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Many critical processes of ecosystem function, including trophic relationships
between predators and prey and maximum rates of photosynthesis and growth,
are size-dependent. Size spectral data are therefore precious to modellers because
they can constrain model predictions of size-dependent processes. Here we illus-
trate a multi-step statistical approach to create size spectra based on a reanalysis of
plankton size data from the IronEx II experiment, where iron was added to a
marked patch of water and changes in productivity and community structure were
followed. First, bootstrapping was applied to resample original size measurements
and cell counts. Kernel density estimation was then used to provide
nonparametric descriptions of density versus size. Finally, parametric distributions
were used to obtain parameter estimates that can more easily be applied in
models. A major advantage of this approach is that it provides confidence envel-
opes for the density distributions. Our analyses suggest three basic distributional
patterns of cell concentration versus logarithm of equivalent spherical diameter for
individual taxa. Composite size-densities of heterotrophs and photoautotrophs
reveal important aspects of the coupling between protist grazing and the
phytoplankton community.
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I N T RO D U C T I O N

Most oceanic primary production and consumption
occurs in the microbial base of the food web among bac-
teria and protists (Calbet and Landry, 2004). Trophic
interactions within this microbial base are potentially
complex (Azam and Malfatti, 2007), but the general
structure suggests that size-based analyses and interpret-
ation are needed (Armstrong, 2003a, b). The ability to
construct, analyse and predict changes in size distri-
butions may therefore allow a more precise description of
interactions within plankton communities, where larger
consumers typically eat smaller prey (Hansen et al., 1994).

Interest in the size structure of aquatic systems has
been stimulated by the introduction of technologies

(Coulter Counter, flow cytometer, image analysis
microscopy) for efficient enumeration of particles and
organisms by size, and has sparked the development
of additional novel approaches and instruments
(Optical Plankton Counter, Underwater Video Profiler,
FlowCAM, ZooScan) to fill measurement gaps.

Plankton size distributions, often pieced together from
measurements optimized for different size ranges or
types of organisms, are typically represented as size
spectra, where the main attribute is the slope on a
biomass-normalized logarithmic scale (Sheldon et al.,
1972). Numerous studies have established the usefulness
of plankton size spectra for summarizing the inherent
structural properties of a system’s biota, and for compar-
ing and contrasting system types and temporal/spatial
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variability within systems (e.g. Rodriquez and Mullin,
1986; Gaedke, 1993; Cavender-Bares et al., 2001;
Rinaldo et al., 2002; San Martin et al., 2006a; Reul et al.,
2006). Understanding the size structure of lower trophic
levels has similarly provided mechanistic insights into
the bioenergetic constraints and habitat partitioning of
foraging predators (e.g. Kerr, 1979; Rykaczewski and
Checkley, 2008). Parallel developments in spectral ana-
lyses of plankton communities and allometric theory
have further established a basis for inferring biomass
and energy/mass flux, trophic efficiencies and vital rates
(growth and mortality) from biomass distributions in
aquatic food webs (e.g. Kerr, 1974; Platt and Denman,
1977; Moloney and Field, 1989; Zhou and Huntley,
1997; San Martin et al., 2006b; Zhou, 2006).

To allow the development of new size-based formu-
lations of trophic interaction and energy flow, detailed
information on size densities of individual plankton groups
are needed. One attractive possibility is to characterize
producer and consumer species in terms of parametric
size-density functions, for example, using a normal prob-
ability density function (pdf ) with two parameters (mean
and variance) for each species or group. Such parametric
pdfs could be used in describing plankton interaction by
convolving parametric predator- and prey-density func-
tions (Armstrong, 2003a). To derive parametric size-
density functions from observation is not straightforward.
Historically, microscopical data have been plotted as dis-
crete histograms to combine species information with size
measurements. However, this approach produces results of
uneven quality, particularly when cell abundance is low
and when sampled water volumes are small.

In this study, we describe a sequential procedure in
which we first derive nonparametric kernel density esti-
mates and then fit parametric functions to the nonpara-
metric distributions. We illustrate this analysis with
size-based data for plankton taxa observed during the
IronEx II mesoscale iron-enrichment experiment in the
eastern equatorial Pacific (Landry et al., 2000a). Our
data reconstruction reveals taxon-specific details of com-
munity size responses to iron fertilization and grazing
impacts. More generally, the approach supports size-
structure inter-comparison of disparate data sets and
the development of size-based plankton models.

M E T H O D

Our primary data are plankton counts, cell lengths and
widths, distinguished by taxonomic group. We analysed
the data using kernel density estimators (Parzen, 1962;
Wegman, 1972; Silverman, 1986), which provide
smooth nonparametric plankton size-densities, even

from sparse discrete measurements. In addition, we
assessed confidence limits of these nonparametric
density estimates. The confidence limits were obtained
by applying a bootstrapping approach (Efron and
Tibshirani, 1993), where original plankton counts and
size measurements were resampled with the objective of
separating size-structure information from observational
noise. Plankton counts and corresponding size measure-
ments were assumed to follow specified error distri-
butions: Poisson distribution for counts, and Uniform,
and Gaussian distributions for size measurements. For
each set of original and resampled data, we computed a
nonparametric representation of density versus size.
Computations are extensive, but the resample series
(ensemble) of nonparametric estimates allowed us to cal-
culate mean size densities for each plankton group and
to specify their confidence limits. We then fit unimodal
and bimodal normal distribution functions, on a logar-
ithmic scale, to mean density estimates of dominant
plankton groups. In the sections below, we describe the
assumptions inherent in our bootstrapping approach,
provide details for the optimum bandwidth selection
needed for the kernel density estimation and define a
misfit function for fitting parametric functions to plank-
ton size-density estimates. Figure 1 depicts the steps in
these analyses.

Plankton counts and sizes

During the IronEx II project in the eastern equatorial
Pacific (Coale et al., 1996), data on species identity,
abundance and size were collected at a series of stations,
both inside and outside a mesoscale iron-fertilized
patch. At all stations, samples were collected from the
mixed layer (15 m) and analysed as described in Landry
et al. (Landry et al., 2000a). Briefly, small volume (3 mL)
samples were preserved with 0.9% paraformaldehyde
and analysed by dual-beam flow cytometry for popu-
lations of Prochlorococcus, Synechococcus and eukarytoic phy-
toplankton. Samples of 20–50 mL were preserved with
1% gluteraldehyde, stained with DAPI and prepared as
slides (0.2-mm filters) for analysis by epifluorescence
microscopy. At least 2000 cells per slide were enumer-
ated and sized in specific recognizable categories
(species, genera or classes) according to the method of
Chavez et al. (Chavez et al., 1991), with the vast majority
of cells viewed at �1000 magnification, but with large
(.40 mm) and rare types counted on a larger portion
of the slide at �400. For the present analysis, picophy-
toplankton cell categories were grouped for data proces-
sing, with direct size measurements of Synechococcus and
eukaryotes (abundance estimates from microscopy and
flow cytometry were in good agreement). For
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Prochlorococcus, we assumed a mean size of 0.735 mm,
similar to that of Blanchot et al. (Blanchot et al., 2001).
Figure 1A shows an example of original cell counts and
the corresponding length measurements of centric

diatoms observed at stations within the iron-fertilized
patch. To compare plankton responses, we combined
measurements from stations inside the fertilized patch
into one data set, and those from stations outside the

Fig. 1. (A–H) The sequential analysis procedure. The example includes resampling of counts and size measurements of centric diatoms
observed at stations within the iron-fertilizsed patch. Original and resample data are similarly treated throughout the analysis. Details are
explained in the Method section.
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fertilized patch into a second (“control”) set.
Accordingly, we did not resolve variations due to tem-
poral and spatial variability inside and outside the
patch.

