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abstract: Nonlinearity is important and ubiquitous in ecology.
Though detectable in principle, nonlinear behavior is often difficult
to characterize, analyze, and incorporate mechanistically into models
of ecosystem function. One obvious reason is that quantitative non-
linear analysis tools are data intensive (require long time series), and
time series in ecology are generally short. Here we demonstrate a
useful method that circumvents data limitation and reduces sampling
error by combining ecologically similar multispecies time series into
one long time series. With this technique, individual ecological time
series containing as few as 20 data points can be mined for such
important information as (1) significantly improved forecast ability,
(2) the presence and location of nonlinearity, and (3) the effective
dimensionality (the number of relevant variables) of an ecological
system.

Keywords: dimensionality, nonlinearity, forecasting, S-map, compos-
ite time series, dewdrop regression.

Ecological systems often show erratic ups and downs and
can appear to shift abruptly from one state to another
(Holling 1973; Scheffer et al. 2001; Scheffer and Carpenter
2003). Simple linear or equilibrium models do not capture
this kind of behavior, but it is the hallmark of mathematical
systems governed by nonlinear dynamics (May 1977; Pri-
gogine 1984; Bak et al. 1987; Hastings and Sugihara 1993).
These dynamics appear ubiquitous in terrestrial (Ludwig
et al. 1978; Schaffer 1984; Dublin et al. 1990), freshwater
(Carpenter et al. 1999), and marine systems (Sutherland
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1974; Dixon et al. 1999; Hare and Mantua 2000; Knowlton
2004; Hsieh et al. 2005b). However, linear and equilibrium
models are still used to describe fisheries (e.g., maximum
sustainable yield) and managed terrestrial ecosystems, per-
haps because nonlinearities typically are challenging to
identify and hard to mathematically characterize and
validate.

The difference between fluctuations caused determin-
istically by low-dimensional nonlinear dynamics and those
caused stochastically by high-dimensional linear noise has
far more than academic interest; it is fundamental to un-
derstanding and modeling ecosystems (Sugihara and May
1990; Sugihara 1994; Pierce 2001; Rudnick and Davis 2003;
Mantua 2004; Hsieh et al. 2005b). For example, if it can
be shown that a system is governed by a dominant low-
dimensional nonlinear mode (i.e., where most of the ups
and downs can be explained by a few variables interacting
in complicated ways), then in principle it should be pos-
sible to construct a simple mechanistic model that captures
this behavior. Because such a model requires few inputs,
monitoring those input variables in a real ecosystem will
presumably be feasible and inexpensive. This will not be
possible if it is found that the underlying system is pre-
dominantly high dimensional or linear-stochastic (involv-
ing the additive action of many variables). In this case,
mechanistic modeling will be difficult because of the large
number of variables involved, and the best strategy may
be implementing a statistical, phenomenological autore-
gressive (AR) model. Therefore, identifying whether the
dynamic contains a dominant low-dimensional mode or
is essentially linear-stochastic is a fundamental first step
toward understanding how to model ecological systems.

Unfortunately, the data required to make these deter-
minations with existing nonlinear time series techniques
are often prohibitive. Because of the need for lengthy time
series, these methods cannot be used in most ecological
studies. Although nonlinear ecology is a wide and active
field and many breakthroughs have been made (e.g.. Lud-
wig et al. 1978; Schaffer and Kot 1986; Bolker and Grenfell
1993; Hastings et al. 1993; Grenfell et al. 1994, 1998; Hig-
gins et al. 1997; Bjornstad and Grenfell 2001 and references
therein), important information such as dimensionality
and predictability remains unknown for most ecosystems.
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Here we present a practical technique that allows mea-
surement of the nonlinearity and dimensionality of rela-
tively short time series, with a consequent increase in our
understanding of the dynamics and an increase in forecast
skill.

