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[1] Several ocean primary production algorithms using satellite data were evaluated on
a large archive of net primary production (NPP) and chlorophyll-a (Chl-a) measurements
collected by the California Cooperative Fisheries Investigations program in the
California Current. The best algorithm matching in situ data was found by empirically
adjusting the Behrenfeld-Falkowski Vertically Generalized Production Model. Satellite-
derived time series of NPP were calculated for the California Current area. Significant
increase in NPP and Chl-a annual peak levels, i.e., the “bloom magnitude,” were
found along the coasts of the California Current as well as other major eastern boundary
currents for the period of modern ocean color data (1997—2007). The reasons for this
increase are not clear but are associated with various environmental conditions.
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1. Introduction

[2] Ocean primary production (PP) is a crucial component
of the Earth’s biogeochemical cycles of carbon and other
major chemical elements [Field et al., 1998]. Net primary
production (NPP, g C m~>d "), i.e., total primary production
minus the losses due to respiration of the phytoplankton,
provides the upper bound for production at higher trophic
levels [Behrenfeld et al., 2006]. In situ measurement of PP or
NPP is extremely time-consuming and not representative of
a larger area because of high spatial and temporal variability.
Estimating PP at regional and global scales is therefore
difficult without the quasi-synoptic view provided by satellite
data or numerical models. Current satellite-based estimates of
primary production have achieved limited success and im-
proving those estimates is therefore needed [e.g., Friedrichs
et al.,2008]. Here we are primarily interested in applying the
best fit model to evaluate temporal trends in NPP and are
less concerned with the formulation of the models. However,
since there is no clear choice in which NPP model should be
applied to regional studies, we begin by evaluating 5
common models, and then use the statistically best model
to describe PP trends in the California Current System.

2. PP Models

[3] Many models of depth-integrated NPP applicable to
remotely sensed data are available [Friedrichs et al., 2008].
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In this work we compare five well-known models. The
simplest estimate of NPP is provided by the Eppley Square
Root (ESQRT) model [Eppley et al., 1985] that estimates
depth-integrated primary production (g C m™2 d ') as
the square root of surface chlorophyll-a concentration
(Chl-a, mg m ). This purely empirical relationship repre-
sents the baseline of NPP prediction accuracy. If a compli-
cated NPP model does not improve on the accuracy of the
simple ESQRT model then it obviously has serious flaws.

[4] The Vertically Generalized Production Model (VGPM)
by Behrenfeld and Falkowski [1997] is the best known NPP
model. VGPM uses satellite estimates of Chl-a, photosyn-
thetically active radiation (PAR) and sea surface temperature
(SST) as input. Various authors have proposed modifica-
tions to the VGPM, and we include the Kameda and
Ishizaka [2005] model (KI) that is based on the assumption
that both Chl-a and NPP can be partitioned into a stable part
because of a small phytoplankton fraction and a variable
part because of the large phytoplankton fraction. It also
assumes that the chlorophyll-specific productivity is inversely
proportional to phytoplankton size.

[s] The Marra et al. [2003] model (MARRA) uses
the same inputs of Chl-a, PAR and SST but is based on
chlorophyll-specific phytoplankton absorption, which is
parameterized empirically as a function of SST. Absorption
by photosynthetic pigments is distinguished from total
absorption; the former is used to calculate productivity and
the latter is used to estimate light attenuation in the water
column. The depth profile of Chl-a is estimated assuming a
Gaussian shape with parameters determined by the surface
value.

[6] The Carbon-based Production Model (CbPM)
[Behrenfeld et al., 2005] is a new approach to NPP assess-
ment that uses satellite-derived carbon to Chl-a ratio to
predict phytoplankton growth rate. It utilizes a semianalytic
algorithm to invert satellite-detected radiance into surface
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Figure 1. Histogram of in situ CalCOFI NPP measure-

ments (N = 608) that have a corresponding satellite match-
up with the VGPM algorithm using Chl-a, PAR, and SST.

Chl-a and particulate backscatter coefficient (b, m~') at
443 nm. The backscatter coefficient is then converted into
phytoplankton carbon biomass (C) and NPP is calculated
as the product of C and the specific phytoplankton growth
rate (d'). Five input data sets are used, including the
coefficient of attenuation of downwelling irradiance at
490 nm (K490, m ') and the mixed layer depth (MLD, m).

