matrix, and P is the sample covariance

matrix of the forecast ensemble. For an ensemble of N members,

P =
1

N−1

(
X f − X̄ f

)(
X f − X̄ f

)T
, (5.3)

with X̄ f is the matrix whose columns are the mean of the forecast ensemble. Explicit

computation of P is not needed if one computes PHT and HPHT with

PHT =
1

N−1

(
X f − X̄ f

)(
H(X f − X̄ f )

)T
, (5.4)

HPHT =
1

N−1

(
H(X f − X̄ f )

)(
H(X f − X̄ f )

)T
, (5.5)

as suggested by Houtekamer and Mitchell (1998). When the model is not perfect, P is

augmented by the covariance matrix of the model uncertainties.
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Pham (2001) argued that if large enough ensembles are used, ensemble Kalman

filters should be stable with linear perfect autonomous systems. This is because the

filter correction is made along the directions of the subspace generated by the ensemble,

which presumably evolve toward the fastest growing modes of the system. In this case,

one has only to use more ensemble members than the number of growing modes of

the system. In realistic atmospheric and oceanic applications, updating the ensemble

forward in time has large computational costs due to the huge dimensions of these

systems. The cost limits the size of the ensemble that can be considered in practice

(Houtekamer and Mitchell, 1998; Hoteit et al., 2002). Using small ensembles raises the

risk of omitting the filter correction for some important modes, which might degrade

the filter’s behavior. Hence the EnKF is characterized by its “rank deficient” covariance

matrices (Hamill and Snyder, 2000). Moreover, most dynamical models encountered in

practice, as in meteorology and oceanography, are not autonomous and are imperfect.

The number and the directions of the growing modes might therefore vary in time,

especially during some unstable periods (Hoteit and Pham, 2004). In this case, it is

difficult for the EnKF ensemble to follow newly triggered modes, and the filter behavior

might be seriously degraded during these periods. In the following, we introduce a new

adaptive approach to mitigate the background covariance limitations in the EnKF.

To describe the adaptive approach, we first define the residual vector r as

the difference between the filter analysis xa (the mean of the analysis ensemble Xa)

projected into the observation space and the observations,

r = yo−Hxa. (5.6)

In addition to observational errors, the residuals are the result of the missing directions in

the ensemble and poorly known model errors. The residuals carry information about the

part of the state space that prevents the filter estimate from fully fitting the observations.

The goal of the adaptive method is to enrich the ensemble with this information in order

to enhance its representativeness. Anderson (1996b) suggested that the projection of

the estimation error on the attractor of the Lorenz model is the most effective selection

of initial conditions for ensemble forecast. In the same manner, the residuals need to

be transformed from the observational space to the state space. An efficient way to do

that is to solve the following three dimensional assimilation problem where we seek the
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vector δxe that optimizes the cost function

J (δxe) =
1
2

δxeT B−1
δxe +

1
2

(r−Hδxe)T R−1 (r−Hδxe) , (5.7)

with B a covariance matrix representing the uncertainty that is missing from the

ensemble. This matrix controls the projection of the residuals from the observation

space to the state space. The use of the residuals to select the ensemble members to

be added is meant to limit the growth of the ensemble to directions indicated by the

observations but missing from the ensemble. The optimal solution of this problem is

given by (Lorenc, 1986)

δxe = BHT (HBHT +R
)−1 r. (5.8)

And the posterior covariance is then

Ba = B−BHT (HBHT +R)−1HB. (5.9)

An optimization algorithm can be used to optimize J if the matrix (HT BH + R) is not

easily invertible. Once δx is computed, the analysis ensemble Xa is augmented by the

new member

xa,e = xa +βδxe. (5.10)

The tuning factor β is included as a way to set the weight of the new member in the

ensemble. Larger values of β shift the mean of the new ensemble toward a state that

fits the observations. Setting β = N, the (new) number of ensemble elements, means

that the average of the new ensemble has been shifted by δxe. In experiments, however,

β = N often diverged, and β in the range from 1 to 2 was found to work well with

small ensembles, although this may depend on the particular choice of system and

observations. More discussion on the choice of the parameter β is given in section

5.4.3.

In the case of a perfect ensemble, the residuals with a perfect R are expected to

be mainly due to observational errors after some assimilation cycles. If the residuals

are known to be nearly pure observational errors, then B should be small. That means

HBHT << R, and the transformation of the residuals to the state space by the optimal
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interpolation step including R should produce a small δxe. Hence there would be no

point in doing the adaptive step if the distribution of the residuals was consistent with

R. If B is mistakenly taken to be large when it should be small, then the estimate

will not be small and noise will become part of the ensemble. Noise is already in the

EnKF to represent observational errors and this new method seems no more vulnerable

to mis-specified priors than others.

We are interested in the cases where the ensemble is not perfect, so that the

evidence for missing elements can be found in the residuals. In this study we included

random errors in the observations, so the effectiveness of our procedure in the presence

of observational errors was implicitly tested. Since our approach differs from the

“classic” EnKF only in the method for ensemble updating, its sensitivity to observational

errors and mis-specification of R should be similar to the EnKF.

The correction δxe is optimal (in the sense of (5.7)) given the residuals, the

sampling, the observational error covariance, and the background covariance. When

observations are sparse, the single estimate may not resolve the correct direction in state

space. Alternatively, a set of new ensemble elements can be taken from the first few

conjugate gradient descent directions in an iteration minimizing J. This would give more

weight on the steepest-descent direction, and would allow the addition of more than one

ensemble element, reducing the effects of the weighting matrix B. Another approach

would be to (randomly) sample more new members from the a posteriori distribution of

the estimated δxe. One way to sample m new members is to first apply a singular value

decomposition to compute a low m−1 rank approximation of the posterior covariance

matrix Ba of δxe, and then to use a second-order exact sampling scheme that preserves

the first two moments of the (approximate) distribution to draw the m members as

described by Pham (2001). The later approach was used in the experiments discussed in

section 5.4.3.

Adding even one member to the ensemble after every analysis step would

quickly grow the computational burden of integrating the new ensemble to a prohibitive

level. To avoid growth, members should be dropped from the ensemble to limit its

size. One heuristic approach is to drop the member(s) that contribute the least to

the ensemble spread, and so presumably carry the least amount of information. In
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the present study, the closest member to the ensemble mean was removed after every

analysis step. Distances between the ensemble mean and the members were determined

by the Euclidean norm normalized by the standard deviations of the model variables

from a long run.

5.3 Mathematical basis and relation to existing methods

This section presents a mathematical basis for the adaptive approach and

discusses its theoretical relation with the hybrid and inflation/localization approaches.

The derivation includes an ad hoc choice between what to add to existing ensemble

elements and what to convert to a new element.

Because the ensemble is only an approximation to the true uncertainties around

the state estimate, the true error covariance Pt can be written formally as

Pt = P+Pr, (5.11)

where P is the ensemble covariance given by (5.3) and Pr is the error in the ensemble

estimate of the true covariance. Usually the ensemble is thought to cover only a subspace

of the true covariance, so the error is a non-negative definite covariance matrix for the

remaining subspace, but this is not required in the following derivation.

Hybrid, covariance inflation, and covariance localization methods are all used

to estimate Pr, and any or all could be used to approximately account for the

underestimation and the rank deficiency of the EnKF. The hybrid method of Hamill and

Snyder (2000) relaxes the flow-dependent covariance matrix of the EnKF to B using a

weighting parameter α , so that the estimated true error covariance P̃t is

P̃t = αP+(1−α)B, (5.12)

as a way to represent the subspace missing from the ensemble. The weighting parameter

α takes values between 0 and 1.

Covariance inflation algorithms increase the ensemble variance by pushing

ensemble members away from the ensemble mean (Anderson and Anderson, 1999).

Localization algorithms reduce the impact of distant observation on a state variable
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(Houtekamer and Mitchell, 1998). This reduces spurious correlations and increases the

rank of the localized covariance matrix, allowing improved fits to observations. These

techniques were used in the assimilation experiments presented in section 5.4. The Pr

matrix is not explicit in localization, but could be obtained in principle by subtracting

the original covariance matrix from the localized matrix. This may not be practical, and

is not necessary.

Using the true covariance, the ideal Kalman gain would be

Kt = PtHT (HPtHT +R
)−1

, (5.13)

or, splitting Pt into ensemble and “missing” subspaces,

Kt = (P+Pr)HT (HPHT +HPrHT +R
)−1

. (5.14)

Note that the gain for the estimate of the residuals that is not part of the ensemble is

KR = R
(
HPHT +HPrHT +R

)−1
, (5.15)

where the subspace missing from the ensemble acts as an extra “noise” term inside the

inverse, Re = HPrHT .

Localization, inflation and hybrid methods all use the estimated Kt as the gain

for the ensemble elements, although the estimated Pt , which includes Pr, is no longer

the covariance of the ensemble elements in these methods. In contrast, the adaptive

approach separates the analysis step in (5.1) into a step updating the ensemble and one

estimating a new element. To see that one can use the ensemble covariance P in the

analysis step so that

K = PHT (HPHT +HPrHT +R
)−1

, (5.16)

and estimate an extra vector δxe using Pr in the analysis gain

Kr = PrHT (HPHT +HPrHT +R
)−1

. (5.17)

so that

δxe = Kr
(

yo−Hx f
)

. (5.18)
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This Kr is like the residual gain, so the estimate δxe can be thought of the model

space transformation of the residuals caused by an inadequate ensemble. Viewed this

way, it should not be added to the existing ensemble elements.

