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ZooScan with ZooProcess and Plankton Identifier (PkID) software is an integrated
analysis system for acquisition and classification of digital zooplankton images
from preserved zooplankton samples. Zooplankton samples are digitized by the
ZooScan and processed by ZooProcess and PkID in order to detect, enumerate,
measure and classify the digitized objects. Here we present a semi-automatic
approach that entails automated classification of images followed by manual vali-
dation, which allows rapid and accurate classification of zooplankton and abiotic
objects. We demonstrate this approach with a biweekly zooplankton time series
from the Bay of Villefranche-sur-mer, France. The classification approach pro-
posed here provides a practical compromise between a fully automatic method
with varying degrees of bias and a manual but accurate classification of zooplank-
ton. We also evaluate the appropriate number of images to include in digital learn-
ing sets and compare the accuracy of six classification algorithms. We evaluate the
accuracy of the ZooScan for automated measurements of body size and present
relationships between machine measures of size and C and N content of selected
zooplankton taxa. We demonstrate that the ZooScan system can produce useful
measures of zooplankton abundance, biomass and size spectra, for a variety of
ecological studies.

I N T RO D U C T I O N

Historically, zooplankton have been sampled primarily
by surveys that use nets, pumps or water bottles to
collect specimens for quantifying distributional pat-
terns. While such surveys provide invaluable infor-
mation on species and life stages, their temporal and
spatial resolution is usually limited, owing to the time
and resources required for sample analysis by trained
microscopists. This limited resolution of zooplankton
data sets reduces our ability to understand processes
controlling pelagic ecosystem dynamics on multiple
time and space scales.

Recent advances in image processing and pattern
recognition of plankton have made it possible to auto-
matically or semi-automatically identify and quantify
the composition of plankton assemblages at a relatively
coarse taxonomic level (Benfield et al., 2007). The
importance of this approach was recognized by the
Scientific Committee on Oceanic Research (SCOR),
who created an international working group to
evaluate the state of Automatic Visual Plankton
Identification (http://www.scor-wg130.net). The hope
is that the advent of digital imaging technology,
combined with better algorithms for machine learning
and increased computer capacity, will facilitate much
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more rapid means for characterizing plankton distri-
butions assessed from a variety of different sampling
methods.

Early attempts to use optical bench-top methods for
treatment of plankton samples were undertaken by
Ortner et al. (Ortner et al., 1979) who used silhouette
photography to record the contents of a plankton
sample. Silhouette imaging of plankton samples on
photographic film or video imaging and a limited
digitization of plankton samples followed by automatic
identification was further developed in the 1980s
(Jeffries et al., 1980, 1984; Rolke and Lenz, 1984;
Gorsky et al., 1989; Berman, 1990). A variety of bench
top methods is now under development (e.g. Benfield
et al., 2007). In addition to developments in the ocean
sciences, automated image analysis is commonly
applied in other fields of biology and medical sciences.
Within the geosciences, machine learning is often
applied to quantify the morphology of fossils (Kennett,
1968; Bollmann et al., 2004).

A wide range of image analysis and treatment soft-
ware exists from these various fields. Most can be
adapted for enumeration and measurement of particles,
but zooplankton pattern recognition is a much more
challenging goal. Most zooplankton taxa display high
shape variability. Other difficulties include the diversity
of body orientations relative to the imaging plane,
differences in extension of appendages, damaged indi-
viduals and variable quantities of amorphous organic
aggregates that must be distinguished by automated rec-
ognition methods. With these challenges, it is not sur-
prising that recent papers show relatively low
automated zooplankton classification efficiency (Bell
and Hopcroft, 2008; Irigoien et al., 2009).

Progress in scanner technology has made it feasible
to digitize good quality images of large numbers of
plankton individuals simultaneously. The hardware pre-
sented here is not the only system based on scanner
technology that can be used for zooplankton image
treatment (e.g. Wiebe et al., 2004; Bell and Hopcroft,
2008; Irigoien et al., 2009). We have in the past used
such systems by adapting commercial scanners
(Grosjean et al., 2004). However, a series of problems
led us to build an industrialized, rugged, water-resistant
ZooScan suitable for organisms ranging in size from
200 mm to several centimeters, together with dedicated
imaging software we call ZooProcess and Plankton
Identifier (PkID). ZooScans can be calibrated so that
different ZooScan units produce normalized images of
identical optical characteristics that can be inter-
compared among laboratories, facilitating cooperative
sample analysis. Such a network of calibrated ZooScan
instruments currently exists in the Mediterranean region
in the framework of the CIESM Zooplankton

Indicators program: (http://www.ciesm.org/marine/
programs/zooplankton.htm).

In this paper, we first describe the overall approach
used, including ZooScan hardware together with
ZooProcess and PkID software. We discuss building and
validating training sets, the selection of classification
algorithms and the accuracy of body size and biomass
estimations that can be derived from the ZooScan
system. We propose standards for long-term archiving
and sharing of raw and processed images and output
files. We demonstrate a semiautomatic classification
approach based on human validation of automated zoo-
plankton image analysis that provides highly reliable
results that are appropriate for quantitative ecological
studies. Second, we illustrate the procedures for sample
and data analysis through specific application of the
ZooScan system to an annual time series of zooplank-
ton samples from the Bay of Villefranche-sur-mer.

M E T H O D

Sequential steps for sample preparation and scanning
with ZooScan hardware, together with image proces-
sing with ZooProcess and PkID software, are explained
below. Appendix 1 lists a glossary of terms related to
image analysis.

Building learning sets

In experiments to determine the optimal number of
objects to sort into each category when constructing a
learning set (see Appendix 1), we selected eight cat-
egories of organisms scanned from Villefranche-sur-mer,
each with more than 950 vignettes. We randomly
extracted subsets of 10, 20, 30, . . . 900 vignettes from
each of the eight categories. These subsets were con-
sidered independent learning sets and we ran a classifier
on each to assess the recall (percent true positives) and
contamination (percent false positives) as a function of
size of the learning set.