3. Statistics

[7] The skill of the models to estimate NPP was assessed
using several statistics. As a first step we used linear
regression of log;o-transformed variables and calculated
the coefficient of determination, 2. The total root mean
square difference (RMSD) summed over log;(-transformed
data points was used as the total error of the model. RMSD
is composed of two components, the bias representing the
difference between the means of the two fields, and the
centered pattern RMSD (RMSDcp, the unbiased RMSD)
representing the differences in the variability of the two
fields [Friedrichs et al., 2008]. The existence of trends and
their significance was detected with the Sen Slope estimator
[Gilbert, 1987]. Sen slope is a nonparametric estimate of the
slope that involves computing slopes for all the pairs of time
points and then using the median of these slopes as an
estimate of the overall slope. Similar estimates of the slope
were obtained with the traditional linear least squares
regression but the Sen slope estimator is preferable because
of its less sensitivity to outliers.

4. Data

[8] The California Cooperative Fisheries Investigations
(CalCOFI) [Mantyla et al., 1995] has been collecting
primary production data with the same methodology since
January 1984. The half-day, simulated on-deck incubation
values of carbon-14, integrated over the euphotic layer,
were multiplied by 1.8 to obtain equivalent full day net
primary production [Eppley, 1992]. The archive has 1862
measurements collected during 1984—2007 covering a wide
range of NPP values from oligotrophic offshore waters to
productive coastal waters (Figure 1). About 610 of these
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NPP measurements were collected during the availability of
data from SeaWiFS (from September 1997), the primary
ocean color sensor used in this study.

[v] The five NPP models were evaluated by comparing
CalCOFI primary production values with coincident satellite
estimates obtained for the nearest valid day. A 3 x 3 pixel
window centered at the nearest satellite pixel was used and
NPP estimates were calculated for all valid pixels in that
window. The satellite data input was declared valid if at
least 3 valid pixels were found in the 3 x 3 pixel window.
The data set nearest in time was used. If the nearest day
had no valid data then the next nearest day was used. The
arithmetic mean NPP of valid pixels in the 3 x 3 pixel
window of the nearest valid day was used in the comparison
with in situ data.

[10] Daily mapped images of Chl-a, K490, PAR and SST
were obtained from the NASA Ocean Color website (data
available at http://oceancolor.gsfc.nasa.gov/). The standard
OC4v4 Chl-a algorithm [O 'Reilly et al., 1998] was used for
all but the CbPM model. The 9-km daily Chl-a data from
SeaWiFS were used from September 1997 to July 2002 and
the merged SeaWiFS-MODIS-Aqua daily Chl-a data from
July 2002 to the end of 2007. PAR (Einstein m > d~') data
were derived from daily SeaWiFS 9-km data sets for the
whole period. Sea surface temperature was obtained from
the AVHRR Pathfinder (version 5) 8-day composites (data
available at http://www.nodc.noaa.gov/sog) until 2002 and
from the merged MODIS Terra and MODIS Aqua daytime
8-day SST data after that period. The daily Chl-a and
particulate backscattering coefficient (b,,443) for the
CbPM model were derived using the GSMO1 semianalytical
algorithm [Maritorena et al., 2002] from SeaWiFS data
(1997-2002, version 1.4) and from the merged SeaWiFS-
MODIS-Aqua data (2002—2007, version 5.4) and were
provided by S. Maritorena. The merged SeaWiFS-
MODIS-Aqua data set was preferred to the equivalent single
sensor data set as data merging reduces the number of
missing pixels due to clouds and orbit coverage. The mixed
layer depth data for the CbPM model were obtained from
the Ocean Productivity Home Page (data available at http://
science.oregonstate.edu/ocean.productivity) and were derived
using the Fleet Numerical Meteorology and Oceanography
Center model.