Resampling of lengths, widths and counts

Obtaining simultaneous data on cell abundances,
size and taxonomic identity requires labour-intensive
microscopy; and it is therefore seldom possible, within
time and effort constraints, to replicate microscopic ana-
lyses. On the other hand, we desire confidence limits
for nonparametric size-density estimates, while consid-
ering uncertainties in counts and size measurements.
We calculated these confidence limits from an ensemble
of kernel density estimates. The ensemble of densities
was determined using resample data sets, which were
obtained by randomly resampling the original data set
with replacement (bootstrapping). In addition to the
original data set, the bootstrapping produces sets of
pseudo-data, having the same statistical properties as
the data. In total, we produced 100 resample data sets
from each primary data set.

The absolute accuracies of microscope measurements
of cell length and width depend on the magnification
chosen. By examining the data from IronEx II, we
found that the precision of length and width measure-
ments varied with different magnifications used. Table I
shows the size dependency in precision, rounded to the
nearest 1, 2, 5, 10, 20, 40 and 100 mm. The precisions
in length and width measurements increase with
increasing size. We imposed uniform error distributions
whose interval was equal to the resolution of the size
range. For sizes below 2 mm, we assumed a normal
error distribution with a standard deviation of 0.2 mm.
While length and width were resampled, we approxi-
mated cell thickness based on different shape factors,
which varied among plankton groups. For approxi-
mation of cell thickness, we adopted the conversion

factors used in Landry et al. (Landry et al., 2000a), who
related width to thickness according to Chavez et al.
(Chavez et al., 1991). Cell volumes were calculated using
the formula for a scalene ellipsoid, combining the two
semi-axes (measured or resampled) length and width
with the calculated thickness. Cell volumes were then
rescaled to equivalent spherical diameter (ESD) of a
sphere.

A single plankton count can be interpreted as a dis-
crete event during a certain time period of measure-
ment, where each cell is found within a microscopic
sub-sample that has been taken from a larger water
volume. If no event is found, the sub-sample may have
been too small to capture cells that were highly dis-
persed at this station. On the other hand, if a cell is
counted, it may not be representative of the larger
water volume and an extrapolation to cell concentration
(cells per litre) may be biased. Thus, a single plankton
count within a sub-sample should be regarded as a rare
event, and a repetition of this event should remain rare
during resampling. The Poisson error distribution is an
appropriate description of uncertainty when accounting
for such rare events. As individual counts were resolved
in the data set, we therefore imposed the Poisson
expected value of “one”. We also obtained zero counts
while drawing from the Poisson distribution (Fig. 1B).
The resampled data were then extrapolated to cell con-
centrations in units of cells per litre (Fig. 1B and C) as
in Landry et al. (Landry et al., 2000a), accounting for
different water volumes filtered and varying portions of
the slide areas analysed. Individual cell counts corre-
spond to concentrations on the order of 102 cells per
litre (Fig. 1C).

Nonparametric density estimation

Histograms are often used to depict plankton size den-
sities. Defining the bins of histograms requires defining
points of origin and interval widths, subjective choices
that can yield different distributional patterns. Such sub-
jectivity can be justified; but it does hinder inter-
comparison among studies. In the present study, we
chose a different statistical approach, based on a density
estimation method first proposed by Parzen (Parzen,
1962) and now commonly termed “kernel density esti-
mation”. In comparison to other density estimation
techniques, the kernel density estimator generally pro-
vides greater detail of distribution structure (Wegman,
1972; Silverman, 1986). A nonparametric density
obtained from a kernel density estimator is less suscep-
tible to the intuitive specifications needed for histo-
grams. Also, if the density estimate is smooth rather
than discontinuous, the intermediate step of kernel

Table I: Resolutions of microscopic size
measurements during the IronEx II experiment

Resolution of microscopic
measurement, mm

Size range for
length, mm

Size range for
width, mm

1 2–6 2–6
2 6–40 6–40
5 40–80 40–50
10 80–180 50–100
20 180–300 .100
40 300–500 –
100 .500 –

Resampled data sets were drawn from uniform error distributions based
on the microscopic resolution within each length and width size range.
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density estimation provides an ideal basis for devising
parametric functions.

A kernel density estimate is derived from the sum of
symmetric probability density functions (kernels) defined
around each data point. For each data point, the kernel
can be regarded as a weighting function for the obser-
vation. For example, Fig. 1D shows all kernels of the
resampled set depicted in Fig. 1C. The summation over
all kernels leads to a smoothed distribution (Fig. 1E),
which can then be normalized to fulfil criteria of a
probability density function (pdf ). In plankton ecology,
the utility of kernel density estimation has not been
widely appreciated. Our analysis joins recent studies by
Sanvicente-Añorve et al. (Sanvicente-Añorve et al.,
2003) and Quintana et al. (Quintana et al., 2008) in
applying kernel density estimation to plankton size
spectra. We complement the method with a bootstrap-
ping approach that relates uncertainties in plankton
measurements to confidence intervals of the density esti-
mates (Fig. 1F and G).

Kernel density estimation of plankton size

ESD data (esdij; mm, with index i for every observation
of plankton group j) were calculated from length and
width data that were originally rounded to discrete sizes
(Table I), depending on the magnifications used for
microscopy. After resampling of cell counts and sizes
(Fig. 1B), we calculated cell concentrations (cij; cells
L21), multiplying counts (nij) by an extrapolation factor
(E ) (Fig. 1C). The total cell concentration ðC tot

j Þ is the
sum of M individual cell concentrations:

C tot
j ¼

XMj

i¼1

cijðesdijÞ ¼
XMj

i¼1

E � nijðesdijÞ ð1Þ

The size distribution ð f̂j Þ of a single plankton group can
be described as the product of total cell concentration
and the pdf of ESD:

f̂j ¼ C tot
j � pdf jðESDÞ: ð2Þ

By definition, a pdf is required to integrate to one. For
our size range of interest, 0–327 mm, the following
equation fulfils that constraint:ð327mm