If Pr is entirely used in the ensemble update step, as in current methods, the

correction increments are added to all ensemble members. The proposed approach

allows a choice between adding similar increments to all members and adding a new

member (or replacing an old member with a new member - AEnKF approach). Although

no rigorous general case for the superiority of the latter has been found, one can argue

that in some applications the ensemble elements tend to converge to similar vectors

in state space so that there is large correlation between members (Houtekamer and

Mitchell, 1998). If this is the case, then adding the similar increments to each member

does not increase the rank of the ensemble, and adding a new member may be preferable.

Of course, the random perturbations added to the observations (to make Y) increase the

rank of the ensemble, but these represent observational uncertainty.

In the AEnKF, the new ensemble is then written as a concatenation of the old

ensemble (5.1) and the new element

Xa,e = [X f +K(Y−HX f )
... xa +βδxe]. (5.19)

Then, Xa,e is integrated to the next (forecast) time step through the fully nonlinear model

just as in the EnKF. If necessary, the ensemble could be reduced in size before the next

forecast step. Altering the ensemble so that the ensemble mean matches (5.17-5.18)

would require setting β = N in (5.10). This would however put too much weight

on the new direction, especially when the ensemble size N is large, and may further

cause overspreading of the ensemble and dynamical imbalances. Using β as a tuning

parameter enhanced the filter behavior in our experiments, which supports the idea of

improving the ensemble with a well chosen direction as in the AEnKF.

It might be desirable to combine the adaptive approach with existing methods as

localization and inflation. To do that, one can consider the above partition (5.11 - 5.17)

to be a tunable parameter, where Pr is separated into two parts, Pr = Pr1 +Pr2, the first

of which is used to update the ensemble, and the second of which is used to estimate the

new element. The two analysis gains are then

K =
(
P+Pr1)HT (HPHT +HPrHT +R

)−1
(5.20)
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for the ensemble and

Kr = Pr2HT (HPHT +HPrHT +R
)−1

. (5.21)

for the new element.

The optimal choice for Pr1 and Pr2 has not been shown in this study. Trials

could be run with Pr1 = 0 and a Pr2 constructed by both localization and an added B, or

both Pr1 and Pr2 could be weighted combinations of hybrid, localization, and inflation

methods. In the experiments reported below, inflation, localization and hybrid are used

to make Pr1. Hence, if Pr2 = 0, then the hybrid, localized, or inflated EnKF is recovered,

and no extra element is generated.

The δxe in (5.8) is estimated from the observation misfit after the ensemble

analysis. To put the estimate derived in (5.18) into the form of (5.8), we first substitute

(5.21) into (5.18)

δxe = Pr2HT (HPHT +HPrHT +R
)−1
(

yo−Hx f
)

= Pr2HT (HPr2HT +R)−1(HPr2HT +R)(HPHT +HPrHT +R)−1(yo−Hx f ).

(5.22)

Recalling that Pr2 = Pr −Pr1 and adding and subtracting the term HPHT , the above

equation can be rewritten as

δxe = Pr2HT (HPr2HT +R)−1[
I−H(P+Pr1)HT (HPHT +HPrHT +R)−1](yo−Hx f )

= Pr2HT (HPr2HT +R)−1[
yo−H{x f +

(
P+Pr1)HT (HPHT +HPrHT +R

)−1
(yo−Hx f )}

]
= Pr2HT (HPr2HT +R)−1

[
yo−H{x f +K(yo−Hx f )}

]
= Pr2HT (HPr2HT +R)−1(yo−Hxa). (5.23)

This is exactly the same form as (5.8) with Pr2 taking the place of B. To exactly match

the EnKF update (5.1-5.2), the term Re = HPrHT must be omitted from the matrix

inverted in the expression of the gain matrix (5.16) used to update the ensemble, as in

some approximate methods (Hamill et al., 2001).
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The new vector estimated in (5.10) using (5.23) contains information missing

from the ensemble, and including it as a new ensemble member in the EnKF is expected

to enrich the ensemble with missing information, which is the main idea behind the

AEnKF.

Localization, inflation, and hybrid (LIH) methods add freedom to fit the data

by increasing the rank of the estimator and/or by amplifying the background error

covariance, altering the gain K, but do not increase the diversity of the ensemble directly

in the EnKF since the increments added to the ensemble elements are similar except for

the perturbed observations. In addition, all three methods (LIH) dilute the information

contained in the ensemble by altering or augmenting the covariance. The ensemble

defines the subspace in which the solution is thought to lie, and this information is

expensively propagated between analysis steps. As the ensemble covariance is modified

by LIH, this information is partially ignored, and the solution may be taken from a

“broader” subspace with increased rank and/or variance.

The increased freedom to fit the observations comes at the expense of losing the

information accumulated from previous observations. So, for example, the limiting case

of using strong localization to reduce the residuals in the analysis step would create a

diagonal data-data covariance matrix to be inverted. This would allow an excellent fit to

the observations, but most information in the ensemble would be lost. The hypothesis

motivating the AEnKF is that in some cases a subspace outside that spanned by the

ensemble may grow, (for example, due to a forcing error), and this will manifest itself

as increasing residuals. The residuals can be decreased by LIH methods, but at the

expense of some of the information in the ensemble. Back-projecting the residuals to a

new element preserves the information in the ensemble and increases diversity because

the new vector is a back-projection of a vector (the residuals) which is not contained in

the forward projection of the ensemble subspace to observation space: HX f . AEnKF

strives to balance preserving covariance structure and diversifying the ensemble.

In the example shown below, the new elements are estimated using the hybrid

method idea of representing the information missing from the sampled covariance

matrix of the EnKF by an invariant 3DVAR background covariance. The adaptive

approach does not use the “improved” background covariance matrix to correct the
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forecast ensemble as in the hybrid approach. Instead, it “complements” the EnKF

error covariance by the 3DVAR background covariance. The projection of the analysis

residual onto the subspace spanned by this matrix using the adjoint of the observational

operator is then included as a new member in the ensemble. This new information is next

propagated in time through the evolution of the ensemble by the nonlinear dynamics of

the model. The parameter β introduced in (5.10) plays a similar role to α in the hybrid

approach in (5.12) in adjusting variance scaling.

5.4 Numerical experiments

5.4.1 Model description and cases examined

To study the behavior of the AEnKF, assimilation experiments were performed

with the strongly nonlinear Lorenz-96(L96) model (Lorenz and Emanuel, 1998). This

model is widely used in the assimilation community to test EnKF-based schemes

(Whitaker and Hamill, 2002) and provides a repeatable performance benchmark.

Similar to the atmospheric system, L96 has energy conservation, non-linear advection

and linear dissipation, sensitivity to initial conditions and external forcing. It is

described by the following set of differential equations:

dx( j, t)
dt

= x( j−1, t) [x( j +1, t)− x( j−2, t)]− x( j, t)+F, (5.24)

where, j = 1,2, . . . ,L and x(−1, t) = x(L−1, t), x(0, t) = x(L, t) and x(L+1, t) =

x(1, t), with the choice of L = 40 and F = 8. L96 was discretized here using

Runge-Kutta fourth order scheme with a time step t = 0.05, which corresponds to 6

hours in real time. For F = 8, disturbances propagate from low to high indices (“west”

to “east”) and the model behaves chaotically (Lorenz and Emanuel, 1998).

Our goal in using the L96 is to test the AEnKF while exploring the impact of

ensemble size, model error and observational coverage, and comparing its performance

to the traditional EnKF and the hybrid EnKF/3DVAR. Because the example used to

test the adaptive approach has similarities to the hybrid approach in many aspects,

the performance of the hybrid EnKF/3DVAR was used as a reference to evaluate

the performance of the AEnKF. As discussed in section 5.3, all three filters were
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implemented and tested with covariance inflation and covariance localization as

described in Whitaker and Hamill (2002). Localization was implemented using the

fifth-order function of Gaspari and Cohn (1999). This function behaves like a Gaussian

function, but reaches zero at finite radius (Hamill et al., 2001). The setup of the

assimilation experiments presented below is very similar to that of Whitaker and Hamill

(2002), but we assimilated observations less frequently (every fourth time step, which

is equivalent to one day in real time) to mimic more realistic situations. Three different

observation strategies were also tested: observations sampled from all model variables,

every other model variable and every fourth model variable. For completeness, we

made sure that we were able to reproduce the results of Whitaker and Hamill (2002) in

our implementation of the filters. Observations were extracted from a reference model

run and were perturbed with normally distributed noise of mean zero and variance 1.

Accordingly, the observational error covariance R is set to the identity matrix.

To generate the filter initial conditions and the transformation matrix B, the

model was integrated for a long period of time, equivalent to several years in real time,

without assimilation. The mean and the covariance from the run were used for the

initial ensemble mean and the matrix B, respectively. Ideally, B should represent the

uncertainty that is missing in the ensemble as stated below (5.7). In this experiment,

we instead chose B that carries the uncertainty of the system as it is more practical, and

similar to the hybrid method. The starting ensemble members were generated by adding

independent Gaussian random perturbations with unit variance to each model variable.

The background error covariance for the EnKF and AEnKF was estimated according

to (5.3), and according to (5.12) for the Hybrid EnKF/3DVAR. The parameter α in

(5.12) was set to 0.1, after performing several assimilation runs with different values

of α , and the parameter β in (5.10) was set to 1 unless it is specified. All assimilation

experiments were integrated for 120 days (480 model steps), but only the last 100 days

were considered in the analysis of the results to exclude an early spin-up period of 20

days similar to (Whitaker and Hamill, 2002).

Three different cases are separately discussed hereafter to better assess the

behavior of the AEnKF when the EnKF background covariance matrix suffers from

errors due to sampling error only (or small ensemble), model error only (or large
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ensemble), and both sampling and model errors.