Morphometric measurements and biomass

ZooScan analyses provide sensitive measures of body
size, which can be converted to size spectra. To calcu-
late the biovolume of an object from its cross-sectional
area, it is necessary to know the geometric shape of the
object, the ratio of its major and minor axes and its
orientation relative to the illumination system.
Copepods can be represented as ellipsoids (Herman,
1992). The ZooScan provides estimates of body length
(here major axis of the best fitting ellipse) and
width (here minor axis). We evaluated the accuracy of

JOURNAL OF PLANKTON RESEARCH j VOLUME 32 j NUMBER 3 j PAGES 285–303 j 2010

286



ZooScan measurements of body length and
cross-sectional area. Automated measurements of pre-
served zooplankton as recorded by ImageJ in
ZooProcess were compared with manual measurements
of several zooplankton taxa (appendicularians, chaetog-
naths, copepods, euphausiids, ostracods and thecosome
pteropods) collected in the California Current on
CalCOFI (California Cooperative Oceanic Fisheries
Investigations) cruises. Specimens were collected along
CalCOFI line 80 between February 2006 and August
2008 and preserved in formaldehyde buffered with
sodium tetraborate. Manual measurements were made
using a calibrated on-screen measuring tool, and com-
pared with machine-measured feret diameter, major
elliptical axis, minor elliptical axis and equivalent circu-
lar diameter (ECD) of the same individuals, identified
manually. ECD was determined from the variable “area
excluded,” which excludes clear regions in the interior
of an organism from the cross-sectional area of the
organism. Manual length measurements of curved
organisms (e.g. chaetognaths and appendicularians)
were made by summing a series of line segments along
the central axis of the organism.

For C and N relationships, live zooplankton (cope-
pods, chaetognaths and euphausiids) from the
California Current were anaesthetized with carbonated
water (diluted 1:4 with seawater), scanned, manually
identified and individually measured. Multiple species
were included in each higher taxon analyzed, in order
to obtain group-specific relationships. The cross-
sectional area of chaetognaths and euphausiids was
measured manually on-screen using multiple rectangles
drawn within the outline of each organism. The area of
copepods was measured using two ellipses, one defining
the prosome and the other the urosome. These manual
measurements were compared with machine measure-
ments of the same individuals. Organisms were dried
overnight at 608C and the carbon and nitrogen content
of the individual organisms determined at the analytical
facility of the Scripps Institution of Oceanography using
an elemental analyzer (Costech Analytical Technologies
model 4010) calibrated with acetanilide.

Case study: Bay of Villefranche-sur-mer

To illustrate application of the ZooScan system (www
.zooscan.com), we analyzed a series of samples describ-
ing annual variation of zooplankton from Pt. B (438 41
.100N, 78 18.940E) in the Bay of Villefranche-sur-mer,
France. Zooplankton were sampled with a 57 cm diam-
eter WP2 net with a mesh size of 200 mm retrieved ver-
tically at 1 m s21 from a depth of 75 m to the surface,
and fixed in 4% v/v formaldehyde buffered with
sodium tetraborate. Thirty vertical hauls were made

between 22 August 2007 and 8 October 2008. These
samples were scanned by ZooScan in two size fractions,
,1 mm and .1 mm, leading to a set of 60 scans. For
classification, we began with a learning set of 13 cat-
egories (10 zooplankton þ 3 non-zooplankton) that we
had created previously. This can be downloaded at:
(http://www.obs-vlfr.fr/LOV/ZooPart/ZooScan/
Training_Set_Villefranche/esmeraldo_learning_set.zip).

Description of the ZooScan system

System overview

Hardware. The ZooScan (http://www.zooscan.com) is
composed of two main waterproof elements that allow
safe processing of liquid samples. The hinged base con-
tains a high resolution imaging device and a drainage
channel that is used for sample recovery (Fig. 1). The
top cover generates even illumination and houses an
optical density (OD) reference cell. Although the
ZooScan permits scanning at higher resolution than
2400 dpi, the optical pathway through two successive
interfaces (air to water and water to glass) presently
limits the working resolution to this value. With a pixel
resolution of 10.6 mm, the ZooScan is well suited for
organisms larger than 200 mm.

The imaging area of the ZooScan is defined by the
choice of one of two transparent frames (11 � 24 cm or
15 � 24 cm) inserted inside the scanning cell. Both
frames have a 5 mm step; water is added above this step
to avoid forming a meniscus on the periphery of the
image. Both frames permit the acquisition and proces-
sing of scans as a single image, avoiding biases that may
occur when an image is divided into multiple cells.

Fig. 1. Sample recovery from the ZooScan, illustrating the top cover,
hinged base and sample recovery tray.
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Software. The sequence followed in scanning and analy-
sis of zooplankton samples is shown schematically in
Fig. 2. The initial steps are completed using ZooProcess
software: (i) scan and process a blank background
image, (ii) scan the sample to acquire a high quality raw
image, linked to associated metadata, (iii) normalize the
raw image and convert to full grey scale range, (iv)
process images by subtracting the background and
removing frame edges, (v) extract and measure individ-
ual objects. Subsequent analysis steps are done with
ZooProcess in combination with PkID: (vi) create a
learning set comprised of representative images from
each category of organisms or objects that will be ident-
ified, (vii) build a classifier to optimize the capability to
accurately recognize the desired categories, and create a
confusion matrix (CM) to verify the classifier, (ix) apply
the classifier to the suite of unidentified objects and (x)
manually inspect the classified objects and move any
misidentified objects to the appropriate category. These
steps are explained more fully below.