0mm
pdf � dESD ¼ 1: ð3Þ

Kernel density estimation theory allows one to construct
a nonparametric plankton size distribution that is
“smooth” (i.e. continuous with continuous derivatives of

all orders). A smooth density estimate ðf̂j Þ can be nor-
malized simply by dividing by total cell abundance
(cells L21); the result can then be interpreted as a data-
based, nonparametric pdf. Since phytoplankton size
measurements extend over a range of three orders of
magnitude, we apply the kernel density estimator on a
logarithmic scale. As used traditionally in aquatic
ecology, log-scale analysis implicitly accounts for the
doubling of cell volume during the cell cycle, allowing
each species to have the same width on the log-scale,
rather than giving larger species larger apparent var-
iances. For kernel density estimation, we first transform
ESD to a dimensionless size variable s:

s ¼ ln
ESD

s0

� �
¼ ln

ESD

1mm

� �
: ð4Þ

A kernel density estimate for a pdf is constructed by
adding together all individual kernel functions (here
Gaussian distribution functions on a logarithmic scale,
Fig. 1D). Each Gaussian kernel is centred around
ln(esdij/s0), the normalized and log-transformed obser-
vation of esdij, with index i for each observation within
plankton group j. The Gaussian kernel itself is a smooth
distribution that integrates to one. Each kernel is then
multiplied by the corresponding cell concentration (cij;
cells L21). Therefore, the sum of Gaussian kernels has
to be normalized (dividing by the total cell concen-
tration, C tot

j ) in order to yield again a probability
density estimate for plankton group j:

pdf estðsÞj ¼
1

C tot
j

XMj

i¼1

cij

hj

ffiffiffiffiffiffi
2p
p exp

ðs� lnðesdij=s0ÞÞ2

2h2
j

" #
ð5Þ

The width of each kernel distribution is expressed by
the smoothing parameter hj, called bandwidth. When a
Gaussian kernel is chosen for the transformed variable s

[equation (5)], the bandwidth hj, which remains con-
stant for a single plankton species or group, resembles a
standard deviation on a logarithmic scale. Overall, it is
the summation over a series of kernels that yield a final
distribution where each data point is represented by
itself, which is the major difference from the application
of a histogram.

Estimation of optimal bandwidths

The main task in kernel estimation theory is the selec-
tion of an optimum bandwidth, one that minimizes bias
while maximizing variance information (bias-variance
trade-off ). Briefly, a best bandwidth is identified if the
estimate of the pdf at any data point can also be
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represented by a density estimate from neighbouring
points. For example, if we remove one data point and if
the bandwidth were too broad, the entire pdf would
spread over too large a range, and the pdf estimate at
the location of the missing point would be too small
(biased estimate). On the other hand, if the bandwidth
were too narrow, the pdf would consist of narrow spikes.
The pdf values would have large variations within the
size range of interest (too much variance). In the worst
case, the pdf would become zero at the missing point.
Figure 2 depicts an example of bandwidth selection
where a reference density, which was described by five
data points, has to be recovered by a density estimate
from the four neighbouring data points. Optimum
bandwidth selection provides reasonable density predic-
tions for any data point removed.

A common approach to kernel density estimation is
to specify a single bandwidth that remains constant
throughout the analysis of a data set. Criteria exist for
choosing an optimal constant bandwidth, mostly
derived from practical considerations and based on nor-
mality assumptions. For example, assuming a priori that
a final density estimate f̂ can be expressed in terms of a
normal density distribution facilitates the approximation
of an optimal constant bandwidth (finding an

asymptotic solution that describes the estimator’s trade-
off between variance and bias). Making such assump-
tions about unknown density distributions for band-
width selection are often referred to as plug-in methods.

Pragmatic plug-in methods for choosing constant
bandwidths have been shown to produce good
results for size-structure analyses of fish larvae
(Sanvicente-Añorve et al., 2003) and for the estimation
of size diversity (Quintana et al., 2008). Our approach is
similar, but we adopt an ansatz, discussed by Härdle
et al. (Härdle et al., 2004), who refined a rule-of-thumb
bandwidth method originally suggested by Silverman
(Silverman, 1986). Our bandwidth estimate hj is
inferred from the variance information of the normal-
ized and log-transformed ESD observations, sij ¼

ln(esdij/s0). To reduce the sensitivity of such an estimate
to outliers, an inter-quartile range (Rj) was calculated
by subtracting the upper 75% quartile from the lower
25% quartile:

Rj ¼ sij½0:75M� � sij½0:25M� ð6Þ

Given the inter-quartile range Rj together with the
standard deviation ðŝjÞ of sij, the rule-of-thumb

Fig. 2. Example of bandwidth selection. A reference density (dashed line) is described by five data points (asterisk and square symbols); our aim
is to recover a density estimate (solid line) after removing one data point (square symbol). ‘Bias’ refers to the deviation between the dashed line
and the solid line at the location of the missing point; ‘variance’ refers to the variability of the density estimates that might be gotten at that
point, e.g., from different bootstrap estimates. See text for further explanation.
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bandwidth can then be calculated as:

hj ¼ 1:06 �min ŝj ;
Rj

1:34

� �
M
�1=5
j ð7Þ

with Mj being the total number of data points for each
plankton group. The factors 1.06 and 1.34 are derived
from statistical considerations, assuming that the non-
parametric density estimates resemble normal distri-
butions (Härdle et al., 2004). Numbers of data points
for each plankton group, together with their observed
size ranges, of this study are provided as
Supplementary Material.

Fitting parametric distribution functions to
plankton size density

For parametric density functions, we chose normal
density functions on logarithmic scales to characterize
the patterns suggested by the nonparametric density
estimates. We hypothesize that each plankton group
identified during measurement may actually consist of
more than one species, or different clones if each
resolved “type” represents a species. Plankton size distri-
butions for each “type” are assumed to arise from a
mixture of cells whose component populations are
subject to different intrinsic growth parameters on the
species level and are exposed to external variability due
to micro-scale physics, nutrient availabilities and plank-
ton interactions. As we are concerned with the domi-
nant peaks of the densities, we restrict our analysis to
resolving no more than two peaks. Therefore, the
general form of the probability density function is
bimodal (pdf2), defined as an affine combination of two
Gaussian functions on a logarithmic scale:

pdf ðs; q; a1; b1; a2; b2Þ
¼ ð1� qÞ � N ðs; a1; b1Þ þ q � N ðs; a2; b2Þ

¼ 1ffiffiffiffiffiffi
2p
p ð1� qÞ

b1
exp �ðs� a1Þ2

2b2
1

 !"

þ q

b2
exp �ðs� a2Þ2

2b2
2

 !#
ð8Þ

The unimodal function (pdf1) was derived simply by
setting q ¼ 0 in equation (8) and optimizing a1 and b1

only. The parameters (a1, a2 and b1, b2) are the means
and variances of the normalized and log-transformed
variable (s). The first mode of the pdf is characterized
by its amplitude (1 – q) � 0 at location s ¼ a1 and its

width b1; similarly, the second mode is specified by its
amplitude (q) at s ¼ a2 and width b2.