5.4.2 Case with only sampling error

In the first series of experiments, we examined the AEnKF in the situation where

the accuracy of the EnKF covariance matrix only suffers from sampling error (or small

ensemble). The same model (6.11) was used for the reference run and the filter forecast

for the no model error case. The filters were implemented with a small ensemble of 10

members to introduce sampling error in their background covariance matrices.

Figure 5.1 shows the root mean-square error (RMSE) between the reference

states and the filter estimates averaged over all 40 model variables and over the

assimilation period as they result from the EnKF, AEnKF and hybrid EnKF/3DVAR.

The RMSE was plotted as a function of the inflation factor and the length scale of the

covariance localization under three different observation strategies in which (i) all model

variables, (ii) every second variable, and (iii) every fourth variable were sampled every

day.

As expected, all three filters have smaller RMSE with denser observation

networks in all tested cases. Covariance localization and inflation clearly improve

the filters’ performance and can prevent the filters’ divergence in all three observation

strategies. Overall, the minimum RMSE is comparable for all three filters, but the shape

of the RMSE function varies with the observation strategies as well as with the filters.

When all variables are observed, the minimum RMSE of the AEnKF and EnKF are

very close, but the EnKF is more sensitive to the changes of the inflation factor and the

localization length scale. Therefore a small change in the value of the length scale of

the localization factor can easily cause the divergence of the EnKF.

If we write the term “stability” to indicate the insensitivity of the RMSE function

to the changes in the inflation factor and the localization length scale, hybrid scheme is

the most stable for all observation networks. But it has the largest RMSE minimum

with dense observation network. This may partially be due to the fact that relaxing

the EnKF covariance matrix to an invariant B introduces unnecessary features limiting

the hybrid filter’s performances. In contrast, the adaptive approach filters out these

features and yields RMSE close to the minimum value for any choice of inflation and
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localization. Although the RMSE functions for all filters are less stable when only half

of the variables are observed, the AEnKF provides the best solution. In the case with

even fewer observations, however, the residuals contain less information. This badly

affects the performances of the adaptive approach and limits its performance, although

its minimum RMSE is still among the lowest. Less observation network also degrades

the hybrid solution, but to a lesser degree than the adaptive.

To analyze the role of the newly generated member in the distribution of the

EnKF ensemble, the time evolution of the first model variable x(1, t) over a 21-day

period (between day 80 and day 100) as estimated by the EnKF and the AEnKF is

shown in figure 5.2 before (forecast) and after (analysis) applying the filters correction

step. Plots are shown for the case where observations of all model variables were

assimilated, and a localization length scale 10.95 and inflation factor 1.01 were used. In

this setting, the EnKF fails to accurately recover the reference states while the AEnKF

shows much better performance (Fig. 5.1). This provides a good test case to examine

how the addition of the back-projected residuals can improve the behavior of the EnKF.

In figure 5.2, the thin solid line represents the true state, the thick solid line represents the

mean of the ensembles (or the filter estimates), and gray lines represent the evolution of

all the ensemble members in time. The black dots in figure 5.2-(d) point to the locations

of the new members generated after every analysis step according to (5.10).

At day 83 both filters have a similar analysis quite close to the observation, and

similar spread (figures 5.2 (b) and (d)). As the system is integrated forward in time,

the differences between the distribution of the true states and the ensembles of the two

filters become more pronounced. At day 86, both filters fail to accurately forecast the

reference solution. Beyond this date, the EnKF misses the trajectory of the reference

states. Similar behavior of the EnKF is observed all over the assimilation window. The

decrease in the ensemble spread of the EnKF is generally associated with a weak fit to

the observations. In contrast, increased residuals allow more information to be available,

and the AEnKF seems to extract it effectively. The AEnKF new members are always

generated in such a way to enhance the distribution of the ensemble around the true

state, providing information about the part of the distribution that was misrepresented

by the filter ensemble. With enough information from the observations, the adaptive
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approach clearly allows the filter to adjust its ensemble when needed, enabling the filter

to accurately track the true trajectory of the system through the different model regimes

as can be seen from figure 5.2-(d).

5.4.3 Case with only model error

In this section we tested the AEnKF in presence of model error and evaluated

its performance with respect to the EnKF and the hybrid approach. To limit the

impact of the sampling error, a relatively large ensemble of 300 members was used,

supposedly enough to accurately represent the distribution of the filters’ covariance

matrices. Limitations in the filters’ background covariance matrices are then assumed

to be only due to model error.

To introduce model error in L96, the assimilation runs were carried out with

incorrect forcing F in (5.24). Specifically, F was set to 6 in the forecast model used

to update the ensemble forward in time, while the reference states were forced with

F = 8. Two different series of experiments were then performed. In the first series,

the model error was accounted for in the forecast model by adding centered Gaussian

noise with standard deviation equal to 2. This is the filter run with imperfect model. In

the second series, the model error was not accounted for in the filters, which means

that the model was assumed perfect. In all experiments performed in this section,

observations were sampled from all model variables and assimilated every day. Both

covariance localization and inflation were also used. Because of the large size of the

ensemble in these experiments, the AEnKF was more sensitive to the value of β and the

number of ensemble members to be replaced in the ensemble, and both were tested in

the experiments described below. In general, a larger value of β and more new members

both increase the impact of the back-projected information from the residuals, further

shifting the mean of the new ensemble toward the data.

Figure 5.3 shows the RMSE for filter runs using different values of inflation

factors and length scales of covariance localization. Results are shown for the cases

without (left bars - perfect model) and with (right bars - imperfect model) accounting

for the model error in the filters. From the left to the right, the five bars in each group

indicate the RMSE value of the EnKF, AEnKF, AEnKF with β = 5, AEnKF with 30
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new members, and hybrid EnKF/3DVAR, respectively. Each bar represents the averaged

error from 30 runs starting from different initial conditions. The 30 new members were

randomly generated using a second-order resampling scheme as discussed in section

5.2. These were added to the ensemble after removing the 30 members that contributed

the least to the spread of the ensemble.

Perturbing the forecast model with random noise can clearly account for the

model error (right bars). The differences in performance between the three filters

are insignificant and all three were able to accurately estimate the reference states.

Inflation and localization have almost the same impact on all filters and not surprisingly

best performances were obtained with higher inflation and stronger localization. The

adaptive and the hybrid approaches have almost insignificant impact on the EnKF. With

practically no sampling error and efficient accounting for model error, the EnKF is able

to accurately estimate the background covariance matrix and no extra treatments are

needed.

From the left group of bars in figure 5.3, one can see that not accounting for

model error can significantly degrade the performances of the EnKF. The EnKF behaves

best with strong localization and inflation, and this is also true for the AEnKF and the

hybrid filter. The better results obtained with the AEnKF over EnKF suggest that adding

only one member can enhance the representation of an ensemble of 300 members and

partially account for model error. This, however, is not enough to shift the mean closer

to the observations. Increasing the weight of the new member using β = 5 clearly

improves the performances of the AEnKF. Note that larger values of β might however

cause the divergence of the forecast model in the AEnKF. Adding more members (30)

to the ensemble is also beneficial and further improves the performance of the AEnKF.

More tuning to find the optimal parameters was not performed, but is expected to lead to

better results. Under this setup, the best performances were obtained with the AEnKF

with 30 new members although the differences in performances were not statistically

significant.

To better assess the behavior of the AEnKF, figure 5.4 plots the time evolution

of the first model variable x(1, t) over a 21-day period (between day 90 and day 110) as

it is estimated by the AEnKF with β = 5 and the AEnKF with 30 new members before
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(forecast) and after (analysis) the correction step. The inflation factor and localization

length scale were respectively set to 1.01 and 10.95 and all variables were sampled as

observations. The true state is plotted in thin black line. The filter ensemble members

are plotted in gray lines, and the ensemble mean (filter estimate) is plotted in thick

black. Black dots show the locations of the newly generated members. Error bars in

panel (d) indicate the range of the 30 new members. It is clear from figure 5.4-(b) that

a large value of β tends to increase the spread of the ensemble trying to improve the

fit to the observations. Larger values of β might shift further the position of the new

member. This might however destroy the dynamical consistency of the newly generated

member and can provoke the divergence of the forecast model. Adding 30 members

clearly improves the spread of the ensemble, resulting in better estimates of the model

variables. The new members are also shown to be more evenly spread around the filter

state. The analysis step always improves the distribution of the ensemble around the

true estimate. The true and estimated solution are located within the spread of the new

members, suggesting an efficient redistribution of the ensemble after every analysis step

with the AEnKF.

The results above suggest that the behavior of the AEnKF with large ensembles

can be improved with values of β greater than 1. The RMSE of the AEnKF with 300

ensemble members plotted in gray in figure 5.5 seems to converge to a lower value as

β increases from 1 to 5, although stronger localization and greater inflation reduce the

effect of β . With a small ensemble of 10 members, the RMSE of the AEnKF plotted

in black seems to be weakly sensitive to different values of β . This is because the new

member has a higher relative weight in an ensemble of 10 members than in an ensemble

of 300 members. These results suggest that the improvement of the ensemble is mainly

carried by the addition of the new direction and less by the weight of the new member.

With large ensemble, however, the error covariance is hardly changed after the addition

of one new member. A large value of β is then needed to increase the weight of the new

member in the ensemble in order to improve the ensemble spread. As β increases, the

information contained in the new member is better represented in the ensemble, resulting

in smaller RMSE. This is however only true up to a certain value because large values

of β could sometimes lead to a new member far away from the true trajectory of the
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system. The effect of the new member to the ensemble mean and the error covariance is

further discussed in the next section.