The Simplex Projection and the S-Map: Nonlinear
Analysis of One Long Time Series

Standard methods for determining the dimensionality and
nonlinearity of the hidden process that gives rise to a time
series use state-space reconstruction with lagged coordi-
nate embeddings (Takens 1981). This reconstruction pro-
cedure is a way of creating a shadow version of the attractor
(motion vectors or phase space) governing the original
process, from time series observations on a single variable
in the process (e.g., the time series of abundance of one
species in a multispecies ecosystem can be used to model
the whole system). To embed such a series of scalar mea-
surements, vectors in the putative phase space are formed
from time-delayed values of the scalar measurements:

, where t is time, E is thex p {x , x , x , … , x }t t t�t t�2t t�(E�1)t

embedding dimension, and t is the lag (see Sugihara and
May 1990 for the choices of E and t). Takens’s theorem
states that the shadow version of the dynamics recon-
structed by such an embedding preserves the essential fea-
tures of the true dynamics (“topological invariants”). That
is, even if a species’ abundance through time depends on
variables that were not measured, we can still reconstruct
a shadow that accounts for these missing variables by tak-
ing the E prior values from just one species as a coordinate
in E-dimensional space. This reconstruction can require
large amounts of data, especially if the underlying dimen-
sionality is high (Ruelle 1989; Tsonis 1992).

Two techniques built on this theory are the simplex
projection method (used to determine dimensionality; Su-
gihara and May 1990) and the S-map procedure (used to
detect nonlinearity of the time series; Sugihara 1994). The
simplex projection and S-map methods are well docu-
mented, have been described elsewhere (Dixon et al. 2001;
Landini et al. 2002; Ito and Ito 2005), and are briefly
summarized in appendix A in the online edition of the
American Naturalist. Note that neither method “fits” equa-
tions to data; rather, they rely on a set of data to forecast
a second out-of-sample set not used in model construc-
tion. Typically, the first half of the time series (library set)
is used to build the model, and the second half (predicted
set) is forecast as output, often with stunning accuracy
(Sugihara and May 1990). This robust out-of-sample fore-
cast procedure, called cross-validation, avoids overfitting.
A portal for the simplex projection and S-map is available
online (http://www.iod.ucsd.edu/simplex/).

After some initial confusion regarding implementation

of these techniques was resolved (Sugihara 1994), ecolo-
gists have made them among the most commonly used
nonlinear predictive tools in the literature. Nonlinear sci-
ence is a very broad area of mathematics in general, and
quantitative ecology in particular, and there are many tech-
niques for detecting nonlinearity and for fitting nonlinear
curves to data (fuzzy logic, generalized additive models,
state-space models, genetic algorithms, neural networks,
kernel density estimators, etc.). If we limit our attention
to the specific goal of creating appropriately dimensioned
predictive models from nonlinear time series, a few other
alternatives exist. Local Lyapunov exponents were tenta-
tively proposed as a way of detecting chaos and instability
while controlling for noise in the data (Ellner and Turchin
1995; cf. Sugihara 1994 for a critique of this method),
though the technique was later altered (Turchin and Ellner
2000) to be surprisingly similar to the S-map (models are
selected by cross-validating forecasts made from an atlas
of lagged coordinate embeddings smoothed through an
exponential kernel). Recently, several articles have dem-
onstrated low dimensionality in marine ecosystems, using
recurrence analysis (e.g., Royer and Fromentin 2006; King
et al. 2007). This interesting technique is also based on
lagged coordinate embedding and is useful in visualizing
patterns in the data and determining dimensionality of the
system. However, it involves fitting as opposed to predic-
tion and consequently does not make forecasts, nor does
it quantify the degree of nonlinearity in a system.

Dewdrop Regression: Nonlinear Analysis of
Several Short Time Series

Description of the Technique and Theoretical Justification

Failure to identify and understand nonlinearity has been
singled out by many prominent ecologists as the single
largest barrier to understanding ecosystem processes
(Levin 1992, 2006; Scheffer et al. 2001; Knowlton 2004).
However, simplex projection and the S-map have failed
to become standard fare in their native discipline for the
simple reason that they require time series that are quite
long, and ecological time series, generally, are not. As we
show, this limitation can be overcome when data from
several sufficiently equivalent species are available (e.g.,
different fish species in the same geographic region). A
composite time series can often be constructed to make a
longer time series, so that standard nonlinear forecasting
methods apply. A preliminary version of this idea was
suggested for analyzing equivalent cardiac rhythms from
short electrocardiogram tracks (Sugihara et al. 1996).
However, there is an ecological rationale behind con-
structing a composite time series that relates to the original
embedding article by Takens (1981).
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Figure 1: A, In our noisy five-species competition model, there was no clear temporal relationship between species (species 3 and 5 were chosen
randomly as representatives). B, Predictions of species 3 abundance, using a linear model constructed from species 5, had systematic errors. C,
However, nonlinear predictions were accurate across the entire range of abundance.