Optimum parameter values were obtained by
maximum likelihood estimation. Although the notion
of comparing two continuous distributions (as it is the
case for our nonparametric and the parametric den-
sities) differs from a data-model comparison, an appro-
priate metric should reflect the number of data points.
A perfect data-model comparison also demands the
consideration of covariances between data points. The
calculation of covariances between size measurements
could possibly be achieved by incorporating the
optimum bandwidth, defined before, as correlation
length scale. Nevertheless, the proof of using the
optimum bandwidth for computations of covariances
requires an in-depth analysis that goes beyond the
scope of this study. Furthermore, the optimum band-
widths differ, although slightly, between resample data
sets of each plankton group. This means that an ideal
data-model comparison would also require data-model
fits for each resample data set. The average of the
ensemble of parameters estimates for equation (8)
would then describe a perfect fit. To keep computations
moderate, we assumed a conditional probability that
imposes independence between size measurements and
describes deviations between the parametric function
[equation (8)] and the nonparametric kernel density
estimate [equation (5)] at points corresponding to ESDs
in the original data sets. Our conditional probability
can be defined as a likelihood (L):

probðpdf estðsiÞjq; a1; b1; a2; b2; pdf Þ ¼ L

¼
YM
i¼1

1

1i

ffiffiffiffiffiffi
2p
p exp �ðpdf estðsiÞ � pdf ðsiÞÞ2

212
i

 !
ð9Þ

This likelihood measures the fit to the nonparametric
density estimate (pdfest) at the points of measurement
(si), given the parameter values (q, a1, b1, a2, b2) for the
parametric function (pdf ) [equation (8)]. The likeli-
hood’s variance information (12

i , which is the uncer-
tainty in our nonparametric density estimate) was
calculated from the ensemble of density estimates,
according to our bootstrapping approach. In practice,
maximum likelihood estimates are obtained when the
global minimum of the negative logarithm of the likeli-
hood (2ln(L)) is found. Rather than seeking for the
minimum of the negative logarithm of the likelihood,
we calculated the Akaike information criterion (AIC),
which also accounts for the additional degree of
freedom of the parametric function used to produce
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the fit. In our case, the AIC was determined as follows:

AIC ¼ 2 � ð� lnðLÞ þ PÞ

¼ �
XM
i¼1

2 ln
1

1i �
ffiffiffiffiffiffi
2p
p

� �
� ðpdf estðsiÞ�pdf ðsiÞÞ2

12
i

 !

þ 2P ð10Þ

with M being the number of data points
(Supplementary Material). P is the number of
parameters needed for the parametric functions. We
distinguished between AIC1 with P ¼ 2 for the
unimodal- and AIC2 with P ¼ 5 for the bimodal func-
tion. Because of the first term in equation (10), the
AIC can become negative. The lower the AIC value,
the better the fit. The difference between AIC2 and
AIC1 allows us to assess whether a bimodal function is
an improvement compared to the unimodal pdf for a
particular plankton group.

R E S U LT S

The IronEx II data contain 25 plankton groups, among
which we distinguished 18 photoautotrophs and 7 het-
erotrophs. For simplicity, we show details only for those
groups that were most abundant or experienced signifi-
cant impacts from iron fertilization (Figs 3 and 4). All
groups are, however, represented in the composite
density estimates (Fig. 5). Density estimates for all 25
plankton groups are provided (with their standard devi-
ations) as Supplementary Material. Tables II and III
include information on reconstructing the density esti-
mates with parametric functions [equation (8)], with the
number of total cell concentration and parameter
values, respectively. The last columns depict differences
between AIC2 and AIC1 of the bimodal and the unimo-
dal fits, respectively.

Nonparametric and parametric density
estimates of plankton size

Phytoplankton
By comparing spectra from the fertilized patch to those
from the control sites, we can assess the changes
induced by iron addition. By examining the nonpara-
metric density estimates on a logarithmic scale of ESD,
we can identify three characteristic distributional pat-
terns: symmetric unimodal, right-skewed and bimodal
(two distinct peaks). Figure 3 shows the responses in size
spectra for phytoplankton groups that were abundant
within the fertilized patch and that were also observed

at the control sites. Some large diatoms, such as
Rhizosolenia and Thalassiotrix spp., were not found outside
the patch (Supplementary Material).

Prymnesiophytes (Fig. 3A), the group that includes
coccolithophorids, have a symmetric distribution on a
logarithmic scale, and a unimodal pdf suffices to
describe the density of the control (Table II). The domi-
nant mode (the size with highest frequency of cells) is
located between ESD ¼ 2.8 mm (a1 ¼ 1.03) and ESD ¼
2.9 mm (a1 ¼ 1.07), with a small shift towards larger cell
sizes when the fertilized patch is compared with the
control. The parametric fit of the bimodal density func-
tion to the control density estimate yields q ¼ 0.04
[equation (8)], so that a unimodal distribution can
indeed be preferred over a bimodal fit. In contrast, a
bimodal fit produces better results for the fertilized
patch. Nonetheless, the parametric fit comprises a small
contribution of the second mode (q ¼ 0.1) to the overall
density distribution, similar to the control. The appar-
ent improvement is largely due to a better represen-
tation of the leptokurtic kurtosis that extends the density
estimate up to sizes close to 5.9 mm. Apart from these
details, the distribution shifts slightly towards larger
sizes, which can be adequately described with the
unimodal parametric function.

The size density changes for Pseudo-nitzschia (pre-
viously incorrectly reported as Nitzschia spp. in Landry
et al., 2000a) differ from those for prymnesiophytes
(Fig. 3B). Instead of a slight shift towards larger cells,
the distribution switches from a fairly symmetric unimo-
dal density in the control samples to a bimodal distri-
bution within the patch, with two distinct modes at
ESD ¼ 2.9 and 7.3 mm (with a1¼1.05 and a2¼1.98).
The bimodality of the nonparametric estimates is well
represented by the parametric fit, resolving the separ-
ation of the two peaks. The first mode (between ESD ¼
2 and 3 mm) is similar between control and patch. The
second mode around 7 mm is detectable in the control
samples, but extremely small. Subsequent analyses (data
not shown) indicate that two modes are also well
expressed in densities based on cell thickness and length
rather than on ESD. Cells in the second mode thus
seem morphologically similar to those in the first mode
but are proportionally larger. The abundance increase
of Pseudo-nitzschia spp. is most pronounced compared
with other phytoplankton, and resolving the second
mode in the parametric function is indeed crucial
because it contains a significant biovolume response.

Autotrophic dinoflagellates show a clear bimodal distri-
bution in both the control and the fertilized patch
(Fig. 3C). However, the response to fertilization is
different from the structural changes apparent for
Pseudo-nitzschia. For dinoflagellates, cell concentration
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density increases significantly within the first mode,
between 2.8 and 3.5 mm ESD (with a1 ¼ 1.17 and 1.19
for control and patch, respectively). The response in the
size range between 5 and 10 mm (second mode) is less
expressed. With a2 between 1.19 and 1.89, the parametric
fits do show two distinct modes, but the amplitudes of the
first mode are better resolved both inside and outside the
patch. As with Pseudo-nitzschia, some limitation exists in
applying the bimodal function, to match the second
mode’s amplitude of both nonparametric densities. This
may possibly be attributed to an overestimate of the
width of the second mode (b2 ¼ 0.29). The second mode
seems wider than the first mode and may include a third
mode at the upper end of the distributions for
Pseudo-nitzschia and photoautotrophic dinoflagellates.
Only if b2 were smaller could the amplitudes of the func-
tion’s second mode fit the density estimates while resol-
ving the amplitudes of the first mode equally well.