5. Evaluation of NPP Models

[11] Scatterplots of satellite estimates of NPP using the
ESQRT and VGPM models versus in situ measurements
(Figures 2a and 2b) show that while the minimalistic
ESQRT model provides a useful correlation based on only
surface Chl-a, it explains only 55% of the total logo
variance. The VGPM model improves the fit compared to
the baseline ESQRT model but the difference is relatively
small (r* increased from 0.553 to 0.662, see Table 1). It is
obvious that most of the predictive power of the VGPM
model derives from the correlation of NPP with Chl-a. The
other parameters of the regression (slope, intercept and
RMSDcp) are also improved in the VGPM compared to
ESQRT model. Although the KI model has an ecologically
sound basis and improves the 1* value compared to ESQRT,
it does not provide improvement over the standard VGPM
and is even more biased.

2 of 7



C02004

KAHRU ET AL.: PRIMARY PRODUCTION IN CALIFORNIA CURRENT

C02004

[ r2= 0.553 RMSE= 0.242 N= 609

o
o
o

Satellite NPP

100k A, ESQRT

1000
In situ NPP, mg C m=2 d~!

1000
In situ NPP, mg C m~2 d-!

Figure 2. Satellite-estimated NPP versus in situ CalCOFI measurements. The solid black line is the
least squares linear regression (in log-log space), and the dotted lines show the one-to-one line, the 1/2,
and the 1/3 lines, respectively. The circles are centered at the mean of each 3 x 3 pixel satellite pixel
window, and the vertical lines show the 1 standard deviation for the same window. If standard deviation is
small, then the vertical line becomes invisible. (a) ESQRT model, (b) VGPM model.

[12] The MARRA model is based on fundamental photo-
physiology and has good potential to be the basis for the
next generation algorithm. It had the least RMSD error and
was least biased. However, the scatter was somewhat
higher. Because of the higher RMSDcp error and lower r*
compared to VGPM (RMSDcp 0.207 versus 0.188 of
VGPM) it did not represent the best fit to the CalCOFI
NPP data.

[13] The CbPM model produced the lowest r* and was
also more biased than VGPM (Table 1) despite the in-
creased complexity of this model. The 1* is even lower than
that of ESQRT, indicating that some of the assumptions are
not applicable to the California Current System. It is likely
that part of the poor performance of CbPM is not due to the
model itself but due to the errors in its input data sets, e.g.,
the MLD data and the GSMO1 derived by, and Chl-a. The
GSMO1 algorithm is more sensitive to atmospheric correc-
tion errors and not particularly suitable for coastal applica-
tions [Kudela and Chavez, 2004]. However, Kostadinov et
al. [2007] found that GSMO1 derived Chl-a estimates have
similar accuracy to the standard algorithms.

[14] For all of the model-data comparisons some of the
error can be attributed to the time difference between the in
situ and satellite measurement. A histogram of this time

Table 1. Statistics Showing the Success of Various Satellite NPP
Algorithms to Estimate in Situ NPP Measurements of the CalCOFI
Program

Algorithm r RMSD RMSDcp Slope Intercept
ESQRT 0.553 0.242 0.220 0.461 1.533
VGPM 0.662 0.269 0.188 0.662 1.091
KI 0.620 0.248 0.210 0.439 1.616
MARRA 0.636 0.216 0.207 0.789 0.503
CbPM 0.389 0.262 0.260 0.537 1.286
VGPM-CAL 0.661 0.188 0.188 1.0 0.0

difference for Chl-a is shown in Figure 3. About two thirds
of the NPP estimates had a time difference of their Chl-a
estimate of 0 or 1 days. However, some had considerably
longer time differences because of cloudy periods. In
general, Chl-a concentration does not change drastically
during 1-2 days as its decorrelation timescale is approxi-
mately 4 days in the region between 200 and 400 km from
the coast where most of the CalCOFI measurements are
from [Abbott and Letelier, 1998]. However, within 200 km
of the coast the decorrelation timescales may be shorter.
Abbott and Letelier [1998] report decorrelation scales of
only 2 days for both SST and Chl-a, while Vander Woude
[2006] reported decorrelation scales ranging from 3—6 days
for SST and 1-8 days for Chl-a in central California using
both Eulerian and Lagrangian data sets. Thus the time lag

220 37%
200 ——— 34%
180 — — 31%

(2]

§ 160 — 27%

3 140— 24% .