Any dynamic system (e.g., an ecosystem) generates a
vector field (N-dimensional phase space); if the system is
dissipative, then the vector field collapses to a geometric
shape (an attractor) in dimensions lower than the original
dynamics would suggest. This attractor characterizes the
dynamics (e.g., fluctuations in populations) as they occur
in the space of relevant variables (state space). For ex-
ample, Schaffer’s (1984) pioneering work suggested that
an attractor embedded in three dimensions could char-
acterize lynx and hare populations. This attractor had a
funnel-like shape in his particular three-dimensional em-
bedding. Conversely, each species’ time series of abun-
dance is a one-dimensional “shadow” of paths across the
multidimensional attractor of the ecosystem. Insofar as
each species is ecologically similar, each time series can be
regarded as a similar, possibly rescaled, observation of the
same ecosystem attractor. In this case, the shadow of one
species can be rescaled and used to predict the time series
of an equivalent species, using embedding techniques. This
is true even if one is more abundant than the other and
even if the species peak at different times. Species with
dynamically equivalent time series see the same attractor
geometry, though possibly from different points of view
and possibly at different scales.

However, be aware that not all species have equivalent
time series. Ecologically different species see the attractor
from different angles and potentially could see a different
geometric shape. One can think of a species’ niche as
determining the angle from which the attractor is viewed,
which in turn determines the time series. In other words,
a three-dimensional path across an attractor will cast a
different one-dimensional shadow (time series) depending
on the angle from which it is viewed. Unless the attractor
appears similar from both points of view, the time series
will not be equivalent and cannot be used to forecast each
other. Ecological differences should be taken into consid-

eration when selecting time series for compositing. We
later describe a quantitative method to identify dynamic
equivalence (the “similar shadow” test). We have also de-
veloped a method for dealing with dynamically distinct
time series that will be discussed in a separate article (C.
N. K. Anderson, C.-h. Hsieh, and G. Sugihara, unpub-
lished manuscript).

A time series of population abundances can be gener-
ated from a discrete time growth model by simple iteration
(a process sometimes referred to as “cobwebbing”). Here
we face the opposite problem: extracting a growth model
from the time series of abundance. By embedding each
short time series, a few points appear on the surface of
the attractor, like dewdrops on a cobweb. The more series
we use, the more dewdrops appear and the more detailed
our image of the attractor becomes; ergo, we propose nam-
ing this technique “dewdrop regression.”

A Model Example

We simulated a five-species competition model with cha-
otic dynamics and process noise (app. B in the online
edition of the American Naturalist), creating long (N p

) time series of the abundance of each species. Al-1,000
though each species interacted with all others (they were
deterministically coupled), their time series appeared un-
related temporally (fig. 1A). This shows that the lack of
any statistical (linear) relationship between variables does
not preclude the existence of a deterministic relationship
between them. We also used an autoregressive model
(AR4) to look for linear relationships outside of the tem-
poral domain (linear cross-predictability between species).
The AR model had systematic errors only slightly smaller
than the standard deviation in the time series data, indi-
cating predictive power that is on average no better than
the mean value (table B1; fig. 1B). We note that the AR4
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Figure 2: A, In our noisy five-species competition model, 15 points could be accurately predicted from a library of 985 with simplex projection
(bootstrapped 1,000 times). It appears that our model is effectively four-dimensional, and this is shown clearly in the 95% confidence limits (dashed
lines). B, Predicting 15 points using a short library to 15 points greatly reduced predictability and made it difficult to determine dimensionality. C,
However, the peak at high levels of predictability and were restored when the 30-point time series from the other four species were combinedE p 4
with the 15 points used in B.

model has lagged linear residuals whose hidden functional
form (quadratic) can be extracted using a residual-delay
map (fig. B1; Sugihara et al. 1999). Finally, a simplex pro-
jection revealed that the five-species system was effectively
four-dimensional (i.e., the next value in each series could
be best predicted by the four preceding lagged values).
Dissipative systems such as this, where a high-dimensional
attractor is well modeled in lower dimensions, are mer-
cifully common (see app. B). Using , we then con-E p 4
structed S-maps to perform pairwise predictions between
species. In contrast to the AR model, the nonlinear cross-
predictions had an error roughly one-quarter of the stan-
dard deviation (table B1; fig. 1C). Thus, in this model
example, we see that apparently unrelated time series (sta-
tistically uncorrelated) can faithfully predict each other.