The fertilization response of Chaetoceros spp. combines
most of the characteristics described before, with a shift

of the first mode together with an accentuation of the
second (Fig. 3D). These structural changes can be
inferred from the optimum values of the parametric fits.
According to small differences in AIC and the better
performance of the unimodal fit in the control, a func-
tion with a single mode may suffice to describe the shift
toward larger cells. The dominant first mode moves
from ESD ¼ 5 to 6 mm. This shift is exaggerated in the
parametric density estimate of the unimodal function.
The nonparametric density of the iron-patch suggests
the existence of a third and perhaps even a fourth
mode for larger ESD. Again, as in the parametric fits of
photoautotrophic dinoflagellates and Pseudo-nitzschia, the
second mode of Chaetoceros is wide enough (b2 ¼ 0.34) to
fit the kurtosis at the upper tail and thus resolves the
right-side skewness of the nonparametric density esti-
mate. Such density estimates are particularly challen-
ging, since their skewed distributions and their kurtosis
are not ideally represented by either unimodal or
bimodal functions on log-scale.

Fig. 3. Cell concentration densities of the four dominant taxonomic phytoplankton groups during the IronEx II experiment. (A)
Prymnesiophytes, (B) Pseudo-nitzschia, (C) photo-autotrophic dinoflagellates, and (D) Chaetoceros spp. Shaded areas include nonparametric density
estimates of the mean and the 95% confidence limits (+2 standard deviations). The horizontal axis of equivalent spherical diameter (ESD) is on
a logarithmic scale (base 10). ESD can be back-transformed from the normalized, logarithmic variable (s ¼ ln(ESD/1.0 mm)) to a linear scale
according to ESD ¼ exp(s).
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Heterotrophs
Heterotrophs also showed three different response pat-
terns in size densities that are similar to those of the
phytoplankton. In contrast, there are major differences
between heterotrophic density spectra and photoauto-
trophic density spectra in the response of cell concen-
tration to iron fertilization. Heterotrophic cells are
decreased within the fertilized patch for sizes smaller
than 5 mm. Cells with ESDs larger than 5 mm were
either equally abundant inside and outside the patch or
increased after iron fertilization. Flagellates, the smallest
heterotrophic nano-plankton observed, exhibited sym-
metric unimodal densities both inside and outside the
fertilized patch (Fig. 4A). The parametric unimodal
density function fits both nonparametric estimates well,
as indicated by a positive difference between the AIC
(Table III). The size peak of the flagellates is close to
that of the prymnesiophytes, at approximately ESD ¼
2.9 mm. Although both fill a similar narrow niche in
ESD, the abundance of heterotrophic flagellates
decreased markedly at the same times that

prymnesiophytes increased, suggesting that grazing on
heterotrophic flagellates could be preferred to grazing
on prymnesiophytes. Alternatively, both groups could
have experienced similar grazing pressure, but the
specific growth rate of the prymnesiophytes may have
exceeded their loss to grazing.

Dinoflagellates are the second most abundant group
among the heterotrophs. After iron fertilization, their
total cell concentration decreased slightly, but larger cells
(ESD � 8 mm) became more abundant at the same time
(Fig. 4B). The size spectrum does not reveal distinct
peaks but is right-skewed. The density peak is located
around ESD ¼ 5 mm, which is captured by the unimo-
dal parameter fit. The AICs suggest a preference for the
bimodal parametric fits, because they better resolve the
right-skewness of the distributions. It is noteworthy that
the dinoflagellate density maxima almost coincide with
the local minimum (depression) seen in the size densities
of photoautotrophic dinoflagellates and Pseudo-nitzschia.

The green dinoflagellates, although containing
pigments from prokaryotic endosymbionts, are treated

Fig. 4. Cell concentration densities of microzooplankton during the IronEx II experiment. (A) Heterotrophic nano-flagellates, (B) heterotrophic
dinoflagellates, (C) heterotrophic, green dinoflagellates with endosymbionts, and (D) ciliates. Shaded areas include nonparametric density
estimates of the mean and the 95% confidence limits (+2 standard deviations). The horizontal axis of equivalent spherical diameter (ESD) is on
a base 10 logarithmic scale. ESD can be back-transformed from the normalized, logarithmic variable (s ¼ ln(ESD/1.0 mm)) to a linear scale
according to ESD ¼ exp(s).
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here as heterotrophs. Both density estimates (patch and
control) clearly show two modes, whose peaks are iden-
tical with those of the photoautotrophic dinoflagellates
(Fig. 4C). The green dinoflagellates are less abundant
than their photoautotrophic counterparts. Notably, their
responses to iron fertilization can be interpreted as
mirror images: cell abundance of green dinoflagellates
decreases within the first peak of smaller sizes, while the
second mode hardly changes; the opposite response is
observed for the photoautotrophic dinoflagellates. The
fit of the bimodal function to the nonparametric den-
sities proved superior to a unimodal function, which
can be inferred from the negative AIC values. As pre-
viously seen, the local density minimum occurs within
the size range of 4 and 5 mm ESD.

Figure 4D depicts heterotrophic ciliates in the larger
size range, where they appear in small numbers.
Density estimates could not be made outside the ferti-
lized patch because there were too few data points with
independent length and width measurements.

Consequently, we could only infer a density estimate
from observations made within the fertilized patch. The
increase in abundance represents a large fraction of the
biovolume increase of the microbial community. An
approximately 3-fold increase in ciliate biovolume is
reported in Landry et al. (Landry et al., 2000a), who
suggested a substantial increase in grazing on smaller
plankton following fertilization. A unimodal density
function with a1 ¼ 2.57 and b1 ¼ 0.38 (peak at ESD ¼
13 mm) suffices to describe the nonparametric density
estimate. No improvements are achieved when optimiz-
ing the additional three parameters of the bimodal
function.

Composite density spectra
In Figure 5, we depict the combined nonparametric
density estimates for all plankton groups, distinguishing
photoautotrophs from heterotrophs. These composite
density spectra cover a wide size range and represent
the response of the microplankton community of the

Table II: Best parameter estimates for dominant phytoplankton groups, given unimodal and bimodal
parametric probability density functions (pdf1 and pdf2)

Photo-autotrophic plankton Location Cell concentration
Parameter estimates

pdf comparison
pdf1 pdf2

CCtot/Cells L21 aa1 bb1 qq aa1 bb1 aa2 bb2 DAIC5(AIC22AIC1)

Prymnesiophytes Patch 1.93 � 106 1.07 0.1 0.08 1.05 0.08 1.2 0.25 21.2 � 103

Control 1.26 � 106 1.03 0.08 0.04 1.03 0.08 1.3 0.21 21.6 � 103

Pseudo-nitzschia Patch 1.19 � 106 1.04 0.14 0.31 1.05 0.15 1.98 0.3 22.4 � 105

Control 5.29 � 104 1.02 0.18 0.09 1 0.16 1.6 0.58 21.8 � 102

Photo-autotroph. dinoflagellates Patch 7.73 � 105 1.2 0.12 0.23 1.19 0.12 1.87 0.29 23.2 � 105

Control 6.20 � 105 1.19 0.14 0.35 1.17 0.14 1.81 0.33 25.0 � 104

Chaetoceros spp. Patch 1.85 � 104 1.96 0.34 0.56 1.77 0.25 2.08 0.34 23.0 � 102

Control 8.07 � 103 1.61 0.28 0.07 1.59 0.28 2.04 0.1 4.8 � 100

Total cell concentrations are equal to the integral of the nonparametric densities of the original data. Differences in Akaike information criterion
(unimodal, AIC1; bimodal, AIC2) compare the goodness of the parametric fits for each plankton group.