Sample treatment. The aliquot volume of a plankton
sample to be analyzed is determined by the abundance
and size distribution of the organisms. It is important to
minimize coincidence of overlapping animals on the
optical surface. At present, a maximum of approximately
1000–1500 objects is scanned in the larger frame,
although this value can be exceeded. Because the abun-
dance of organisms usually decreases with increasing
body size, it is preferable to scan two (or more) separate
size fractions of each sample. One fraction contains
larger individuals that are less abundant, obtained from a
larger sample aliquot, and the other includes the more
numerous smaller individuals, from a smaller aliquot. A
mesh size of 1000 mm is efficient for separating large and
small size fractions of mesozooplankton.

Only immobile organisms (i.e. preserved or anaesthe-
tized) can be scanned, because they must remain still for
�150 s. Prior to sample processing, the fixative is
removed and replaced with either filtered sea water or
tap water. Water should be at room temperature in order

Fig. 2. Schematic illustration of the primary steps in the scanning and analysis of zooplankton samples with the ZooScan/ZooProcess/Plankton
Identifier system.
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to avoid air bubble formation. We do not stain samples,
in order to maintain them unaltered for future compara-
tive studies. Although ZooProcess software provides a tool
to separate overlapping organisms once the sample has
been scanned, it is important to physically separate
touching organisms in the scanning frame and separate
them from the frame edges prior to digitizing the sample.
Manual separation takes �10 min per sample.

Detailed description

Zooprocess. ZooProcess software is based on the ImageJ
macro language (Abramoff et al., 2004; Rasband, 2005). In
addition to guiding the primary steps of scanning, normal-
ization and object detection, ZooProcess provides tools for
quality control and is linked to PkID software. Results pre-
sented here are based on ZooProcess default parameters.
ZooProcess records true raw 16 bit grey images from the
ZooScan charged couple device and creates blank images
to be subtracted from normalized images.

Grey level normalization. Full grey level normalization of
scanned images allows the exchange of images, training
sets or data between different ZooScan units. Normaliza-
tion is done on both the sample image and the back-
ground blank image, which is subtracted later. Grey level
and size are among the most important variables used in
automated plankton recognition (e.g. Hu and Davis,
2005).

The 16 bit raw image is converted to 8 bit source
image after determination of both the white point [Wp,
equation (1)] and the black point [Bp, equation (2)]
from the median grey level (Mg). The OD range that
can be resolved by the ZooScan is above 1.8. The
sharpness of the background allows setting the white
point close to the median grey level independent of the
number and size of the organisms in the image.

Wp ¼ Mg†1:15 ð1Þ

Bp ¼ Mg

1:15† logðODÞ ð2Þ

ZooProcess provides a tool to check the efficiency of
the procedure by scanning standard reference disks
(diameter 5.6 mm) with ODs of 0.3 and 0.9. The average
grey level values are 150 and 73 (+10%) for the two
disks, respectively, for all ZooScans tested to date after full
processing of the images using the default parameters (see
Appendix 2). The normalization parameters and the
median grey level of both the raw 16 bit image and the
final 8 bit image are archived in the image log file.

Image processing. ZooProcess provides two methods for
removing a heterogeneous background. A daily scan of
the cell filled with filtered water is recommended, because
the background image provides a blank and also records
instrument stability over time. A background scan is faster
to process and requires less computer memory than the
second option, the rolling ball method (Sternberg, 1983),
which requires no blank image to be scanned. A lower
setting of the rolling ball diameter parameter will clean
the background, but may create artifacts in zones of
uneven contrast on the bodies of larger organisms. Apart
from artifacts, measurements made on the same image
processed using the two background subtraction methods
differ less than 1%, thus the rolling ball can be used as an
alternative when no blank image is available.

ZooProcess next measures the grey level in the OD
reference disk area. This measurement is compared with
the theoretical value calibrated in the factory. ZooProcess
then detects the limits of the transparent frame and dis-
cards the irrelevant parts of the image. Objects touching
the sides are automatically removed from the data set.
This image is used for object detection and the extraction
of measurement variables from each detected object.

Extraction of vignettes and attributes. The final image is
segmented at a default level of 243, thus keeping 243
grey levels for characterizing organisms. Objects having
an ECD .0.3 mm (default) are detected and processed.

More than 40 attributes (variables) are extracted from
every object (Santos Filho et al., submitted for publi-
cation). All metadata (Appendix 3), log file and the vari-
ables measured (Appendix 4) are stored in a text file
called a PID file (Plankton Identifier file). All par-
ameters used during the imaging process are recorded
in the log file. Some examples of extracted vignettes
and some measurements are illustrated in Appendix
5. After extraction of the vignette (Region of Interest, or
ROI), the values of each measurement variable are
associated with that vignette.

Additional quality control. Segmented black and white
images and the objects’ outlines are recorded for
quality control. The segmented image is checked for
the background subtraction and correct object contours.
A 2D “dot cloud” graph allows selection and visualiza-
tion of vignettes by clicking on a dot or on a selected
zone, and the sample image can be visualized with the
recognized outlines superimposed.

Plankton Identifier (PkID). PkID permits automatic and
semi-automatic classification of plankton images. For the
ZooScan application, PkID is interfaced with ZooProcess,
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but it can also be used standalone. It has been developed
in DELPHI (Borland), because the source code can be
compiled. For supervised learning, PkID works in
conjunction with Tanagra (Rakotomalala, 2005; http://
eric.univ-lyon2.fr/~ricco/tanagra/en/tanagra.html), also
developed in DELPHI. Source code for PkID can be
obtained on request for customization (see Gasparini,
2007).

Three successive steps are followed in applying PkID:
(i) “Learning” creates training files that link measure-
ments from groups of similar objects (vignettes); (ii)
“Data analysis” permits construction and optimization
of classifiers; (iii) “Show results” displays final identifi-
cations and statistical reports (see: http://www.obs-vlfr.
fr/~gaspari/Plankton_Identifier/userguide.html).