The high cross-predictability exhibited by this five-
species model means that the species belong to the same
dynamic equivalence class. That is, each species sees
roughly the same attractor geometry. Insofar as each spe-
cies’ time series represents a similar shadow of the same
object (attractor), superimposing these shadows on top of
each other should reveal the attractor in greater detail, just
as several sprinklings of dew progressively reveal more
detail of a spiderweb. This increased resolution can be
accomplished by “stitching” several time series together,
end to end. Following convention, we suggest that data

for each time series be first-differenced and then nor-
malized to unit mean and variance. The “seams” where
two time series are stitched together are removed by dis-
carding all embedding vectors that traverse a gap or seam.
This long time series can then be used as the library set
in the traditional methods above. We used the five-species
model to demonstrate that the dimensionality, predicta-
bility, and nonlinearity apparent in a 1,000-point time
series (figs. 2A, 3A) cannot be conclusively detected in a
30-point series (figs. 2B, 3B) but can be rescued by com-
positing the other four species (figs. 2C, 3C). The differ-
ences between the 1,000-point series and the composite
series are negligible, despite a 97% reduction in data.

It is impossible to set a universal minimum on indi-
vidual data series length. Among other factors, data re-
quirements depend on the dimensionality of the under-
lying system (Ruelle 1989), the Lyapunov exponents, the
sampling frequency, the noise in the system, observation
error, and (as we suggest here) the number of equivalent
series available for compositing. However, it is instructive
to illustrate with our model example how power erodes
as time series shorten. We progressively shortened our five-
species time series and calculated the linear and nonlinear
correlation and error for each of the five species as pre-
dicted by a composite of the other four. A weak nonlinear
signal was detectable even with trivial samples (four ob-
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Figure 3: A, For each species in a five-species competition model, 15 points were forecast from a library of 985 (bootstrapped 1,000 times at 11 v

values for a total of 55,000 simulations). Linear correlation ( ; thin lines) was significantly worse than nonlinear correlation (thick lines; 95%v p 0
confidence lines) at appropriate values of v ( or higher). B, Forecasting 15 points with a library of just 15 was neverinterval p dashed v p 0.5
statistically better than the linear model (close, but still NS at ). C, However, nonlinearity and high levels of predictability were restoredv p 0.01–0.05
when the 30-point time series from the other four species were combined with the 15 points from B at .v p 0.5

servations), but statistical significance was lost at approx-
imately 20 observations per series (fig. 4).

Although this procedure will generally be mathemati-
cally correct, caveat lector: the stitching of time series must
be done with care. Specifically, it is important that com-
positing neither introduces nonlinearity when it is not
there nor masks it when it is present. We suggest the
following three tests to ensure accurate results.

Permutation Test

Because different permutations of time series give rise to
different library and prediction sets, we suggest averaging
over a large sample of time series combinations (con-
necting individual time series end to end in different orders
to give different library/prediction sets). This permutation
procedure is repeated 100 times or until all combinations
are exhausted, and then the statistic of interest (e.g., cor-
relation, error, v) is computed as the average across all
permutations. We use this procedure to confirm that linear
processes remain linear after compositing (“ ,”AR � noise
table 1), as do nonlinear processes (“Logistic map” and
“Five-species” models, table 1). This simple bootstrap pro-
cedure will reduce sampling error for the statistic of
interest.

Homogeneous Set Test

Nonlinearity may appear as an artifact when linear time
series that do not belong to the same equivalence class are
stitched together (“Composite” section of table 1). A hy-
pothetical example is demonstrated in figure 5A. Imagine
10 time series, where M1–M5 are generated from a linear-
stochastic process (e.g., AR) and N1–N5 are generated by
a different linear-stochastic process (e.g., noisy sine waves).
If the library (L) and prediction (P) sets each contain time
series from both M and N, then the composite series can
show a spurious nonlinear signature. This happens because
subset N4N5 is better forecast from a M1M2N1N2N3
composite library when the data of the similar time series
N1N2N3 is more highly weighted in model construction
and those of the subset M1M2 are down weighted. This
differential weighting is how nonlinear forecasting oper-
ates. Thus, an artificial nonlinear signature might arise
spuriously because of heterogeneity in the data.