Table III: Best parameter estimates for dominant zooplankton groups, given unimodal and bimodal
parametric probability density functions (pdf1 and pdf2)

Heterotrophic plankton Location Cell concentration
Parameter estimates

pdf comparison
pdf1 pdf2

CCtot/Cells L21 aa1 bb1 qq aa1 bb1 aa2 bb2 DAIC5(AIC22AIC1)

(Nano-) flagellates Patch 2.00 � 106 1.09 0.08 0.04 1.08 0.07 1.22 0.33 1.8 � 103

Control 2.37 � 106 1.06 0.06 0.02 1.03 0.07 1.37 0.25 21.3 � 104

Dinoflagellates Patch 3.82 � 104 1.92 0.42 0.64 1.61 0.2 2.03 0.45 23.2 � 103

Control 4.20 � 104 1.68 0.18 0.33 1.62 0.14 1.96 0.33 23.0 � 102

Green dinoflagellates Patch 3.02 � 104 1.52 0.28 0.79 1.21 0.13 1.88 0.35 21.2 � 104

Control 3.27 � 104 1.52 0.32 0.63 1.21 0.18 1.88 0.38 23.3 � 102

Ciliates Patch 2.48 � 103 2.57 0.38 0.17 2.46 0.32 3.07 0.26 21.8 � 100

Total cell concentrations are equal to the integral of the nonparametric densities of the original data. Differences in Akaike information criterion
(unimodal, AIC1; bimodal, AIC2) compare the goodness of the parametric fits for each plankton group.
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eastern equatorial Pacific to the IronEx II fertilization.
Phytoplankton cell densities (Fig. 5A) show that the
patch and control distributions diverge about ESD ¼
5 mm, with patch abundance rising to a distinct peak
around 6.5 mm. Cells in the picophytoplankton size
range (,2 mm) hardly change in abundance, but the
density slightly declines (Supplementary Material), most
likely due to stimulated grazing pressure of microzoo-
plankton in the fertilized patch (Landry et al., 2000b).
Cells in the size range of 3–5 mm show no noticeable
density difference between the patch and control, but
sizes larger than ESD ¼ 5 mm in the patch clearly
exceed the control concentrations. Heterotrophic dino-
flagellates and ciliates seem to benefit from the
increased abundance of prey larger than 5 mm, and a
significant increase in microzooplankton cell density is
evident at ESD ¼ 7 mm. We interpret this cautiously as
indicating an approximate predator–prey size ratio of
1.4 (i.e. 7:5 mm), which is roughly consistent with the
�1:1 ratio expected for dinoflagellate predators
(Hansen et al., 1994). It is interesting to see how cell
densities of heterotrophic dinoflagellates and ciliates
converge around ESD ¼ 15 mm, with ciliates reaching
the approximate 2 � 103 cells L21 abundance of dino-
flagellates. Large diatoms, mainly Rhizosolenia and
Thalassiotrix spp., appear in significant numbers only
within the fertilized patch. These species, with ESDs
larger than 30 mm, likely escape microzooplankton
grazing. Although large diatoms appear only in small
numbers, their contribution to biovolume is substantial
(Fig. 5B).

D I S C U S S I O N

Application of kernel density estimator for
the analysis of plankton size

Nonparametric kernel density estimation is a widely
accepted statistical method in many research fields,
including astronomy (e.g. Chen, 1996; Carpenter,
2000), economics (e.g. Aı̈t-Sahalia and Lo, 1998;
Herzfeld and Weiss, 2007) and biomedical research (e.g.
Aitchison and Aitken, 1976; Gasser et al, 1984). In
marine and aquatic sciences, however, kernel density
estimation has seldom been applied. Sanvicente-Añorve
et al. (Sanvicente-Añorve et al., 2003) were first to
promote the method for investigations of length-
frequency distributions of fish larvae. Their motivation
was to allow better characterization of skewness and
multimodality in their distributions, which can be diffi-
cult to see in scattered, discontinuous histograms.
Quintana et al. (Quintana et al., 2008) provided in-depth
comparison of parametric and nonparametric density
estimation methods and assumptions for deriving a
robust size-diversity model based on the Shannon
index. They found nonparametric methods, kernel
density estimators in particular, to be superior to fitting
parametric functions to size and weight data. Similar to
our composite density estimates (Fig. 5), they found distri-
butional patterns that can hardly be represented by a
single generic parametric function, like a Pareto-based
biomass-size density (Vidondo et al., 1997). Quintana et al.
(Quintana et al., 2008) also stressed that most parametric

Fig. 5. Composite size-spectra: Plankton densities of the photo-autotrophic and heterotrophic plankton communities were obtained by
summing corresponding mean nonparametric density estimates, respectively. (A) Cell concentration densities inside (solid lines) and outside
(dashed lines) the iron fertilized patch. (B) Corresponding densities of biovolume (as indicator for biomass) inside (solid lines) and outside (dashed
lines) the fertilized patch.
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functions that represent the entire plankton community
size-structure have no true ecological meaning, apart
from exponential-shaped pdfs.

A study by Havlicek and Carpenter (Havlicek and
Carpenter, 2001) compared plankton size-structure pat-
terns among lakes, constructing size distributions of
phytoplankton, zooplankton and fish by summing
over a series of Gaussian density functions. Although
they referred to their procedure as kernel density
estimation, it differed from the conventional approach
by imposing parametric pdfs. In our study, we followed
Sanvincente-Añorve et al. (Sanvincente-Añorve et al.,
2003) and Quintana et al. (Quintana et al., 2008) in
using kernel density estimation as a tool to derive non-
parametric density estimates. Our analyses are therefore
fundamentally different from those of Havlicek and
Carpenter (Havlicek and Carpenter, 2001) with respect
to prior assumptions. Havlicek and Carpenter (Havlicek
and Carpenter, 2001) assumed that plankton size den-
sities were normally distributed on a linear scale and
that each bandwidth of their density function was
equivalent to the standard deviation of size measure-
ments of each plankton group. From our analysis, we
learned that such a priori assumptions are not justified
because asymmetries are apparent within a taxonomic
plankton group. In contrast to Havlicek and Carpenter
(Havlicek and Carpenter, 2001), we avoided prior
assumptions of plankton size distributions by using non-
parametric size densities of individual plankton groups,
which were then added together to yield composite
densities of heterotrophs and photoautotrophs. Such an
approach was outlined by Quintana et al. (Quintana
et al., 2008) to improve the investigation of size diversity.
Subsequent analyses of our composite densities may
therefore help address the issue of size-diversity
measures.