Learning file creation. In the “learning” section, objects
are grouped into categories by simple visual drag and
drop of object vignettes.

Number of categories. The number of categories of
objects selected is a trade-off between the number of
retained categories and level of acceptable error
(Culverhouse et al., 2003; Fernandes et al., 2009).
Typically numerous categories are created, each con-
taining objects of similar visual appearance. Then, from
results of classifier performance evaluation, categories
showing high cross-contamination are merged. A new
performance evaluation is then conducted and the
process is applied iteratively until acceptable levels of
error rates are reached. For the case of semi-automated
classification presented in this paper, a minimal learning
set composed of a few dominant zooplankton categories
may be sufficient.

Data analysis: algorithm selection. Several supervised
learning algorithms are available in the “data analysis”
section of version 1.2.6 of PkID (Table I).

Selection of measurement variables. It has been shown
that irrelevant variables strongly affect performance and
accuracy of supervised learning methods (Guyon and
Elisseeff, 2003). In PkID, the user can include different

combinations of variables and immediately test their
suitability for a particular classification task using cross
validation.

Data analysis and performance evaluations. Evaluation of
classifier performance requires the examination of a
CM, which is a contingency table crossing true (manu-
ally validated) and predicted (assigned by the classifier)
identification of objects. Object counts on the matrix
diagonal represent correct identifications and the sum
of counts off the diagonal divided by the total number
of objects gives the overall error rate (accuracy) of the
classifier. Correct interpretation of the CM requires the
examination of each category separately, including the
rate of true positives (number of objects correctly pre-
dicted/total number actual objects) as well as false posi-
tives (number of objects falsely assigned to a category/
total number of predicted objects).

There are three ways to build a CM, all available in
PkID. The first, re-substitution CM, involves validation
of the classification procedure on the same data set used
to compute the classification functions. Re-substitution
CMs systematically underestimate error rates and even
give no errors when algorithms such as Random Forest
are used. The second entails random partitioning of the
initial data set into n equal fractions, n 2 1 fractions
being used to compute the classification model and one
to validate it; this process is repeated m-times to fill up
the CM. This procedure, called cross-validation,
requires more computation time than the re-substitution
CM, but usually gives better error evaluations.
However, since data used still originate from the same
data set, error levels usually remain underestimated.
The third method (Dundar et al., 2004) uses two equiv-
alent and independent learning files describing the
same categories with different objects. One is used to
build the model and the other to validate it. This pro-
cedure, called test, gives good error estimation but
requires twice the effort of learning file creation.
Moreover, it cannot easily be applied during the learn-
ing file optimization procedure unless two learning file
optimizations are conducted in parallel.

Table I: The different classifiers in Plankton Identifier (Gasparini, 2007) analyzed in the present study

Name Short description Reference

5-NN k-nearest neighbor using heterogeneous value difference metric Peters et al. (2002)
S-SVC linear Support Vector Machine from LIBSVM library, using linear functions Chang and Lin (2001)
S-SVC RBF Support Vector Machine from LIBSVM library, using radial basis activation functions Chang and Lin (2001)
Random Forest Bagging, decision tree algorithm Breiman (2001)
C 4.5 Decision tree algorithm Quinlan (1993)
Multilayer Perceptron Multilayer Perceptron neural network Simpson et al. (1992)
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Data management. Here we recommend appropriate
practices for archiving ZooScan data and metadata.

ZooScan data include: (i) raw images of zooplankton
samples or sub-samples, (ii) raw background images
from the system’s hardware, (iii) digital images of indi-
vidual objects (i.e. vignettes), (iv) measurements made
by ZooProcess software on individual objects,
(v) classification results determined automatically or
semi-automatically using PkID and (vi) computed abun-
dances, biovolumes and biomass. ZooScan metadata
include: (i) information about sampling and measured
variables, (ii) image scan and grey level normalization,
(iii) algorithm selection and measured variables, (iv)
learning sets and (v) confusion matrices. One of the best
practices in data management is to keep data and meta-
data together and, as much as possible, in the same file.
While the latter two types of metadata generated by the
ZooScan system come as complementary files, the first
three types are included in either the PID files or the
log files, along with the data.

Safeguarding ZooScan data and metadata requires
that these be published in digital libraries such as
National and/or World Data Centres (NODCs and/or
WDCs) that have the capacity to archive and distribute
images and their associated metadata. NODCs such as
US-NODC in the USA, SISMER in France and
BODC in the UK are designated by the International
Oceanographic Data Exchange programme (IODE) of
UNESCO Intergovernmental Oceanographic Commis-
sion (IOC), while World Data Centers (WDCs) such as
WDC-MARE in Europe, WDC-Oceanography in the
USA, Russia, China and Japan are designated by the
International Council for Science (ICSU). Part of the
data from the annual time series of zooplankton from
the Bay of Villefranche-sur-mer, which is presented in
the Results section, have been safeguarded at the
WDC-MARE and available online by the PANGAEA
information system (doi:10.1594/PANGAEA.724540).
Access to raw images, log files and PID files is password
protected, whereas low resolution images and key vari-
ables such as abundances and biovolumes of copepods
and total plankton are publically available. With respect
to ZooScan data, it is essential that different instruments
are inter-calibrated and that software configurations are
known.

R E S U LT S

We first present our results illustrating general character-
istics of the ZooScan/ZooProcess/PkID system, includ-
ing construction of learning sets, selection of classifier
algorithms and validation of morphometric and biomass

measurements. Then we present a brief case study from
the Bay of Villefranche, in order to illustrate the sequen-
tial processes involved in sample and data analysis.