5.4.4 General case

In the last series of experiments, the filters were tested in a more realistic case

where both sampling error and model error are present in the system. The filters were

implemented with an ensemble of 10 members, causing sampling error in the EnKF

background covariance matrix. Model error was also included in the same way as in

the section 5.4.3. The model was assumed perfect, meaning that model error was not

accounted for in the filters. Cases where the model was assumed to be in error were also

run, but the differences between filters were not statistically significant as be seen from

the right groups of bars in figure 5.10.

The filters were implemented for three observation networks assimilating data

every fourth model time step (every day). The RMSE for each run is plotted as a

function of the localization length scale and the inflation factor in figure 5.6. As in

the perfect model case (without model error - Fig. 5.1), all filters show lower RMSE

with more observations. Not surprisingly, the RMSE of all filters is greater than in

the cases where either only sampling error or only model error was included. The

ranges of parameters which minimize the RMSE of all filters are also smaller, especially

in the case where fewer observations were assimilated. Larger inflation and shorter

localization length scales are generally needed for the filters to perform best. Overall,

AEnKF and hybrid EnKF/3DVAR are comparable showing the improvement over EnKF

in all three observation systems. For “quarter” sampling, the improvement is not as great

as other sampling cases which suggests the lack of new information for filters.

The rank histogram, also known as the Talagrand diagram, provides an

indication of the reliability of the filter ensemble (Hamill and Snyder, 2000). Ideally,

if an event has a certain probability of occurring, the ensemble should suggest the

same probability. This is true if the value of an observation (or of the true state if

available) has an equal chance to occur in any of the possible ranks relative to the

sorted ensemble (from low to high). Over many samples, this is reflected by a flat

histogram. Non-uniformity in rank histograms might suggest potential problems in the
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ensemble. For example, if the ensemble spread is not sufficient or is biased, then the

rank histogram will have higher values at one or both edges (U-shape). If the ensemble

spread is overestimated, then the rank histogram has low values at the edges and is

concave downward (Anderson, 1996a; Hamill and Snyder, 2000).

The rank histograms from the EnKF, the hybrid EnKF/3DVAR, and the AEnKF

under different localization length scales and inflation factors are shown in figures

5.7 - 5.9, respectively, for the case where observations of all model variables were

assimilated. Since the model used for assimilation is biased due to the incorrect forcing,

all filters generally show the histograms that are more populated on the right-hand

side. The extreme U-shapes in the rank histogram of the EnKF correspond to the cases

where the ensemble has small variance preventing the filter analysis from decreasing the

RMSE. The rank histogram becomes more uniform with more aggressive localization.

Inflation seems to have a smaller impact on the filter rank histogram, although in most

cases, greater inflation improves the distribution of the ensemble. The rank histograms

of the hybrid EnKF/3DVAR in figure 5.8 are relatively more uniform, but inclined to

the right. There is however a trend to overpopulate the center of the histogram as

the localization length scale gets short and inflation increases, typically indicating an

excess of variability in the ensemble. The rank histograms of the hybrid method show a

consistency with the discussion in section 5.3 suggesting that covariance compensation

techniques, as inflation and localization, should have less impact on the its performance.

The rank histograms of the AEnKF have slight U-shape with the biggest population on

the most right-hand side, and the flattest (best) histograms were obtained with strong

localization and moderate inflation. They are more uniform than those of the EnKF in

all tested cases.

Figure 5.10 shows the time mean RMSE over all variables for EnKF, AEnKF,

and hybrid EnKF/3DVAR when all variables were observed. As before, the group of

bars on the left in each sub-plot show the RMSE when the forecast model was assumed

perfect and the group of bars on the right represent cases where the model error was

accounted for by adding random noise during the forecast step. The error bars indicate

the averaged error from 30 runs starting from different initial conditions. As shown

in figure 5.6, the EnKF is sensitive to the choice of the length scale under the perfect
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model assumption. EnKF diverges as the RMSE increases and the ensemble variance

shrinks (not shown) when the error covariance correlation length scale is larger than

10, particularly when the covariance is inflated by less than 10%. However, the AEnKF

maintains a good fit to observations, showing RMSE smaller than EnKF and comparable

to hybrid 3DVAR/EnKF with most different settings.

To study modifications to the direction and the amplitude of the ensemble by the

new member, we analyze the estimate of the first variable, x(1, t) as it resulted from

the experiment with an inflation factor = 1.01, a localization length scale = 10.95 and

a weighting parameter β = 1. Figure 5.11-(a) compares the time evolution of the first

variable for the true states (thick black line), the analysis ensemble mean before (thin

gray line) and after adding a new member (thin black line). The difference between the

ensemble mean before and after adding a new member is negligible and the two thin

lines are almost indistinguishable.

A measure of improvement due to the new member in the ensemble is the

normalized distance Dn between the misfits of the true state and the ensemble mean

before and after adding the new member MFa = ‖xt− xa‖ and MFa,e = ‖xt− xa,e‖,

Dn =
MFa−MFa,e

MFa
. (5.25)

Positive Dn means that the new member positively contributes to the ensemble mean.

Throughout the assimilation window in figure 5.11-(b), Dn is close to zero, implying

that the correction made by the new member to the ensemble mean is negligible. This

is expected because of the choice of β = 1 in this experiment. One can also notice that

because of observational errors, the addition of the new member does not always modify

the mean in the direction of the true state.

Finally we computed the eigenvalues of the error covariance matrices to assess

how the addition of the new member changes the subspaces defined by these matrices.

The size of the modification is estimated from the eigenvalue spectra and/or the sum of

all eigenvalues (the trace of the error covariance matrix) before and after replacing the

least meaningful member with the new member to the ensemble, and it is shown in figure

5.11-(c). Without a new member, the trace of the error covariance starts greater than 25

and then quickly decreases to values less than 10. With a new member to the ensemble

is shown to significantly increase the eigenvalue spectra of the error covariance matrix.
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If the ensemble members become similar, then the eigenvalues of the error

covariance matrix may have a flat spectrum, but with small magnitude. If the adaptive

process adds a new member that is significantly different, the revised eigenvalue

spectrum may have an increased difference between the largest two eigenvalues, but this

represents a state with more freedom. This conjecture is illustrated by the time-averaged

eigenvalue spectra of the error covariance before and after adding a new member in

figure 5.11-(d). Including the new member in the ensemble introduces a significant

mode to the system. By construction, it is nearly orthogonal to the original ensemble

members and so contains new information. In addition, the magnitude of the uncertainty

in this new direction is large compared to the analysis ensemble before augmentation.

When the ensemble includes the new member, the RMSE of the estimated states with

respect to the true state is reduced by about 8.5%.

5.5 Discussion

The Ensemble Kalman Filter (EnKF) provides a powerful and effective tool

for analysis and forecasting. However, accounting for small ensemble size and model

deficiencies remain significant issues in ensemble data assimilation systems. These are

important factors in determining the accuracy of the background covariance. Moreover,

the model dynamics and the action of the filter can decrease the effective dimension

of the ensemble with time. If the number of independent components (rank) of the

ensemble becomes too small, the filter behavior can be seriously degraded. In addition,

for realistic ocean and atmospheric data assimilation problems, model errors typically

have large dimension, but ensembles large enough to account for model errors have

prohibitive computational cost to integrate the ensemble members forward in time with

the model. To overcome these limitations, we proposed a new adaptive approach to

enrich the ensemble of the EnKF without increasing its size. The main idea is to use a

part of the analysis step to estimate a new ensemble member in addition to adjusting

the existing ensemble elements. The residuals above the observational noise level

contain information about the structure missing from the background covariance which

prevented the filter from fitting the observations. The new member is estimated by
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weighted back-projection of the analysis residuals to the state space using a covariance

matrix representing the errors in the ensemble. To maintain ensemble size, the least

independent member of the ensemble is replaced by the new member. The covariance

matrix of the error in the ensemble, Pr, can be estimated by inflation, localization, or

a direct guess of a covariance B as in the hybrid method. The mathematics of the

method suggest a possible trade off between using part of Pr to update the ensemble

and part to estimate the new element. In the examples above, the weighting of the

back-projected residuals in state space was performed using a stationary covariance

matrix B as in an optimal interpolation (OI) scheme. This way of targeting specific

directions of B is the main difference between the hybrid EnKF/3DVAR approach and

the adaptive approach. The new adaptive approach can be easily implemented in any

existing EnKF-based assimilation system. The selection of the new ensemble members

is performed independently from the analysis step of the EnKF, and therefore no changes

are needed in the EnKF algorithm.

The new adaptive EnKF, called AEnKF, was tested with the Lorenz 96 model

and its performances were compared with the EnKF and hybrid EnKF/3DVAR in the

presence of either sampling error, model error, or both with the background error

covariance localization and the inflation factor implemented for the ensemble update.

Preliminary numerical experiments demonstrated the utility of the adaptive scheme and

the improved behavior of the traditional EnKF.

When only sampling error was considered, the AEnKF was found to be less

sensitive to the choice of the inflation factor and the length scale of the localization

than the EnKF. If all variables were observed, the AEnKF is almost insensitive to

these parameters, which means the RMSE does not change with any choice of the

inflation factor and localization length scale. When half of the model variables

were observed, the optimal interpolation scheme efficiently spreads the residual

information to non-observed variables in AEnKF. As a result, the AEnKF showed better

performance than hybrid EnKF/3DVAR, providing smallest RMSE. It is also shown

in the experiments that the newly generated member from the residuals could change

the spread of the ensemble. As expected, the AEnKF behaved best with the densest

observational coverage, as this provides more information to the adaptive scheme.
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With good ensemble sampling but unaccounted-for model error, the AEnKF

again successfully assimilated the observations. Experiments performed with

covariance limitations only due to model error suggested that the EnKF performance

might be seriously degraded if the model error was not accounted for in the forecast

model used by the filter to integrate the ensemble forward in time. The EnKF was further

quite sensitive to the choice of covariance inflation and localization. With appropriate

choice of parameters and number of members to be added to the ensemble, experiments

suggest that the adaptive approach can significantly improve the performance of the

EnKF decreasing the RMSE for a wide range of inflation and localizations values.