In our study, we imposed constant bandwidths on
each plankton group analysed. We also tested an
approach where bandwidths of variable size were deter-
mined (data not shown) by applying the algorithm for
adaptive bandwidth selection of Brewer (Brewer, 2000).
This algorithm relies on Bayesian statistical consider-
ations in that it explicitly considers conditional depen-
dencies between neighbouring kernels. A data
point-specific bandwidth was obtained for every kernel
(of each sij) after multiplying the constant bandwidth of
equation (7) by a correction factor. Hence, the local
(or data-point-specific) correction factor induced band-
widths smaller than the constant one [equation (7)] in
size ranges where data points are close together, thus
allowing better density resolution. In contrast, the cor-
rection factor leads to larger bandwidths for data points
that are widespread. We found that adaptive bandwidth

selection has the benefit of achieving higher resolution
within certain size ranges, but can be disproportionately
affected by outliers at the upper and lower bounds of
size-density spectra. Large bandwidths were obtained
for minimum and maximum ESDs of individual plank-
ton groups, which artificially enhanced the appearance
of leptokurtic kurtosis in our densities. In addition, our
resampling strategy tended to mask most of the benefit
of higher resolution, while the outlier effects remained.
Algorithms for adaptive bandwidth selection are intui-
tively appealing, but we conclude that a more detailed
methodological analysis would be needed to specify
conditions where the benefits of adaptive bandwidth
selection prevail. Given the large numbers of data
points in our study, we restricted ourselves to constant
bandwidths. Optimal constant bandwidths were much
easier to calculate, which was particularly desirable
when used in conjunction with the bootstrapping
approach.

Choosing and fitting parametric
size-density functions

Through visual inspection of the nonparametric density
estimates on logarithmic scales of ESD, we identified
three distinct distributional patterns: symmetric unimo-
dal, right skewed and bimodal. Using a unimodal
normal distribution function to fit the symmetrical pat-
terns seemed an obvious choice. Additional degrees of
freedom were introduced when imposing a bimodal
function, which were expected to allow better represen-
tation of right-skewed and bimodal size densities. In
addition, we learned from our analysis that estimating
the three additional parameters (q, a2, b2) sometimes
also resolves kurtosis better (e.g. in heterotrophic dino-
flagellates), which is indicated by small estimates of q

and larger values of b2 than of b1. This better represen-
tation of kurtosis is thus a side effect of fitting the
bimodal parametric function to some density estimates.
The existence of leptokurtic kurtosis, for example, in
the distributions of heterotrophic- and green dinoflagel-
lates, appears to be robust. Right-skewed and leptokur-
tic distributions of natural nano- and microplankton
communities were similarly expressed in the data ana-
lysed by Sabetta et al. (Sabetta et al., 2005), who pro-
posed using Gamma functions to represent these
distributional patterns.

Campbell and Yentsch (Campbell and Yentsch, 1989)
related synchronous and asynchronous cell growth to
specific size-distribution patterns. Interestingly, their
computations revealed skewed and bimodal densities for
an asynchronous cell population, where cell growth is
restricted to a short period in the middle of the cellular
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life cycle. When deriving parametric size density func-
tions for plankton, it is worthwhile considering causal
links between population growth, life cycles and vari-
ations of size density. Similarly, distribution functions
that combine cell cycle information with “random”
Gaussian noise were discussed in Armstrong
(Armstrong, 2003a, b). In the modelling study of
Litchman et al. (Litchman et al., 2009), evolutionary
stable strategy sizes of plankton were investigated in
response to varying pulse periods of nitrogen supply. For
intermediate pulse periods (between 30 and 40 days) of
nitrogen supply, their model yields coexistence of small
and larger cells, which generates bimodal size distri-
bution patterns. According to these model predictions,
bimodal patterns can be sustained simply by balancing
the allometric dependencies of maximum growth rate
and nutrient-storage ability. These model findings allow
for a bottom-up interpretation of the bimodalities seen
in plankton size densities.

An alternative top-down interpretation of deviations
from normality can be based on predator impacts: den-
sities might be unimodal in the absence of grazing, with
deviations from normality imposed by extensive grazing
within a particular size range. This perspective is
inspired by the existence of a persistent depression in
densities within the iron-fertilized patch between 4 and
5 mm ESD (Figs 3 and 4). Furthermore, disproportion-
ate grazing losses of cells, in the 4–5 mm size range,
could explain the bimodal structures depicted for
Pseudo-nitzschia (also autotrophic dinoflagellates and het-
erotophic green dinoflagellates), as well as the densities
of Chaetoceros and heterotrophic dinoflagellates. Rather
than a “grazing induced” separation into two modes,
the asymmetry of the unimodal, but right-skewed, size
densities could be due to disproportionate grazing on
smaller cells on the left-hand side of the distributions.

Figure 6 depicts bimodal densities of photoauto-
trophic and heterotrophic plankton density estimates
together with parametric fits that consider a size prefer-
ence for grazing (w) and a corresponding width for the
grazing impact (k), which remain constant. The distri-
bution of size-selective grazing acts on all plankton
groups that fall within the size range of interest,
with only the magnitude of the grazing impact
varying among the different plankton groups. The para-
metric function used can be interpreted as a unimodal
density function (pdf1) that is multiplied by a grazing
filter (f ): f̂ ¼ pdf 1 � f; with f ¼ A=ðk �

ffiffiffiffiffiffi
2p
p
Þ�

½1� B � expfðs� wÞ2=k2g�. The parameter A relates the
amplitude of the unimodal pdf1 to the maximum
grazing impact (B). Such parametric functions cannot
be fit to represent the individual densities within the
confidence limits. However, the general characteristics

of the parametric fits provide support for a top-down
explanation of bimodality in the size range between 2
and 20 mm ESD. The qualitatively good, but statistically
non-significant fits of this parametric approach could
result from morphological differences of plankton prey
that remain unresolved when normalizing to ESD. To
resolve this issue, we may need a dynamical modelling
approach, where convolutions of a grazing kernel func-
tion with individual (unimodal) size densities of plank-
ton groups or species are explicitly considered, similar
to the procedure discussed by Armstrong (Armstrong,
2003a, b).

Resolving details in plankton size structure
and implications for ecological modelling