[0] (8]

2 120— 20% 5

] >

%5 100 — 7% §

3 80— _ 14% -

€ 60— 10%

3 —

40— — 7%
20— 3%
0 —‘—}—}—v—v—r—\ 0%

0123456789101

Time difference (days)

Figure 3. Histogram of the time difference in days in the
matching Chl-a value used in the satellite-derived VGPM
model.
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with satellite data may be significant. As temporal correla-
tion must decrease with increasing time difference we
expect that the correlation between satellite and in situ
NPP values is lower as the time difference between in situ
and satellite Chl-a measurements is higher. However, we
actually observed that r* was lower for the NPP samples
with the same day Chl-a sample compared to the rest of the
data set (r* is 0.58 for time difference of 0 days and 0.69
for time difference > 0 days) and the difference between r*
appeared to be significant (P < 0.05). The existence of the
same day Chl-a estimate (time lag of 0 days) means that
the day of NPP sampling was clear whereas a time lag of
>] days means that the sampling day was most likely
cloudy. It is therefore possible that the satellite-derived
NPP estimates are statistically better matched to in situ
productivity measurements during overcast days, despite the
time lag.

[15] PAR can be quite variable from day to day (i.e., clear
or cloudy) and has a strong effect on in situ NPP measure-
ments. The time difference of the PAR data used in the
satellite NPP estimates was only 0 or 1 day because of the
SeaWiFS orbit characteristics. Clouds do not interfere in
satellite PAR estimates. No influence of the PAR time
difference was observed on NPP estimates.

[16] The influence of SST on the VGPM and related
models is relatively small. We therefore used 8-day SST
estimates instead of daily estimates in order to minimize the
number of missing NPP match-ups due to missing concur-
rent SST data.

[17] In summary, while the MARRA model had the least
bias, the VGPM model had the highest r* and the lowest
unbiased RMSD (Table 1). We therefore decided to use the
VGPM model after a linear transformation in order to
remove the mean bias. The resulting algorithm, named
VGPM-CAL, is calculated as following: VGPM-CAL =
10NLOGo(VGPM)) — 0.1924. As the mean bias in log-log
space is removed, the resulting regression has slope 1.0 and
intercept 0.0 while keeping the same r* (Table 1).

[18] It has to be noted that even the best algorithm
explains only 66% of the total NPP variation. Even after
removing the overall mean bias, some residual spatial bias is
still present in the NPP estimates. The VGPM-CAL model
seems to overestimate in situ NPP in the northwest offshore
region and in the northeast coastal upwelling region (not
shown).

6. Time Series of NPP

[19] We applied the VGPM-CAL model to monthly
satellite data using standard SeaWiFS (1997-2002) and
the merged SeaWiFS-Aqua data (2002—2007) for Chl-a,
SeaWiFS for PAR and daytime AVHRR Pathfinder version
5 (1997-2002) or the daytime merged MODIS Terra-Aqua
data (2002—2007) for SST. In order to extend the time series
we used the November 1996 to June 1997 Chl-a data from
the Japanese Ocean Color and Temperature Sensor (OCTS)
and the corresponding SST data from AVHRR Pathfinder
data. The SeaWiFS type PAR data were not available for
the OCTS period and we therefore used the mean monthly
PAR of the SeaWiFS period as a substitute for the actual
monthly PAR.
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[20] The annual cycle of monthly NPP in any location has
an important characteristic, the annual maximum that is
related to the bloom magnitude. The height and timing of
the annual maxima are ecologically important in the fate of
the newly produced organic matter. We assume that short
and high maxima in NPP are more likely to sink out of the
euphotic zone (i.e., enhance export production) and cause
oxygen deficiency in poorly mixed bottom waters. On the
other hand, lower and longer-lasting maxima in NPP are
more likely to result in enhanced trophic transfer within the
euphotic zone. We base this conclusion on the expected
delay between primary production and secondary consump-
tion; a short, large phytoplankton bloom event is likely to
sink out of the euphotic zone before maximal secondary
production is realized. We recognize that other forms of
temporal mismatches between primary production and
grazers may also be important [Wheeler et al., 2003]. We
suggest that the magnitude of the annual maximum is an
important proxy for assessing interannual trends in produc-
tivity or biomass. We therefore created a time series of
annual maxima in NPP using monthly NPP composites.
Figure 4 shows that during the last 11 years (1997-2007)
the annual maxima in NPP have increased along the coast of
the California Current. A small area off the coast of the
Mexican states of Nayarit and Jalisco (around Punta Mita)
has experienced a decrease in the annual NPP maximum
during this time period. A similar increase in satellite-
detected Chl-a has been reported earlier [Kahru and Mitchell,
2008]. We acknowledge that these estimates of increase or
decrease are based on a relatively short period and are
sensitive to the large interannual variability.