When both ensemble sampling and model error are present, all filters showed

generally increased RMSE compared to cases with either sampling error or model error

only. The EnKF again had reduced performance when the length scale was longer than

10 and inflation factor smaller than 1.05. The AEnKF was able to fit the observations

when all and half the model variables were observed, but its performance is limited when

only a quarter of the state variables were observed. AEnKF and hybrid 3DVAR/EnKF

are comparable for all observation networks.

If the sampling error and the model error are both negligible, EnKF and AEnKF

are similar. The newly generated member should be close to the mean of the ensemble,

and the addition of this member will not introduce new information to the ensemble.

The simplified implementation of the AEnKF to the Lorenz 96 model and

the validation were a necessary step before trying realistic applications, and AEnKF

provided encouraging results. Many other aspects of the performance of the AEnKF

remain to be explored. For example, the performance of the adaptive scheme is

determined by the choice of Pr2, so different forms should be tested. The option of

augmenting the ensemble by more than one member at a time in order to account for

uncertainty in cases with sparse observations or to increase the contribution of the

adaptive members to the ensemble, which would shift the mean further toward the

observations, should also be tested. Similarly, if the adjoint of the model is available, the

residuals can be back-propagated to earlier steps. This enables updating of the ensemble

before the problems are large enough to emerge above the observation noise, and it

increases the influence of the dynamics as compared to the arbitrary matrix Pr2. This is
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an alternative way to hybridize 4DVAR with the EnKF, and a study of these extensions

to the basic scheme is underway.
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Figure 5.1: Root mean square error averaged over time and all variables as a function

of length scale of the error covariance correlation and inflation factor. EnKF, hybrid

EnKF/3DVAR and AEnKF are implemented with 10 members and observation from

three different network densities were assimilated: all variables, every second variable,

and every fourth variable at every fourth model time step (or 1 day in real time). No

model error is introduced in these experiments.
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Figure 5.2: Time evolution of the first model variable x(1, t) between days 80 and 100

in the true state (thin black line), mean of ensemble members or filters’ estimates (thick

black line), and 10 ensemble members (gray lines), as it results from (a) EnKF forecast,

(b) EnKF analysis, (c) AEnKF forecast, and (d) AEnKF analysis. The new member is

indicated with black dots in (d). No model error is introduced in these experiments.
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Figure 5.3: RMSE and error bar as a function of the length scale of error covariance

correlation and inflation factor. 300-ensemble EnKF, AEnKF, AEnKF with β = 5,

AEnKF with 30 new members and hybrid scheme with incorrect forcing were used to

assimilate the observations sampled from all variables under both perfect model (P) and

imperfect model (I) assumption in the presence of model error. Each group in panels

has five bars. From the left to the right, they are RMSE of EnKF, AEnKF, AEnKF with

β = 5, AEnKF with 30 new members, and hybrid of EnKF/3DVAR.
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Figure 5.4: Time evolution between days 90 and 110 of the true state (black thin line),

mean of ensemble members (black thick line), and the 300 ensemble members (gray

lines) for the first model variable x(1, t) as it results from (a) AEnKF forecast with

β = 5, (b) AEnKF analysis with β = 5, (c) AEnKF forecast with 30 new members, and

(d) AEnKF analysis with 30 new members. New member is indicated with black dots

in (b) and (d), and the rest 29 new members are shown with the error bars.
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Figure 5.5: RMSE of the AEnKF as a function of the length scale of the error covariance

correlation, inflation factor, and β for a filter assimilating all model variables in the

presence of model error. A set of different β values were applied to the new member

for 10-member (black) and 300-member (gray) ensembles. The factor β ranged from 1

to 2 with 0.1 interval for the 10-member ensemble and from 1 to 5 with 0.2 interval for

the 300-member ensemble.
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Figure 5.6: As in Fig. 5.1, but model error is introduced and the model is assumed

perfect (model error was not accounted for in the filters) so that both sampling and

model error are present.
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Figure 5.7: Rank histograms of 10-member EnKF as a function of the length scale

of the error covariance correlation and the inflation factor. Observations of all model

variables were assimilated. Model error was introduced by forcing the forecast model

with an incorrect value.
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Figure 5.8: As in Fig. 5.7, but for hybrid EnKF/3DVAR.
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Figure 5.9: As in Fig. 5.7, but for AEnKF.
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Figure 5.10: RMSE averaged over all variables as they result from the EnKF, AEnKF

and hybrid EnKF/3DVAR with 10 ensemble members and with model error. Left bars

show RMSE values when model error was accounted for and right bars when not.
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Figure 5.11: Time series of the first variable from the true states (thick black), the

analysis before (thin gray) and after (thin black) augmenting the new member (a) and

the normalized distance Dn done by the new member (b). Sum of all eigenvalues of

the error covariance before (gray) and after (black) augmenting the new member (c),

and their time-averaged normalized eigenvalue spectra with that of the error covariance

excluding the new member (black dashed) (d).
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Abstract

We introduce a new hybrid EnKF (ensemble Kalman filter)/4D-VAR

(four-dimensional variational) approach to mitigate background covariance limitations

in the EnKF. The work is based on the AEnKF (adaptive EnKF) method which

bears a strong resemblance to the hybrid EnKF/3D-VAR method. In the AEnKF, the

representativeness of the EnKF ensemble is regularly enhanced with new members

generated after back projection of the EnKF analysis residuals to state space using

a 3D-VAR (or OI - optimal interpolation) scheme with a preselected background

covariance matrix. The idea here is to reformulate the transformation of the residuals

as a 4D-VAR problem while constraining the new member with model dynamics and

previous observations. This should provide more information for the estimation of

the new member and reduce dependence of the AEnKF on the assumed stationary

background covariance matrix. This is done by integrating the analysis residuals

backward in time with the adjoint model.

Numerical experiments are performed with the Lorenz-96 model under different

scenarios to test the new approach and to evaluate its performance with respect

to the AEnKF and the hybrid EnKF/3D-VAR. The new method leads to the least

root-squared-mean estimation errors as long as the linear assumption guaranteeing the

stability of the adjoint model holds. It is also found to be less sensitive to choices of the

assimilation system inputs and parameters than the other methods tested.
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6.1 Introduction

Data assimilation (DA) aims at determining the best possible estimate of the state

of a system by combining information from observations and a model forecast according

to their respective uncertainties (Ghil and Malanotte-Rizzoli, 1991). Techniques based

on the four-dimensional variational assimilation (4D-VAR) approach (Lewis and Derber,

1985; Le Dimet and Talagrand, 1986) and the ensemble Kalman filter (EnKF) approach

(Evensen, 1994; Tippett et al., 2003) are now recognized as the most promising

assimilation methods. The 4D-VAR produces the model trajectory that best fits the

data over a given period of time by adjusting a set of control parameters. The EnKF

optimally blends model outputs and data available at a given time according to their

respective uncertainties. Continuous progress in computing resources recently enabled

the implementation of these methods with state-of-the-art atmospheric and oceanic

applications. We refer to Klinker et al. (2000); Houtekamer et al. (2005); Köhl et al.

(2007); Carton and Giese (2008); Hoteit et al. (2010, 2011) to cite but a few.

Several studies discussed and compared the strengths and weaknesses of these

two approaches (Lorenc, 2003; Caya et al., 2005). 4D-VAR methods are mainly known

for generating dynamically consistent state estimates within the period of validity of

the tangent linear model (Hoteit et al., 2010). Their performance, however, strongly

depends on the specification of the background covariance matrix that represents the

prior uncertainties about the controls (Weaver et al., 2003). Constructing the background

covariance is still the subject of intensive research and various methods have been

proposed to model and parameterize this matrix (Parrish and Derber, 1992; Daley, 1991;

Weaver et al., 2003). These assumptions are, however, not always appropriate, and more

importantly the resulting background matrix is not flow-dependent in the sense that there

is still no available efficient variational method to update the background uncertainty in

time.

EnKF methods operate sequentially every time a new observation is available.

The update of the background matrix in time is carried out through the integration of an

ensemble of states representing the uncertainties about the prior (or forecast) with the

nonlinear model. However, accounting for model deficiencies and small ensemble size

remain an important problem in ensemble filtering, as both reduce the accuracy of the
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estimated background covariance. Prior knowledge about the nature and the statistics of

model uncertainties are generally needed to take into account model errors in the EnKF

(Hamill and Whitaker, 2005; Hoteit et al., 2007) and computational resources are still

lacking for implementing the filters with large ensembles. Using a small ensemble in

an EnKF means rank deficiency that could prevent the filter’s correction from efficiently

fitting the observations (Houtekamer and Mitchell, 1998; Hamill and Snyder, 2000).

This problem is often mitigated by covariance localization which “artificially” increases

the effective rank of the background matrix. Strong localization may, however, distort

the dynamical balance of the analysis and may lead to a bad forecast (Houtekamer et al.,

2005).