Learning set creation

After scanning, normalization, background subtraction
and extraction of vignettes, the first step is to create a
preliminary learning set or to use an existing learning
set to classify (“predict”) a small number of dominant
groups. Our experiments to determine the optimal
number of objects to sort into each category for con-
struction of a learning set showed that sufficiently high
recall (true positives) and low contamination (false posi-
tives) are achieved when approximately 200–300
objects are sorted per category (Fig. 3), with relatively
small additional gains beyond this number. Therefore,
we recommend sorting 200–300 vignettes per category
of object to be identified.

Choice of the classifier and number
of predicted categories

We compared the performance of six classifiers (see
Table I) for numbers of categories of objects ranging
from 35 to 5 categories (Fig. 4). The categories were
balanced in number of vignettes (300 vignettes from
each). Each time the number of categories was reduced,
a new group of 300 vignettes from that newly combined
category was selected for the learning set. The results
show, first, that the Random Forest algorithm consist-
ently had the highest recall and nearly always the lowest
contamination, regardless of the number of categories
predicted (Fig. 4). Support Vector Machine using linear
functions had the second best performance. All further
analyses were carried out with the Random Forest
algorithm. The results also demonstrated that machine
classifications were improved when a smaller number of
categories were predicted (Fig. 4).

Morphometric and biomass measurements

Comparisons of ZooProcess automatic measurements of
digitized zooplankton images with manual measure-
ments of the same images revealed linear relationships
between ZooProcess feret diameter and manually
measured total length (Fig. 5). There was a greater
scatter in the case of appendicularians than in other taxa
and a slope ,1.0, because the appendicularian tails
were often curved, affecting the automated measure-
ments of feret diameter but not manual measurements.
Other automated measurements, including major and
minor elliptical axes, were also correlated with manual
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length measurements (data not shown), although feret
diameter typically showed the best relationship.

Comparison of automated measurements of surface
area (as area excluded) with manual measurements of
the same individuals was carried out for three taxa
(copepods, euphausiids and chaetognaths: Fig. 6). In all
cases, there was a linear relationship between manual
and automated measurements. The automated measure-
ments were somewhat higher for copepods and euphau-
siids, but lower for chaetognaths. These results suggest
that automated measurements are consistent and

reproducible, although their values may differ somewhat
from manually determined values.

The relationships between C and N content and auto-
mated measurements of linear or areal dimensions were
well described by power curves (Fig. 7). Much of the
scatter in the relationships shown in Fig. 7 is attributable to
the mixture of different species included in these analyses.

The exponents for C and N were similar to each other,
implying relatively constant C:N ratios. In the case of both
copepods and chaetognaths, the exponents relating C or N
content to linear dimensions (feret diameter) were close to

Fig. 3. Dependence of (A) recall (true positives) and (B) contamination (false positives) rate on the number of vignettes sorted for a learning set.
Curves are illustrated for eight categories of organisms or objects, and the overall mean.

Fig. 4. Dependence of (A) recall (true positives) and (B) contamination (false positives) rate on the number of categories predicted by the
classifier, using different classifier algorithms (see Table I).
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3 and the exponents in relation to areal measurements
(area excluded) were close to 2. However, for euphausiids,
the exponents were close to 2 and 1, respectively. These

differences are consistent with the changing body shapes
with ontogeny of euphausiids, as the cephalothorax width
and depth of euphausiids tends to increase in proportion

Fig. 5. Relationship between automated measurements of feret diameter and manual measurements of total length, for (A) copepods,
(B) euphausiids, (C) appendicularians (tail length), (D) chaetognaths, (E) ostracods and (F) thecosome pteropods from the California Current.

Fig. 6. Relationship between automated measurements of area excluded and manual measurements of projected area for (A) copepods,
(B) euphausiids, (C) chaetognaths from the California Current.
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to total body length through their development. In the
case of copepods and euphausiids, area excluded was a
slightly better predictor of C or N content than feret diam-
eter, although for all three taxa the results indicate that
automated measurements of either linear or areal dimen-
sions of vignettes can be related in a useful manner to the
biomass of these organisms.

Results from the Bay of
Villefranche-sur-mer

Learning set optimization and application
To create our initial learning set for the Villefranche
case study, we utilized a pre-existing learning set (see
Methods) to predict 5000 objects from the Villefranche
time series. We then manually validated the prediction
into 30 categories (which took ca. 4 h). We included cat-
egories for “bad focus” objects, artifacts, bubbles and
fibers. To improve the classifier, we then randomly
selected a fixed number of vignettes drawn from each of
these 30 categories from the Villefranche time series
and created a new learning set. This second learning
set was tested by cross validation in PkID using the
Random Forest algorithm. Categories containing only a

few objects with low accuracy of detection were not
retained (they were left to contaminate the prediction).
The accuracy of the prediction for this second learning
set was much better than for the first iteration, and the
subsequent manual validation was done faster.

As samples were analyzed from different seasons in
the Villefranche time series, newly encountered taxo-
nomic categories were added into the learning set when
they became sufficiently numerous, provided that con-
fusion with other dominant categories remained low.
This occurred, for example, with cladocerans that
bloomed only in autumn and were nearly absent during
other time periods. Sometimes categories with relatively
high contamination were maintained in the learning set
because of their ecological value. For example, the
Limacina category showed a 34.5% error rate (Table II).
Nevertheless, it was maintained as a separate group
because subsequent manual validation was rapid and
the seasonal development of this taxonomic group was
important. After the prediction results did not improve
significantly with additional iterations, we considered
the learning set satisfactory. It contained 14 zooplankton
and 6 other categories (Table II) and was applied to the
rest of the samples.