7. Discussion

[21] The standard satellite Chl-a algorithm is known to
work well in the California Current [Kahru and Mitchell,
1999, 2001] with typical r* values of about 0.8—0.9 and no
significant bias. Previous attempts to validate satellite-
derived NPP data with the CalCOFI NPP measurements
[Balch and Byrne, 1994; Kahru and Mitchell, 2002] have
found a relatively poor fit with lower r* and a large bias. In
this work we have empirically adjusted the VGPM satellite
algorithm to provide the best fit to the in situ data. This is
consistent with earlier efforts based on independent data
from the California Current System. Kudela et al. [2006]
modified VGPM to remove the SST term, achieving a slope
of 1.0 and an r* value of 0.667 for the Pacific Northwest,
while Chavez et al. [2002] modified the SST term by
applying a seasonally averaged function. The other models,
including the recently proposed carbon-based model
(CbPM) were less accurate in predicting in situ NPP
measured by the CalCOFI program. All except the MARRA
model produced significant overestimation at low NPP
values. The MARRA model had least bias but its predictive
capability was somewhat lower than that of the VGPM. It is
clear that some of the errors in the skill of the NPP models
are due to the errors in the input fields. The CbPM model
depends on more input fields (5 versus 3 for VGPM, KI and
MARRA). It also relies on the complex and sensitive
GSMO1 algorithm for deriving Chl-a and by, from water-
leaving radiances that are determined with significant error,
especially near the coast and with complex atmospheric
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Figure 4. Map of the change in annual maximum primary production (calculated with the VGPM-CAL
algorithm) during last 11 years (1997—2007). Red areas show significant increase detected by the Sen
slope, a few blue areas have had significant decrease, and light gray areas have no detectable trend. The
grid of the CalCOFI stations with in situ NPP measurements is shown as black filled circles. (right)
Monthly time series of NPP in 50 km coastal strip off (left) Central California (area A), Southern
California (area B), and Northern Baja California (area C).

conditions [Kostadinov et al., 2007]. When applied to
satellite data, the various NPP algorithms can yield differ-
ences up to 100%. Uncertainties in the input variables
(especially for CbPM) make it difficult to compare the true
merits of the algorithms (see Friedrichs et al. [2008] for
more details). Much more work is needed to improve the
NPP algorithms and the California Current is an ideal
laboratory for this.

[22] A significant increase in the annual NPP maxima was
detected along most of the coast of the California Current
from 1997 to 2007. Related increases in annual maxima in
Chl-a along the coast of the California Current as well as
along the coasts of other major eastern boundary currents
have been reported earlier [Kahru and Mitchell, 2008].
Given that Chl-a drives most of the response in these NPP
models this increase in biomass will lead to corresponding
increases in NPP. The increased blooms and production off
the coast of Oregon are likely linked to the reported increase
in hypoxia (“dead zones™) [Service, 2004, 2007]. Some of
the increase we observe can be attributed to the coincidence
of the start of the 1997—-2007 study period with the strong
El Niflo of 1997-1998 that suppressed Chl-a and NPP
along the coasts [Kahru and Mitchell, 2002]. However, the
increase in many areas is significant even after the 1997—
1998 El Niflo period. The timing of the annual maximum is
also important: a good example was the delayed onset of

upwelling in 2005 that resulted in large biomass and
productivity decreases in the northern California Current
[Kudela et al., 2006; Thomas and Brickley, 2006].