With the recognized importance of organism size as an
organizing trait for plankton community structure, trait-
based modelling approaches (Litchman and
Klausmeier, 2008) seem likely to improve descriptions of
plankton interactions. Specification of trade-offs among
different traits (like size) is important and can link eco-
system function to biogeochemical pathways of organic
matter flux (e.g. Verdy et al., 2009). For example, trade-
offs between nutrient uptake affinity and predation
defence (Merico et al., 2009) could be expressed in
terms of size-dependencies, including aspects of cellular
or metabolic size scaling (e.g. Irwin et al., 2006;
Litchman et al., 2007) and adaptation of mean or
optimum cell-size (Jiang et al., 2005; Yoshiyama and
Klausmeier, 2008). Given these theoretical prospects
together with new modelling approaches, the avail-
ability of high-resolution data of plankton community
structure (in terms of size and taxonomic differen-
tiations; Armstrong, 2003b) is of crucial importance.
The degree to which details can be resolved depends
primarily on the quantity and quality of available data.
To produce these data, rigorous procedures for statisti-
cal treatment of size measurements are needed.
Plankton size data are usually available as histograms
that vary in bin width and point of origin. Analysing
size data from different investigators or experiments is
difficult, as one needs to combine a series of differently
binned data. If continuous densities of plankton size are
derived using kernel estimation methods, combining
them is straightforward. With the bootstrapping
approach, as applied in our study, it should be possible
to reanalyse historical binned size data and provide con-
tinuous density estimates together with confidence
limits. This procedure would facilitate inter-comparisons
among different data sets and support investigations of
species interactions while also providing constraints for
size-based plankton models.
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The response of plankton community structure to
iron addition during IronEx II can be explained by a
combination of bottom-up and top-down effects
(Armstrong, 1994; Price et al., 1994). The natural plank-
ton community of the eastern equatorial Pacific is
subject to a tight control inherent to the microbial loop,
where growth, grazing and remineralization are strongly
coupled (Pomeroy, 1974; Azam et al., 1983). The bloom
develops as a disturbance of the balance between utiliz-
ation (growth uptake) of the limiting trace element, iron
and its regeneration via microzooplankton predation.
The composite community size distributions reveal a
narrow depression between ESD ¼ 4 and 5 mm, which
is close to the peaks in densities of Chaetoceros and het-
erotrophic dinoflagellates outside of the fertilized patch.
We speculate that the natural zooplankton community
outside the fertilized patch maintains a grazing prefer-
ence for cells in this size range. Cell concentrations in
this range declined after iron addition, whereas abun-
dance of slightly larger cells increased, producing a shift
in the peak of Chaetoceros towards larger cells and

enhancing the skewness in the distribution of hetero-
trophic dinoflagellates. At the same time, cell concen-
trations of Pseudo-nitzschia and autotrophic
dinoflagellates increased; but since their size variance
includes larger cells that could escape extensive grazing,
their size densities expressed a clear bimodality.

From our analysis, it appears that the 4–5 mm ESD
size range may represent a sensitive link of predator–prey
interaction. At approximately 5-mm ESD, there is a step-
like increase in densities of larger cells in the fertilized
patch relative to the control (Fig. 5). The slight increase in
abundance of photoautotrophic cells smaller than 4 mm
ESD has little impact on biovolume, and thus on
biomass. The sensitive size ranges in the proximity of
�5 mm and .40 mm ESD can also be interpreted in
terms of the “loophole” concept (Bakun and Broad,
2003; Irigoien et al., 2005), in which phytoplankton
growth exceeds predation, allowing escape from the
tightly linked predator–prey interactions of the microbial
food web. However, the loophole concept does not ade-
quately account for bottom-up, allometric size-scaling

Fig. 6. Nonparametric density estimates and their 95% confidence limits (shaded). Parametric fit with a unimodel density function (pdf1)
multiplied by a grazing distribution f ): f̂ ¼ pdf 1 � f;, with f ¼ A=ðk �

ffiffiffiffiffiffi
2p
p
Þ � ½1� B � expfðs� wÞ2=k2g�. The grazing distribution consists of a

preference size for grazing (f ¼ 1.52) and a corresponding width for the grazing impact (k ¼ 0.88), which remain constant for all plankton
groups: (A) Photoautotrophic dinoflagellates (with a1 ¼ 1.44, b1 ¼ 0.2, A ¼ 130, B ¼ 0.998), (B) Pseudo-nitzscha (a1 ¼ 1.44, b1 ¼ 0.27, A ¼ 90,
B ¼ 0.998), (C) Chaetoceros spp. (a1 ¼ 1.75, b1 ¼ 0.27, A ¼ 30, B ¼ 0.96) and (D) green dinoflagellates (a1 ¼ 1.59, b1 ¼ 0.27, A ¼ 65, B ¼ 0.99).
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effects discussed above. Assuming that mineralization of
organic matter and the regeneration of organic-iron com-
pounds regulate the stability and efficiency of the
microbial loop, a characteristic size-density pattern of the
plankton community is established, as observed at
the control stations. The recent model of Yoshiyama and
Klausmeier (Yoshiyama and Klausmeier, 2008) makes
the point, for example, that size dependencies extend to
the level of the molecules of dissolved organic matter that
serves as resources for microbial consumers. Ultimately,
the balance between bottom-up and top-down size-
dependent processes needs to be explored using systems
models that relate directly to the patterns of size variabil-
ity observed in natural systems, both in their base states
and in response to perturbations such as iron fertilization.
For such modelling efforts, rigorous methods to develop,
analyse and synthesize size-based assessments of plankton
community structure are necessary.

S U M M A RY A N D CO N C LU S I O N S

Using cell counts and size data from IronEx II, we
derived nonparametric characterizations of size-
frequency distributions for several photoautotrophic and
heterotrophic plankton groups. Symmetric nonpara-
metric density estimates were described well by unimo-
dal parametric density functions. Asymmetries, such as
right-skewed and bimodal densities, as seen for example
in the density spectra of Pseudo-nitzschia and Chaetoceros,
could be resolved using bimodal parametric functions.
Size-based analysis of the nonparametric densities
revealed a significant depression among photoauto-
trophic and heterotrophic plankton groups in the range
of 4–5 mm ESD. Since this characteristic is expressed
for both autotrophs and heterotrophs, it seems more
likely to be associated with size-selective grazing than
with bottom-up effects on primary producers. By
imposing parametric functions that represent a size-
specific grazing filter, we found qualitatively good agree-
ment to the bimodal nonparametric densities.

The issue of deriving parametric functions for preda-
tor–prey relationships needs to be addressed further. As
seen for the size densities of individual plankton groups,
the critical size range 4–5 mm ESD appears relatively
invariant inside and outside the fertilized patch, while
the biovolume of smaller cells is altered little by iron
addition. Those plankton groups or species with cells
larger than 5-mm ESD yield the major fraction of net
biovolume increase after fertilization, with heterotrophs
showing a size-shifted response and an implicit mean
predator:prey size ratio suggestive of grazing by
dinoflagellates.

In this study, we have shown that kernel density esti-
mation is well suited to representing important aspects
of plankton community structure. The smoothed non-
parametric densities are ideal for subsequent analyses of
spectra to obtain size functions for growth rates and
grazing mortalities, as suggested for example by Zhou
(Zhou, 2006). Since most density estimates yield
symmetric distributions outside the fertilized patch, we
conclude that the undisturbed microbial plankton com-
munity can be well described by unimodal Gaussian
functions. Asymmetries are clearly expressed after fertili-
zation. Only by means of dynamical modelling can we
fully resolve the issues of bottom-up and top-down
control of the plankton community (Armstrong, 1994;
Price et al., 1994).

In addition to their use in modelling, kernel density
estimates of plankton size can contribute to inter-
comparisons among independent studies of plankton
community structure and dynamics on different spatial
and temporal scales. Such activities are currently hin-
dered by the multiplicity of schemes and scales for size
binning in histograms. Use of the bootstrapping
approach, in conjunction with the kernel density esti-
mation, provides a statistical analysis procedure that can
be utilized to derive continuous size-densities of plank-
ton from historical, binned data.

S U P P L E M E N TA RY DATA

Supplementary data can be found online at http://
plankt.oxfordjournals.org.
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