Fig. 7. Relationship between carbon and nitrogen content and automated measurements of body size for copepods (A–D), euphausiids (E–H)
and chaetognaths (I–L) from the California Current. Carbon content plotted vs. linear dimensions (feret diameter; A, E, I) or areal dimensions
(area excluded; C, G, K). Nitrogen content plotted vs. linear dimensions (feret diameter; B, F, J) or areal dimensions (area excluded; D, H, L).
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Table II: Confusion matrix for the 20 categories in the learning set used for machine classification of the 2007–2008 time series by the
Random Forest algorithm
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The CM (Table II) of this learning set shows that
most of the groups have a recall (rate of true positives)
of about 80% and a contamination rate (false positives)
smaller than 20%. Thus, this classifier performed mod-
erately well, however not sufficiently accurately for eco-
logical studies. The classifications of vignettes were then
manually validated by sorting all vignettes into appro-
priate categories, a process which was facilitated by the
prior machine classification. Many users may wish to
use the classifications obtained at this point (i.e. in this
case, to 14 categories).

Analysis of seasonal variations
For the present study, while manually validating image
assignments to appropriate categories we chose to create
additional categories beyond those in Table II. Several
additional taxonomic categories could be reliably distin-
guished manually, although not by the machine classi-
fiers. The result was a total of 42 categories, 33 of them
zooplankton (see Table III), and all verified with essen-
tially 100% accuracy. The use of the automated classifier
greatly facilitated manual validation; it was simple to
subsequently drag and drop their vignettes into the
correct categories. Representative vignettes of some of
the identified taxa may be seen in Fig. 8.

Our semi-automated analysis of an annual cycle of
zooplankton variation in the Bay of Villefranche
revealed pronounced seasonal variation in abundance,
with substantial changes in the composition of the
mesozooplankton (Fig. 9). Calanoid copepods were the
numerically dominant organisms at all times of year,
increasing from 75% before the peak of the bloom to a
maximum of 95% at the peak and declining to 55%
afterwards, as cladocerans, appendicularians and other
taxa increased in relative importance (Figs 9 and 10).
Poecilostome and oithonid copepods were abundant
prior to the peak (16 and 8%, respectively). The com-
munity appears to be more diverse in summer.

In Fig. 10, we compare time series of individual
major taxa both before and after manual validation of
the sorted vignettes. While automated classification
(“unvalidated”) shows very good agreement with the
manually validated time series for total copepods, this
was not the case for other categories of organisms. For 4
of the 5 other groups of organisms in Fig. 10 (i.e.
Appendicularia, chaetognaths, Cladocera, Oithona), the
typical error was an overestimate, with moderate to high
contamination with other organisms (false positives). For
the sixth group (Decapoda), the usual error was underes-
timation (i.e. false negatives). This result underscores the
importance of manual validation, even for classifiers that
seem to have an overall acceptable error rate.

Sensitive ZooScan size measurements make it possible
to readily reconstruct size spectra of organisms. For
example, Fig. 11 illustrates the overall size spectrum for
all copepods combined, as well as spectra for some of the
dominant genera, including the smaller-bodied Oithona,
intermediate-sized Acartia and larger-bodied Centropages.

D I S C U S S I O N

The ZooScan–ZooProcess–PkID system is an end-to-end
approach for digital imaging of preserved zooplankton,
segmentation and feature extraction, and design and
application of machine learning classifiers. The results
from ZooScan analyses lead readily to numerical abun-
dances as well as construction of size and biomass spectra.
The calibration of each digital scan with reference to an
OD standard makes it possible to directly compare
images from ZooScans used in different laboratories.

Many existing zooplankton sampling programs have
archived large numbers of plankton samples that have yet
to be fully analyzed. Analysis of such samples is recog-
nized as a high priority (Perry et al., 2004), but this is an
expensive task when carried out by trained microscopists.
Complete analysis has awaited the development of
machine learning or automated molecular methods.

Table III: Final categories used for classifying
the 2007–2008 time series in the Bay of
Villefranche, after initial machine
classification, followed by manual validation,
then manual subdivision into additional
categories

Categories used for classifying the Villefranche time series

Aggregates Decapoda_large
Aggregates_dark Decapoda_other
Algae Echinodermata
Amphipoda Egg like
Annelids Fiber
Appendicularia Fish
Bad focus Heteropoda
Bivalves Medusae_ephyrae
Bubbles Medusae_other
Chaetognatha Multiple
Cladocera Nauplii
Copepoda_Acartia Ostracoda
Copepoda_Centropages Other
Copepoda_Euterpina Pteropoda_Limacina
Copepoda_Harpacticoida Pteropoda_other
Copepoda_Oithona Radiolaria
Copepoda_Poecilostomatoida Scratch
Copepoda_Temora Siphonophora_eudoxid
Copepoda_other Siphonophora_nectophores
Copepoda_other_multiples Siphonophora_other
Copepoda_other_small Thaliacea
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Equally important for such sample collections is the
archiving of digital representations of the samples, to
facilitate permanent records of their contents as a

complement to the conservation of the physical samples
themselves. Such digital images permit automatic or
semiautomatic image analysis, rapid measurement of

Fig. 8. Examples of vignettes of organisms from ZooScan analysis of the 2007–2008 time series in the Bay of Villefranche-sur-mer (scale
bar ¼ 1 mm). (A) Copepods, (B) Centropages, (C) Harpacticoida, (D) Poecilostomatoida, (E) Temora, (F) Oithona, (G) Cladocera, (H) Ostracoda, (I)
Radiolaria, (J) eggs, (K) Limacina, (L) Pteropoda, (M) Appendicularia, (N) medusae, (O) Siphonophora, (P) Thaliacea, (Q) Decapoda, (R)
Chaetognatha.

Fig. 9. Total abundance of mesozooplankton from 2007 to 2008, and the proportion of primary mesozooplankton categories (inset pie
diagrams) before, during and after the 2008 spring bloom in the Bay of Villefranche. All classifications were validated manually.
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organisms and a permanent record of the sample contents
that can be revisited in the future. The ZooScan system
fulfils many of these objectives. It permits relatively rapid
analysis of zooplankton samples combining automated
classification and manual validation, digital archiving of
images [for example the Villefranche time series ZooScan
images are stored in PANGAEAw-Publishing Network for

Geoscientific and Environmental Data] in databases
accessible to the scientific community, standardization of
images from different ZooScans allowing the construction
of combined learning sets, non-destructive analysis so the
samples can be used for other purposes and safe labora-
tory operation with aqueous samples.