This potential artifact can be eliminated if the library
sets and prediction sets are constructed so that they are
each maximally homogeneous (or if the library set is max-
imally different from the prediction set). If groups M and
N are actually from the same equivalence class, artifacts
will not appear. If groups M and N come from different
processes, one should see no predictability when using
M1–M5 as the library set and N1–N5 as the prediction
set. Therefore, in addition to the permutation test, one
should check whether nonlinearity is upheld when the



Figure 4: The decay of the nonlinear signal as time series length decreases, as measured by the decreasing correlation (A) and increasing mean
absolute error (B). The thick lines represent a nonlinear model, the thin lines represent a linear model ( ), and the dashed lines represent av p 0
95% confidence interval. Typically, significance was lost near , though a weak (nonsignificant) signal was detectable at even the smallestN p 20
sample sizes.



Nonlinearity of Ecological Time Series 77

Table 1: Results of the composite S-map

Data Best E
Best v

(0 p linear) Best r Dr

Probability
(Fisher)

Best
MAE DMAE

Probability
(random)

Permutation test:
AR � noise 10a 0 .330 0 1 .752 0 1
Logistic map 2 2 .888 .060* !.01 .366 .081* .01
Five-species model 4 6 .962 .273* !.01 .035 .051* .01
CalCOFI larval fish 5 .6 .603 .060* .038 .577 .038* .01

Composite of two linear processes
produces a nonlinear artifact:

AR � noise and sine waves 20a 2 .414 .07* .032 .714 .021* .01
Constructing homogeneous sets:

AR � noise 10a 0 .325 0 1 .767 0 1
Logistic map 2 2 .889 .051* !.01 .373 .068* .01
AR � noise and sine waves 20a 0 �.094 0 1 1.188 0 1
CalCOFI costal fish larvae 5 .5 .666 .070* .021 .582 .044* .01
CalCOFI costal � oceanic 5 1.2 .587 .039 .313 .581 .022 .06

Note: AR processes, , , , with 30 points for each time series. Logistic series,AR � noise p 30 X p aX � � � ∼ N[0, .5] a ∼ U[0, 1] map p 30t�1 t

, , error added after the simulation (Sugihara 1994). dimension, tuningX p aX (1 � X ) � b a ∼ U[3.6, 4] b p 20% E p embedding v p nonlineart�1 t t

parameter, best skill (correlation coefficient) using best v (vbest), at v0)] and best mean absolute errorr p forecast Dr p [(r at v ) � (r (MAE) pbest

skill using best v (vbest), at vbest). Thus, a positive Dr or DMAE measures the difference in forecasting skill of theforecast DMAE p (MAE at v ) � (MAE0

best nonlinear model (i.e., where as compared to the global linear model (i.e., where ). The significance of Dr was tested by the Fisher’s Z-v 1 0) v p 0

test, and the significance of DMAE was tested by a randomization procedure.
a Maximum dimension testable.

* Significance at the .05 level.

library and prediction sets are selectively chosen to be
maximally different (i.e., each set is internally homo-
geneous).

The following recipe can be used to construct groups
with maximally homogeneous dynamics. First, using all of
the time series together, find the order (v) of the AR model
with the best out-of-sample forecasting skill. Use a v th-
order AR map (AR-v) to perform pairwise prediction be-
tween each species’ time series. This yields a linear (AR)
predictability matrix (measured as correlation coefficients
between predictions and observations). Note that this ma-
trix is only roughly symmetrical; using series A to predict
series B will be similar but not identical to using series B
to predict series A. Next, use the predictability matrix to
construct a similarity dendrogram based on linear copre-
dictability. Here, we use as a measure of distance1 � r
and the unweighted pair group method with arithmetic
mean to construct the dendrogram (Legendre and Legen-
dre 1998). Last, use this dendrogram to determine group-
ings of species time series that give homogeneous library
and prediction sets (fig. 5B). This procedure yields library
sets of similar series that are most dissimilar to the pre-
diction sets and will not produce artifacts of nonlinearity
that might arise from pooling time series from unrelated
dynamic processes. This should accompany the permu-
tation test to double-check nonlinearity.