Recently, the assimilation community has become strongly interested in

developing hybrid methods that combine the variational and filtering approaches. The

idea is to develop new assimilation schemes that could potentially incorporates the

advantages from both approaches. Existing hybrid methods can be basically classified

into two main categories; either following the hybrid EnKF/3D-VAR (or ENKF/OI)

which basically augments the EnKF covariance by the stationary background covariance

B of a variational system as a way to reduce the impact of ensemble sampling errors

on the EnKF (Hamill and Snyder, 2000; Lorenc, 2003; Buehner, 2005; Wang et al.,

2007), or using the flow-dependent covariance matrix of the EnKF as the background

matrix for the 4D-VAR problem (Evensen and Leeuwen, 2000; Hunt et al., 2004; Liu

et al., 2008; Zhang et al., 2009; Bewley et al., 2009). For convenience we will refer

to these approaches as the 3D and 4D hybrid approaches. Augmenting the ensemble

by B in an ad-hoc manner in the 3D hybrid approach is not optimal, but might at

least help enhancing the EnKF correction by including some of the omitted features

in the rank deficient EnKF covariance. The problem with the 4D hybrid methods is that

they require running both the EnKF and 4D-VAR and this can be algorithmically and

computationally quite demanding.

In this work we propose a different approach to combine the good features of

the EnKF and the 4D-VAR. It is based on a new hybrid scheme that has been very

recently introduced by Song et al. (2010), called the adaptive ensemble Kalman filter

(AEnKF). The idea behind the AEnKF is to adaptively improve the representativeness
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of the EnKF ensemble by “enriching” it with new members. The new members are

generated after every analysis cycle by back projecting the analysis errors, or residuals,

onto the state space using a 3D-VAR (or OI) assimilation system. The residuals contain

information about the missing information in the background covariance that prevented

the EnKF from fitting the data, typically model errors and the null space of the ensemble

(Song et al., 2010). In contrast with the 3D hybrid approach, the AEnKF targets specific

directions of the preselected background matrix to enrich the EnKF ensemble. This

would reduce adding unnecessary structures to the EnKF background. Moreover, the

EnKF and 3D-VAR analysis steps are applied separately, which offers more numerical

and implementation flexibility.

As for the 3D hybrid approach, the AEnKF behavior depends on the stationary

background matrix. The AEnKF was also found sensitive to the amount of available

observations for efficient reconstruction of the residuals in the state space (Song et al.,

2010). Here we further develop the idea of the AEnKF and propose to generate the

new members from a 4D-VAR assimilation system. We refer to this approach as the

4D-AEnKF. The key step is integrating the residuals from the analysis step backward in

time with the adjoint model. The resulting state is next integrated forward with the

nonlinear model to generate a new ensemble member. Reformulating the selection

process of the new member as a 4D-VAR problem should include more information

from the model dynamics and the previous observations and reduce dependence on the

specified stationary background. Furthermore this can provide a dynamically-consistent

new member that is more suitable for forecasting.

The paper is organized as follows. After briefly recalling the characteristics of

the AEnKF, we describe the 4D-AEnKF approach in section 6.2. Results of numerical

experiments with the Lorenz-96 model (Lorenz and Emanuel, 1998) are then presented

and discussed in section 6.3, followed by a general discussion to conclude in section

6.4.
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6.2 The 4D Adaptive Ensemble Kalman Filter

(4D-AEnKF)

We first review the algorithm of the AEnKF before presenting the 4D-AEnKF.

6.2.1 Review of the Adaptive Ensemble Kalman Filter (AEnKF)

The AEnKF was introduced by Song et al. (2010) as an adaptive approach to

mitigate the background covariance limitations in the EnKF. The hypothesis motivating

the AEnKF is that a subspace outside that spanned by the ensemble may grow and

this will manifest itself as increasing residuals. The idea is then to include the back

projection of the residuals of the state estimates and observations onto the state space as

a new ensemble member. This was demonstrated to significantly enhance the EnKF the

performance in the case of small ensembles and the presence of model errors.

The algorithm of the AEnKF is based on that of the EnKF and has the same

succession of a forecast step to integrate the analysis ensemble forward in time and an

analysis step to correct the ensemble every time a new observation is available. After

every analysis step, new members are generated by solving a 3D assimilation problem

and then added to the analysis ensemble before a new forecast step takes place. At any

time, the filter estimate is the mean of the current ensemble.

Assuming an ensemble of state estimates is available at an analysis time, the

forecast step consists of integrating the ensemble members forward with the model to

the time of the next available observation. The forecast ensemble is then corrected using

the observation with the Kalman analysis step (Evensen, 2003)

xa
i = x f

i +Ki

(
yo

i −H ix f (ti)
)

, (6.1)

where x f
i and xa

i are the forecast and analysis ensemble members at time ti, respectively.

Subscript i here denotes time ti. yo
i is the observation vector, perturbed with a

realization of independent random noise generated from the probability distribution of

the observational errors (Burgers et al., 1998). H i is the observational operator relating

the state to the observation. Ki is the Kalman gain matrix given by

Ki = PiHT
i
(
HiPiHT

i +Ri
)−1

, (6.2)
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where Ri is the observational error covariance matrix, Hi is the linearized operator of

H i, and Pi is the sample covariance matrix of the forecast ensemble.

Instead of adding a stationary covariance matrix B to the EnKF sample

covariance matrix as in the Hybrid EnKF/3D-VAR, the AEnKF generates new ensemble

members first through the minimization of the cost function of a 3D assimilation

problem (OI or 3D-VAR)

J (δxi) =
1
2

δxT
i B−1

δxi +
1
2

(ri−H iδxi)
T R−1

i (ri−H iδxi) (6.3)

with respect to δxe. The residual vector r is the difference between the filter analysis xa

and the observations,

ri = yo
i −Hxa

i . (6.4)

The analytical solution for (6.3) is

δxe
i = BHT

i
(
HiBHT

i +Ri
)−1 ri. (6.5)

A new ensemble member xa,e is then taken as

xa,e
i = xa

i +βδxe
i , (6.6)

with β is a weighting parameter which is included as a way to set the weight of the

new member in the ensemble. More members can be generated from the distribution

of δxe, or by using the conjugate gradient descent directions in an iteration minimizing

J as discussed in Song et al. (2010). To avoid growth of the ensemble from adding

new members, some “old” members need to be dropped from the ensemble. Song et al.

(2010) proposed to drop the members that contribute the least to the ensemble spread,

presumably those that carry the least amount of information.

6.2.2 The 4D Adaptive Ensemble Kalman Filter (4D-AEnKF)

To reduce the dependence of the AEnKF on on the specification of B and to

include more information from the model dynamics and previous data in the estimation

of the new member, we propose a 4D variational formulation of the AEnKF, hence will
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be called 4D-AEnKF. More specifically, the idea behind the 4D-AEnKF is to replace

the cost function in (6.3) by the 4D cost function

J4D(δxi−n) =
1
2

δxi−n
T B−1

δxi−n +
1
2

i

∑
j=i−n

α j
(
r j−G jδxi−n

)T R−1
j
(
r j−G jδxi−n

)
.

(6.7)

The parameter α j allows for varying weight of the different time levels, which will be

explored in the examples later, where the earlier data are not used in one experiment.

Here we followed the incremental formulation of the 4D-VAR approach (Courtier et al.,

1994) to define J4D in which the matrix G j propagates the perturbation δxe(ti−n) from

time ti−n to time t j and is given by

G j = H jM j,i−n, (6.8)

with M j,i−n the tangent linear model of the transition operator M j,i−n integrating the

state between ti−n and t j. As in (6.6), the solution δxe
i−n of (6.7) is then added to the

analysis xa
i−n as in the AEnKF to form a new member at time ti−n

xa,e
i−n = xa

i−n +βδxe
i−n. (6.9)

xa,e
i−n is next integrated forward in time with the nonlinear model to obtain the new

ensemble member xa,e
i at the current time ti. As in the AEnKF, the 4D-AEnKF augments

the EnKF ensemble with this new member before starting a new forecast step. The

algorithms of the AEnKF and 4D-AEnKF are depicted in Figure 6.1.

This 4D formulation of the problem reads as if we are looking for a new member

δxe
i−n in the past time ti−n (and not at the current time ti as in the AEnKF) that

provides information from the model dynamics and the observations about the part of

the correction subspace that was not well captured by the rank deficient EnKF ensemble

in the n most recent analysis steps. Integrating δxe
i−n forward with the nonlinear model

should provide a better and dynamically consistent new member to start the new forecast

step.

The analytical solution δxe(ti−n) of (6.7) is given by (Courtier et al., 1994)

δxe
i−n =

(
B−1 +

i

∑
j=i−n

α jGT
j R−1

j G j

)−1 i

∑
j=i−n

α jGT
j R−1

j r j, (6.10)
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and requires the integration of the adjoint model MT
i−n,i backward in time from ti to ti−n.

The backward integration of the residuals is therefore only efficient within the period

of validity of the tangent linear model (Weaver et al., 2003). Moreover, computing the

analytical solution requires the inversion of the matrix
(

B−1 +∑
i
j=i−n α jGT

j R−1
j G j

)
,

which can become numerically problematic when the system dimension is large. In

this case, one can either solve this problem by performing the optimization in the

observational space (if the number of observations is not too large) as suggested in

the representer method (Bennett, 1996), or using an iterative optimization algorithm,

such as the steepest descent or the conjugate gradient algorithm as it is commonly done

in realistic 4D-VAR applications (Fisher, 1998; Lorenc, 2003). Both of these methods

use the adjoint model to compute the gradients of the cost function with respect to the

control.