Several classification algorithms have already been
tested in the plankton recognition literature
(Culverhouse et al., 1996; Grosjean et al., 2004; Blaschko
et al., 2005; Hu and Davis, 2005). The Random Forest
algorithm seems to be one of the most promising
(Grosjean et al., 2004; Bell and Hopcroft, 2008).
However, care is needed in design and testing of learn-
ing sets. Bell and Hopcroft (Bell and Hopcroft, 2008)
built a learning set of 63 categories, but reduced this to
two categories and correctly identified copepods 67.8%
of the time and euphausiid eggs with even lower accu-
racy. Following automated classification in Irigoien et al.
(Irigoien et al., 2009), only four categories (two size cat-
egories of copepods, the euphausiids and mysids cat-
egory, and chaetognaths) out of 17 had an acceptable
error level. Hu and Davis (Hu and Davis, 2006) pro-
posed use of a sequential dual classifier, using first a
shape-based feature set and a neural network classifier,
followed by a texture-based feature set and a support
vector machine classifier.

Fig. 10. Abundance of six major groups of mesozooplankton from 2007 to 2008 in the Bay of Villefranche. Time series of each category
are illustrated as classified automatically by the Random Forest algorithm without manual validation (dotted line) and after manual validation
(solid line).

Fig. 11. Size spectrum of total copepods and three different copepod
genera (Acartia, Centropages and Oithona), from all sampling dates in the
Bay of Villefranche. All classifications were validated manually.
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Here we endorse a practical semi-automated method
that may help biologists obtain taxonomically more
detailed data sets with sufficient accuracy. Comparison
between machine predicted and manually validated
classifications showed that for dominant taxa such as
copepods, automatic recognition was sufficiently accu-
rate. However, for less abundant taxa such as appendi-
cularians and chaetognaths, automatic recognition
generally overestimated true abundances (but underesti-
mated the abundance of decapods). Fully automated
classification would have resulted in inaccurate descrip-
tions of seasonal cycles of key zooplankton taxa and
produced biased size spectra. Such biases result from
contamination by other abundant groups, especially in
winter/spring in the present study when copepods
strongly dominate. There are no simple conversion
factors that could be used here because the error is not
constant through the seasonal cycle. The total time
required for classification with manual validation is only
slightly longer than with a fully automated classifier,
because there is no need to construct a detailed learn-
ing set. Moreover, the results are significantly improved
over an automated method alone. Proper design of the
initial classifier makes the subsequent manual validation
step proceed relatively quickly. The initial classifier will
then facilitate subsequent subdivision into categories
that are easily classified manually.

It is important to keep in mind when classifying the
sample automatically that all types of objects that are
encountered in a sample, including artifacts, must have
a corresponding category in the learning set. If not,
they will systematically contaminate other categories,
leading to lower recognition performance.

Our results are encouraging for the estimation of
zooplankton size and biomass spectra from ZooScan
analyses. Many ecological traits (including metabolic
rates, population abundance, growth rate and pro-
ductivity, spatial habitat, trophic relationships) are corre-
lated with body size (e.g. Gillooly et al., 2002; Brown
et al., 2004). Hence, because body size captures so many
aspects of ecosystem function, it can be used to syn-
thesize a suite of co-varying traits into a single dimen-
sion (Woodward et al., 2005). However, with some
automated measurement methods for reconstructing
size spectra from in situ measurements, all the in situ

objects are treated as living plankton, though it has
been shown that a significant proportion of objects can
be marine snow (Heath et al., 1999; González-Quirós
and Checkley, 2006; Checkley et al., 2008). The
ZooScan imaging system provides an efficient means to
reconstruct plankton size spectra from taxonomically
well-characterized zooplankton samples. In addition,
automated measurements of either linear or areal

dimensions of digitized organisms can be related to
their biomass, applied on a taxon-specific basis.

The classification method proposed here allows a
relatively detailed taxonomic characterization of zoo-
plankton samples and provides a practical compromise
between the fully automatic but less accurate and the
accurate manual classification of zooplankton. Useful
size and biomass estimations may be rapidly obtained
for ecologically oriented studies. Results from different
ZooScan data sets can be combined using
PANGAEAw’s data warehouse, thus encouraging coop-
erative, networked studies over broad geographic scales.
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A P P E N D I X 1 . G LO S S A RY O F
T E R M I N O LO GY U S E D

Accuracy The proportion of the total number of
classified objects that is correctly
classified
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Category A taxon or group of taxa used in the
learning set and confusion matrix

Classifier A supervised learning algorithm applied
to automated classification of objects.
Classifiers are developed from a suite
of characteristics extracted from each
object

Confusion

matrix (CM)
A matrix illustrating both predicted
(from the classifier) and true classifi-
cations of all object categories

Contamination See false positive rate
dat1.txt file The PID file completed with the pre-

dicted and validated categories, if a
validation has been performed

Error rate Proportion of mispredicted organisms
(to be manually corrected in order to
obtain a fully validated data set)

False positive rate The proportion of objects that is incor-
rectly classified as belonging to a cat-
egory of interest; also called
contamination

Learning set A set of vignettes of organisms sorted
in categories by an expert and used in
a supervised learning model; also
called training set

Log file A text file containing details concern-
ing the analyzed sample image

.pid file A data file resulting from image analy-
sis by ZooProcess. Includes the LOG
file above the data section. Each ident-
ified object occupies one row, with all
the variables extracted from that object
in columns

Plankton

Identifier

Software for automatic recognition of
plankton

Precision The proportion of predicted positive
objects that was correctly assigned

Recall see true positive rate
True positive rate The proportion of objects that is cor-

rectly classified as belonging to a cat-
egory of interest; also called recall

Validation Manual sorting of vignettes to the
correct category, following initial auto-
mated classification of vignettes

Variable Attributes extracted from every
detected object (see the list of extracted
variables in Appendix 3)

Vignette An image of a single detected object;
also called ROI (region of interest)

ZooProcess Software for image acquisition, treat-
ment and analysis built for the
ZooScan system

A P P E N D I X 2 .