[23] In the California Current increased upwelling is
almost always associated with increased Chl-a, primary
and secondary production [Botsford et al., 2006, Pennington
etal.,2006; Rykaczewski and Checkley, 2008]. Therefore the
observed increase in Chl-a and NPP along the coast might
be most readily linked to increased upwelling. To test this
hypothesis we used the wind-driven upwelling index (UI)
based on estimates of offshore Ekman transport driven by
geostrophic wind stress [Schwing et al., 1996; Pacific Fisheries
Environmental Laboratory, NOAA, unpublished data, 2008].
It appears, however, that Ul does not show an increasing
trend during 1997-2007 (Figure 5). On the contrary, weaker
than average cumulative seasonal upwelling has been
recorded during the second half of our study period and
stronger than average cumulative seasonal upwelling during
the first half [Schwing et al., 2006]. This decrease in sea-
sonal Ul in 2004-2008 was observed in Central and
Southern California while no trend in UI is evident in the
Northern Baja region (Figure 5). In the 50 km coastal region
of Central California annual NPP is positively correlated
with SST (r* = 0.287) and negatively correlated with the
annual maximum in UI (r* = 0.2739). While these correla-
tions seem to be real, they are not statistically significant
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Figure 5. Upwelling index (m® s~' 100 m™~" coastline) at
three locations corresponding to areas A, B, and C shown in
Figure 4.

(p>0.05). However, in the Southern California and Northern
Baja regions there is no correlation between NPP and either
SST or Ul In summary, we detect an increasing trend of
coastal NPP and Chl-a along most of the coast of the
California Current and in Central California this trend is
associated with decreased upwelling and increased SST
while no correlation with SST and UI is evident in Southern
California and Northern Baja regions. This suggests that the
increased trend in Chl-a and NPP is not explained by
seasonal upwelling intensity. Several authors have demon-
strated from both empirical [Palacios et al., 2004] and
model data [Di Lorenzo et al., 2005] that the California
Current System exhibits long-term warming and increased
stratification, which is predicted to reduce nutrient supplies
and therefore NPP. Similarly, a global NPP analysis using
VGPM suggests decreasing NPP due to surface warming
and enhanced stratification [Behrenfeld et al., 2006]. Chhak
and Di Lorenzo [2007] also suggest that nutrient availability
is modulated by the depth of upwelling in the California
Current System, which in turn is regulated by the Pacific
Decadal Oscillation (PDO). However, the PDO has been
warm/positive during the time period presented here, which
should result in lower nutrients and lower NPP. More
recently, Di Lorenzo et al. [2008] have identified the North
Pacific Gyre Oscillation (NPGO) as the dominant factor
controlling nutrients in California Current (south of 38°N),
and showed strong positive correlations between Chl-a and
the NPGO. However, the observed increases in NPP occur
during a period of both increasing and decreasing NPGO
intensity.

[24] It is not clear what specific mechanism is driving the
patterns of increased biomass in eastern boundary currents
[Kahru and Mitchell, 2008] and increased NPP in the
California Current. Previous authors have divided the Cal-
ifornia Current latitudinally and provide evidence for a com-
bination (e.g., PDO, NPGO, ENSO) of forcing functions
with varying effects at varying latitudinal bins [Di Lorenzo
et al., 2008; Legaard and Thomas, 2006; Venegas et al.,
2008]. We note that while latitudinal gradients certainly
exist, driven by several identified mechanisms, the large-
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scale pattern is for increasing biomass and NPP within the
entire coastal domain. None of these forcing mechanisms
are directly correlated to the interannual trend identified in
Chl-a and NPP for the full domain (data other than UI not
shown). Assuming that the global offshore NPP will con-
tinue to decline in response to increased warming and
stratification, the difference between the coastal ocean and
offshore waters will almost certainly continue to increase. If
this continues, eastern boundary current systems will be-
come even more dominant in terms of NPP, and presumably
carbon flux and trophic transfer.

[25] Acknowledgments. SeaWiFS, OCTS, and MODIS Aqua data
were made available by the NASA Ocean Color Processing Group. Support
by NASA Ocean Biogeochemistry and ECOHAB programs is acknowl-
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