Note that it is possible to generate more than one member in the 4D-AEnKF

after every analysis step following similar ideas to those presented in the AEnKF (Song

et al., 2010). For instance, one can use the descent directions calculated during the

optimization of (6.7). It should also be possible to sample several realizations from the

residuals’ distribution and then integrate them backward in time with the adjoint before

integrating them forward in the model to generate the new members, but obviously this

can become computationally demanding. Finally, if the state space is small enough to

allow for the analysis of the analysis state error covariance matrix, multiple members

can be generated by adding poorly-determined directions to the ensemble.

6.3 Numerical experiments

6.3.1 Model Description and Settings

We use the Lorenz-96 (L96) model (Lorenz and Emanuel, 1998) to test and

evaluate the behavior of the 4D-AENKF and to compare its performance to the

AEnKF and the hybrid EnKF/3D-VAR. This model is widely used in the assimilation

community to test EnKF-based schemes and provides a repeatable performance

benchmark (Whitaker and Hamill, 2002). L96 was designed to mimic the evolution

of an atmospheric variable in time and is described by the following highly nonlinear
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set of differential equations j = 1,2, . . . ,L:

dx( j, t)
dt

= x( j−1, t) [x( j +1, t)− x( j−2, t)]− x( j, t)+F. (6.11)

The model was implemented here in its most common form. We therefore considered

L = 40 variables, forcing term F = 8, and periodic boundary conditions, i.e. x(−1, t) =

x(L−1, t), x(0, t) = x(L, t) and x(L+1, t) = x(1, t). For F = 8, disturbances propagate

from low to high indices (“west” to “east”) and the model behaves chaotically (Lorenz

and Emanuel, 1998). L96 and its tangent linear model (and adjoint) were discretized

using a Runge-Kutta fourth order integration (Sandu, 2006) with a time step t = 0.05,

which corresponds to 6 hours in real-world time.

We follow Song et al. (2010) to generate the filter initial conditions and the

transformation matrix B. The model was first integrated forward without assimilation

for a time period equivalent to several years in real-world time. The mean and the

covariance from the run were used for the initial ensemble mean and the matrix B,

respectively. The starting ensemble members were generated by adding independent

Gaussian random perturbations with unit variance to each model variable.

All three tested assimilation schemes were implemented with the covariance

inflation and covariance localization using the fifth-order correlation function as

described by Whitaker and Hamill (2002). Assimilation experiments were carried out

in the presence of both sampling and model errors by using relatively small ensembles

with 10 members, and incorrect forcing F = 6 in the forecast model, respectively.

Observations were sampled every four time steps (which is equivalent to a one day

in real-world time). The filters were evaluated under three different sampling strategies

in which the observations were considered available for all, half, and quarter of the

model variables. Assimilation experiments were performed over a period of 120 days

(480 model steps), but only the last 100 days were used in the analysis of the results to

exclude an early spin-up period of 20 days. As discussed in section 6.2.2, the proposed

4D-AEnKF scheme would only be efficient if the residuals were integrated backward

within the valid period of the tangent linear model. Below we describe the tangent

linear model validation test and study its results.
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6.3.2 Validation of the Tangent Linear Model Assumption

For a given state vector x and a perturbation, δx, we first integrate the two state

vectors x and x + δx with the nonlinear model M forward in time, and compute the

difference ∆x = M(x+δx)−M(x), which measures the time evolution of perturbation

in the nonlinear system. We also integrate the perturbation δx with the tangent linear

model, M. Then the difference between the outputs of these runs, dx = ∆x−Mδx,

represents the nonlinear terms associated with the perturbation. A measure of the growth

of the nonlinearities during the integration period can be obtained by taking the ratio ρ

between the length of dx and ∆x,

ρ =

√
dxT dx√
∆xT

∆x
. (6.12)

The ratio ρ is zero if the system is linear. If ρ is greater than 1, this indicates that

the nonlinear part strongly affects the perturbation growth. Figure 6.2 plots the ratio ρ

as it results from runs with three different perturbation sizes δx = x/10, δx = x/2, and

δx = x. 1000 runs were performed with different initialization for each perturbation size

to reduce statistical fluctuations and determine variability, and they and their mean are

plotted in gray and black, respectively, in figure 6.2. When the size of the perturbation

is relatively small (δx = x/10), the mean value of the ratio, ρ , remains less than 0.5

after 18 time integration steps (about 4.5 days) as can be seen in the upper panel (a). As

expected, the ratio grows faster with larger perturbations, and for δx = x/2, it becomes

close to 1 after only 10 time steps (panel (b)). The nonlinear part becomes even more

significant if the perturbation is of the same size as the state (panel (c)). However,

considering the variability, and assuming that the residuals are usually smaller than the

states, which is a reasonable assumption for a well behaved assimilation system, one

can assume that the linear assumption remains valid for at least 4 time steps (one day),

which is the observation frequency in our experiments. Based on these results and unless

specified otherwise, we created the new member after integrating the residuals backward

with the adjoint model for 4 time steps.
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6.3.3 4D-AEnKF vs. ENKF, AEnKF and 3D-Hybrid

In the first experiment we study the behavior of the 4D-AEnKF and evaluate its

performance against those of the EnKF, AEnKF and 3D-hybrid in the presence of both

sampling and model errors. The ensemble size was set to 10 and the new member in the

4D-AEnKF was created at the previous analysis time step after 4 time steps backward

integration with the adjoint model. Two different implementations of the 4D-AEnKF

were tested, using or not using the observations at time ti−4 in the 4D cost function

(6.7) of the 4D-AEnKF by setting αi−4 to either 1 or 0. In the following we refer to the

4D-AEnKF that does not include the previous data at time ti−4 as AD-EnKF.

Figure 6.3 plots the root-mean-squared error (RMSE) from five different

assimilation runs using the EnKF (panels a, b, c), hybrid EnKF/3D-VAR (panels d,

e, f), AEnKF (panels g, h, i), AD-AEnKF (panels j, k, l) and 4D-AEnKF (panels m,

n, o). The three columns correspond to the results from the different observations

scenarios assimilating observations of all (left panels), half (middle panels) and quarter

(right panels) of variables. All hybrid methods improve upon the performance of the

EnKF. The AEnKF can be better, or worse, than the hybrid EnKF/3D-VAR depending

on the frequency of observations. More observations means more information for

better estimation of the new member. Both AD-AEnKF and 4D-AEnKF provide better

performance and clearly improve the robustness of the AEnKF. As expected, including

the data at ti−4 in the generation of the new member improves estimate accuracy, so that

the best performance were obtained with the 4D-AEnKF.

To analyze the role of the newly generated member on the distribution of the

ensemble of the 4D-AEnKF, the time evolution of the first model state variable x(1, t) is

shown for the 4D-AEnKF ensemble members over a 21-day period (between day 70 and

day 90) in figure 6.4 before (forecast) and after (analysis) applying the correction step.

Plots are shown for the case where observations of all model variables were assimilated,

localization length scale 10.95, and inflation factor 1.01. Black dots in panel 6.4-(a)

represent the position of the new members after they have been integrated from the

previous analysis time to the current time. White dots in panel 6.4-(b) indicate the

positions of the new members. Following the algorithm of the 4D-AEnKF, white dots in

panel 6.4-(b) at day ti−4 are integrated with the L96 model and become the black dots in
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panel 6.4-(a) at day ti. The plots show good examples of how the behavior of the EnKF

can be improved by the new member created using the adjoint model. For instance, at

day 76, all ensemble members but the new one are located around the value 7 while the

true state is close to 10 (panel 6.4-(a)). The new member, which has been integrated

from day 75 to day 76, has a value that is close to the true state. This new member was

created one day earlier (white dot on day 75 in panel 6.4-(b)) such that the ensemble

forecast better represents the distribution of the forecast state. As a result, the new

member increases the uncertainty and brings the ensemble and the analysis ensemble

mean at day 76 closer to the true state (panel 6.4-(b)). Another time where improvement

is clear is day 79. The integrated new member is closer to the true state than the other

ensemble members, resulting in a better analysis. Although the newly created member

at day 78 is in fact further away from the true state at the previous time, it was generated

so as to improve the forecast at the next filtering step.

The reliability of the filter ensemble can be assessed using the rank histogram

(Hamill and Snyder, 2000). Ideally, the value of an observation has an equal chance

to occur in any of the possible ranks relative to the sorted ensemble (from low to

high). Over many samples, this is reflected by a flat histogram. Non-uniformity in rank

histograms might suggest potential problems in the ensemble. For example, an ensemble

with insufficient spread or biased state will have a rank histogram with higher values at

one or both edges (U-shape) while an ensemble with excessive spread will have a rank

histogram with low values at the edges (Anderson, 1996a; Hamill and Snyder, 2000).

The rank histograms from the EnKF, the hybrid EnKF/3D-VAR, the AEnKF,

the AD-AEnKF and the 4D-AEnKF are shown in figure 6.5 for the three different

observation scenarios and the combination of localization length scale and inflation

factor that yield the best state estimates for each filter. One can first notice that the

rank histograms are generally tilted to the right because of the bias in the forecast

model used in assimilation caused by the incorrect forcing. The rank histogram shows

that the ensemble of the hybrid EnKF/3D-VAR obviously is excessively inflated. For

all filters, the rank histograms show a tendency of the ensemble spread to increase

as fewer observations are assimilated. When all model variables were observed, the

rank histograms of the EnKF, the AEnKF and the AD-AEnKF are relatively flat. The
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hybrid EnKF/3DVAR has excessive ensemble spread, while the 4D-AEnKF has small

variance likely because it constrains the new ensemble member with more data from the

previous analysis time. Despite that, the 4D-AEnKF still provides the best state estimate

in the experiments in terms of lowest RMSE. With fewer observations assimilated, the

4D-AEnKF yields the most uniform rank histograms suggesting the utility of the extra

constraints on the new member in this case.