Grey level control of 17 ZooScan units using two differ-
ent optical density calibration disks (OD 0.3 and 0.9).
The variability among different instruments is lower
than the variability within the same category of objects
in one image (not shown).

A P P E N D I X 3 . T H E M E TA DATA
W I N D OW I N Z O O P RO C E S S W I T H
T H E D E TA I L S R E CO R D E D W I T H
E AC H S CA N

Sample Id Incorporating sample date and
time in filename assists with sub-
sequent file retrieval

ZooScan operator
Ship
Scientific program
Station Id Name of sampling location
Sampling date Date and time of sample

collection
Latitude Coordinates of the station,

degrees.minutes
Longitude Coordinates of the station,

degrees.minutes
Bottom depth (m) Bottom depth of the station
CTD reference
filename

(Permits CTD data to be associ-
ated with plankton results)

Other reference (Can be used to record the
name of the collector)

Number of tows in
the same sample

(Useful where samples are
pooled)

Tow type
Net type
Net mesh (cod end) Cod-end mesh size (if different

from the net mesh size, this
information should be recorded
elsewhere in the remarks field)
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Net opening
surface (m2)

Area of net mouth

Maximum depth (m) Maximum depth reached by the
net when collecting the sample

Minimum depth (m) Minimum depth reached by the
net when collecting the sample

Filtered volume (m3) Flowmeter readout (alternatively,
derived from mouth area and
tow length)

Fraction id Identifies the fraction name
when the sample has been
sieved in different size categories
(e.g. D1 for fraction .1 mm
and D2 for fraction between
200 mm and 1 mm)

Fraction min mesh
(mm)

Lower mesh size for sieving the
sample

Fraction max mesh
(mm)

Upper mesh size for sieving the
sample

Fraction splitting ratio Ratio of total sample volume to
volume of aliquot scanned

Remarks Free text field
Submethod Method used to subsample the

original sample

A P P E N D I X 4 . L I S T O F
VA R I A B L E S R E CO R D E D I N T H E
DATA S E C T I O N O F T H E P I D
F I L E S

Standard ImageJ variables

Angle Angle between the primary axis and a line par-
allel to the x-axis of the image

BX X coordinate of the top left point of the smal-
lest rectangle enclosing the object

BY Y coordinate of the top left point of the smal-
lest rectangle enclosing the object

Height Height of the smallest rectangle enclosing the
object

Width Width of the smallest rectangle enclosing the
object

X X position of the center of gravity of the object
XM X position of the center of gravity of the

object’s grey level
XMg5 X position of the center of gravity of the object,

using a gamma value of 51
XStart X coordinate of the top left point of the image
Y Y position of the center of gravity of the object
YM Y position of the center of gravity of the

object’s grey level
YMg5 Y position of the center of gravity of the object,

using a gamma value of 51
YStart Y coordinate of the top left point of the image

Other variables

Area Surface area of the object in square pixels
Mean Average grey value within the object; sum of

the grey values of all pixels in the object
divided by the number of pixels

StdDev Standard deviation of the grey value used to
generate the mean grey value

Mode Modal grey value within the object
Min Minimum grey value within the object

(0 ¼ black)
Max Maximum grey value within the object

(255 ¼ white)
Slope Slope of the grey level normalized cumulat-

ive histogram
Histcum1 grey level value at 25% of the normalized

cumulative histogram of grey levels
Histcum2 grey level value at 50% of the normalized

cumulative histogram of grey levels
Histcum3 grey level value at 75% of the normalized

cumulative histogram of grey levels
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Perim The length of the outside boundary of the
object

Major Primary axis of the best fitting ellipse for the
object

Minor Secondary axis of the best fitting ellipse for
the object

Circ Circularity ¼ (4 * Pi * Area) / Perim2; a
value of 1 indicates a perfect circle, a value
approaching 0 indicates an increasingly
elongated polygon

Feret Maximum feret diameter, i.e. the longest
distance between any two points along the
object boundary

IntDen Integrated density. The sum of the grey values
of the pixels in the object (i.e. ¼ Area*Mean)

Median Median grey value within the object
Skew Skewness of the histogram of grey level

values
Kurt Kurtosis of the histogram of grey level values
%area Percentage of object’s surface area that is

comprised of holes, defined as the back-
ground grey level

Area_exc Surface area of the object excluding holes,
in square pixels (¼Area*(12(%area/100))

Mean_exc Average grey value excluding holes within
the object (¼ IntDen /Area_exc)

Fractal Fractal dimension of object boundary
(Berube and Jebrak, 1999)

Skelarea Surface area of skeleton in pixels. In a
binary image, the skeleton is obtained by
repeatedly removing pixels from the edges
of objects until they are reduced to the
width of a single pixel

A P P E N D I X 5 .

Examples of extracted vignettes and measurements.
Vignettes of (a) an appendicularian, (b and c) copepods
with antennules in different orientations and (c) a chae-
tognath. Feret diameter (grey line), major and minor ellip-
tical axes (black lines) and the smallest rectangle enclosing
the object are delineated on the leftmost image.
Silhouettes illustrate the surface area of each organism
when the contiguous regions of background pixels are
excluded (“area excluded,” center image) and the total
surface area (rightmost image). Scale bar ¼ 1 mm.
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