6.3.4 Sensitivity of 4D-AEnKF to the number of Adjoint Steps and

B

A set of experiments were performed to study the impact of the 4D-AEnKF

setup on performance. Several assimilation experiments were run, varying the number

of adjoint backward integration steps of the back-projected residuals. We also tested

different choices of the stationary background covariance matrices B (used in the

variational 3D-VAR or 4D-VAR components of the system). To implement this, we

computed different approximations B̂r of the sample covariance matrix B used in the

previous experiment by selecting only the r eigenvectors of B associated with the first

few largest eigenvalues. These low-rank (r) matrices of the form

B̂r = LrΣrLT
r , (6.13)

were then used as stationary background covariances in the filters. In this equation, Lr is

the matrix whose columns are the r eigenvectors associated with the r largest eigenvalues

of B, and Σr is the r× r diagonal matrix with the first r eigenvalues. Of course, the more

eigenvectors selected (or the larger r) the closer B̂r is to B. For instance, one can see

from the spectra of the eigenvalues plotted in Fig. 6.6 that at least seven eigenvalues are

needed to explain half of the total variance of B.

One can already expect from equation (6.10) that the more backward integration

steps are taken the more the new residual is constrained with dynamics, which should

reduce dependence on the stationary background error covariance B. Thus, one goal of

this exercise is to study whether longer backward integrations of the new member can

reduce dependence on the quality of B. As discussed before, this should be however
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only true for a limited number of backward integration steps within the range of validity

of the linear approximation.

Figure 6.7 plots the RMSE as it results from the 4D-AEnKF as a function of the

number of backward time steps (x-coordinate) and the number of eigenvectors that were

used to approximate B̂ (y-coordinate) with the three different observation scenarios.

Of course, the RMSE resulting from zero backward time steps (on the left-most side)

is the RMSE of the AEnKF. Results are shown from the combination of localization

length scale and inflation factor that yield the best overall state estimates with all,

half and quarter observation cases are (these were set as (1.12,21.91), (1.01,10.95)

and (1.05,3.65), respectively.) As one can expect, the RMSE always decreases in all

observation scenarios as the “approximated” B̂ gets closer to B, as the latter is expected

to provide a better representation of the background covariance than B̂. The RMSE also

generally decreases with more backward integration time steps (of course only within

the range of validity of the tangent linear assumption), except when the rank of the

approximated background covariance B̂r is less than 5. This suggests that in general the

model dynamics and previous observations can help compensate for a poorly-modeled

background covariance matrix B. This improvement is however significant only when

more than 5 eigenvalues are used to approximate B. For B̂ rank less than 5, the

4D-AEnKF performance is close to that obtained with the AEnKF and integrating the

new member backward does not really help improving performance. We hypothesize

two reasons for this behavior. The first is that very low rank gives little freedom for the

backprojection of the residuals, preventing improvement of the ensemble. The second

is the sensitivity of the tangent linear assumption to the size of the perturbations, or in

this case the residuals, which are expected to be larger when B has low rank or is poorly

chosen. Large residuals may lead to large perturbations, which may violate linearity.

6.4 Discussion

Four dimensional variational (4D-VAR) and ensemble Kalman filters (EnKF)

are advanced data assimilation schemes that are being extensively used by the ocean

and atmospheric community. Each approach has its own strengths and weaknesses. For
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instance, unlike the 4D-VAR solution the EnKF solution is not dynamically consistent.

The filter however provides an efficient algorithm to update a low-rank approximation of

the background covariance forward in time. There has been strong interest recently in

building hybrid schemes that combine the strengths of each approach. New methods

have been proposed either by augmenting the EnKF covariance by the stationary

background covariance B of a variational system (hybrid EnKF/3DVAR), or using

the flow-dependent covariance matrix of the EnKF as the background matrix for the

4D-VAR problem (hybrid EnKF/4D-VAR).

In this paper, we proposed a new direction based on the adaptive ensemble

Kalman filter (AEnKF) which uses the back-projection of the analysis residuals

to improve the representativeness of the EnKF ensemble. In the AEnKF, the

back-projection is carried out using a 3D assimilation (3D-VAR or OI) system and a

chosen stationary background covariance. The idea of the new approach is to replace

the 3D assimilation system in the AEnKF by a 4D-VAR system, hence it was referred to

as 4D-AEnKF. In contrast with the AEnKF that creates the new member at the current

analysis step, the 4D-AEnKF creates the new member in the past so that model dynamics

and more data can be included in the estimation process of the new member. The 4D

formulation of the AEnKF involves integrating the residuals backward in time with the

adjoint model. This should reduce the dependence of the AEnKF on the stationary

background covariance matrix and provide more information for better estimation of

the new member.

The 4D-AEnKF was tested with the Lorenz-96 model in the presence of both

sampling and model errors. Experiments result suggest that in general the 4D-AEnKF

improves upon the performance of the AEnKF. Furthermore, the backward integration

of the residuals enhances the results and the robustness of the AEnKF and decreases

dependence on the stationary background covariance as long as the tangent linear

assumption is valid. Lorenz-96 provides a benchmark setting to test and evaluate the

performance of a new assimilation scheme and 4D-AEnKF proved to be quite successful

with this model. In the future, we will work on implementing and testing the AEnKF

and 4D-AEnKF with realistic oceanic and atmospheric problems.
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Figure 6.1: Diagram describing the procedure of the AEnKF (top) and the 4D-AEnKF

(bottom). ‘X f ’ and ‘Xa’ represent the ensemble of forecast and analysis, respectively.

The residuals(r) at time ti are used to estimate new members xa,e at time ti for the AEnKF

and at time ti−1 for the 4D-AEnKF.
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Figure 6.2: Ratio between the length of dx and ∆x in time. ∆x and dx represent the

difference between two nonlinear trajectories started from x and x + δx, and the time

evolution of the nonlinear part for δx. Hence the ratio shows the growth of the nonlinear

part with respect to the growth of the perturbation in time. Three different initial

perturbation were chosen for testing: (a) δx = x/10, (b) δx = x/2 and (c) δx = x (c).

The results are plotted in black lines with variability computed from 1000 realizations.
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Figure 6.3: Root square mean error averaged over time and all variables as a function

of inflation factor and localization length scale from EnKF (panels a, b, c), hybrid

3DVAR/EnKF(d, e, f), AEnKF (panels g, h, i), AD-AEnKF (panels j, k, l), 4D-VAR

AEnKF (panels m, n, o). The AD-AEnKF and 4D-AEnKF both run 4 backward time

steps to create a new member, but the AD-AEnKF uses the residual at time ti while the

4D-AEnKF uses the residuals at time ti and ti−4. All filters assimilated the observations

from the three different strategies. Left, middle and right columns represent the RMSE

from the filters assimilating all, half and quarter of variables, respectively.
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Figure 6.4: Time evolution of the first model variable x(1, t) between days 70 and 90 in

the true state (red line), the mean of ensemble members or filter’s estimates (black line),

and 10 ensemble members (gray lines), as it results from (a) 4D-AEnKF forecast, (b)

4D-AEnKF analysis with 1.01 inflation factor and 10.95 error covariance localization

length scale. Closed circles in (a) indicate the positions of the new members that were

created one day earlier (marked as open circles in (b)) before integrating them with the

model to the analysis time.
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Sensitivity analysis of the wind stress curl on the upwelling and its source

waters in the California Current System (CCS) was discussed in chapter 2. Wind

stress curl fields affected the location of the equatorward current core and the depth

of upwelling cell. Adjoint-based sensitivity analysis revealed that the source waters

could be found in substantially different areas depending on the wind stress curl fields.

Chapter 3 and 4 examined regional ocean data assimilation using a four dimensional

variational method and its applications to the diagnostics of abrupt changes observed

in the Pacific sardine egg distribution. Data assimilation over a one-month period

reduced the misfit as expected, and it improved the comparability between the model

and observations quantified with other statistical measures. Data-assimilated ocean

states and the one-month adjoint sensitivity analysis with passive tracers revealed the

different physical oceanographic conditions for April 2002 and 2003 and the different

source waters for the key areas.

Future research will focus on building the data-assimilated ocean states for April

in 10 consecutive years (2002-2011). We anticipate these ocean states will serve as

a diagnostic tool for local and large-scale induced changes in CCS during the active

upwelling periods. These ocean states are also useful to explain observed biological

phenomena from a physical oceanographic standpoint. Combined with adjoint-based

sensitivity analysis, they can be used to explore the changes in source waters for

upwelling, hypoxic oceanic conditions, other key processes in physical, biological and

chemical oceanographic disciplines. Observational impact experiments quantify the

influences of each observation on the forecast errors, and the results will benefit the

designing of observation networks for April.

Adaptive ensemble Kalman filter (AEnKF) and 4D-AEnKF create a new

member and include it to improve the representation of the ensemble. Chapter 5

and 6 discussed these two methods and showed a significant improvement of the

filter’s performance with the 40-variable Lorenz-96 nonlinear model. Although the

Lorenz-96 model behaves similar to an atmospheric system, implementations of these

filters to more realistic models and evaluations of performances are necessary. The

implementation of the AEnKF is relatively easy because a new member is created in

the same manner as the optimal interpolation. The 4D-AEnKF, however, requires an
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adjoint model to create a new member in the past. Hence it can be demanding if the

adjoint model is not already available. The current version of the Regional Ocean

Modeling System (ROMS) is equipped with the tangent linear and adjoint models, and

the ensemble Kalman filter is ready to be applied to realistic configurations. Thus, these

newly proposed sequential data assimilation methods will be evaluated with ROMS in

future studies.
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