To illustrate this procedure, we simulate 15 time series
from the AR process described in table 1 and 15 time

series from noisy sine waves with random frequencies and
phases. Each time series contains only 30 points. When
the time series arising from the two kinds of dynamics
appear in both the library and the prediction sets, we
obtain an artificial nonlinear signature (table 1). Again, a
false nonlinear signature appears because the composite
is not homogeneous. To eliminate this source of artifact,
we need to construct library and prediction sets so that
each is dynamically homogeneous. We therefore construct
the dendrogram of pairwise predictability for these series
(fig. 5B). Based on this dendrogram, we use group I as
the library set and group II as the prediction set. Not
surprisingly, group I came from the AR process, and group
II (and II′) were from noisy sine waves. Note that the
remaining series have long branches, showing little pair-
wise predictability, and can be omitted to reduce unin-
formative noise in the analysis. The results, as expected,
show low predictability and no improvement when the
prediction is tuned toward nonlinear solutions (table 1).
The results are the same when using group II as the library
set and group I as the prediction set. Furthermore, this
result (i.e., a linear signature with no nonlinear artifact)
also applied to group II′, which was the same size as group
I but was less homogeneous than either group I or II.
Because nonlinearity vanished when time series were
grouped, we concluded that groups I and II/II′ are not
members of the same equivalence class and thus should
not be combined into a composite.
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Figure 5: A, Schematic illustrating an artificial nonlinear signature gen-
erated when time series of different dynamic types are allocated into both
the library (L) and the prediction sets (P). To avoid this statistical artifact,
one needs to construct library and prediction sets that are each dynam-
ically homogeneous. B, This can be achieved by constructing a similarity
dendrogram based on pairwise predictions. According to the topology
of the dendrogram, one should use set I to predict set II or II′, and vice
versa. This procedure avoids an artificial nonlinear signature that can be
generated from compositing heterogeneous sets.

Similar Shadow Test

Ecosystems contain many different populations that may
not be ecologically similar. Processes in bacterial popu-
lations will have very different dynamics than the wolf
populations in the same region, even if they have some
influence on each other. As mentioned earlier, a technique
for dealing with such data is presented elsewhere (C. N.
K. Anderson, C.-h. Hsieh, and G. Sugihara, unpublished
manuscript). Though analysis of ecologically heteroge-
neous time series is tractable with this second technique,
dewdrop regression would probably have very little sta-
tistical power. How, then, can we objectively determine
which to composite? A good way of ensuring that only
dynamically similar species are grouped together is to di-
rectly test the similarity of their dynamics.

This test is similar to the homogeneous set test above
but uses nonlinear forecasting in place of the linear AR
model to define dynamic equivalence. Here the best order
(embedding dimension) is determined with simplex pro-

jection, and pairwise correlations are determined using the
S-map. Distant outgroups or deep branching might be
regarded as evidence against including certain species in
a composite. However, insofar as the ability to predict is
the ultimate benchmark of success, a practical criterion
for whether a time series should be included in the com-
posite is whether it increases forecast skill.

Significance of Improvement of Nonlinear Forecast Skill

In the S-map procedure, nonlinearity is measured as a
decrease in mean absolute forecast error (DMAE) or an
increase in correlation (Dr) between predictions and ob-
servations. The key question is whether DMAE and Dr

are statistically significant. To test Dr, one can use Fisher’s
Z-test (Kleinbaum et al. 1998). To test DMAE, a simple
bootstrap procedure can be used: (1) calculate DMAE from
the composite S-map, denoted as statistic T; (2) randomly
shuffle the data in the original time series and obtain a
bootstrapped null DMAE, T∗; (3) repeat this procedure
100 times; (4) the DMAE is deemed significant if T is
greater than 95 of the T∗s.

Applications in Real Data

We illustrate the overall approach with field data by ap-
plying dewdrop regression to larval abundances of coastal
fish species collected in the California Cooperative Oceanic
Fisheries Investigations (CalCOFI; Hsieh et al. 2005a). The
CalCOFI data represent the longest oceanographic survey
in the northeastern Pacific (from 1951 to 2002 with a gap
between 1967 and 1983). Even in this long-term study, the
time series of each individual species is barely sufficient
to analyze at the annual scale. Therefore, we construct a
composite time series for 23 coastal taxa, and we test it
with dewdrop regression.

Because these coastal species live in the same area and
presumably interact, it is not surprising to find that their
time series of abundance can be treated as members of a
dynamic equivalence class (table 1). In addition to the
biological considerations, compositing these data is jus-
tified by the surprisingly high out-of-sample predictability
obtained with the nonlinear forecast methods. Although
the statistically significant gain in forecast skill achieved
by including nonlinearity is modest in magnitude (0.603
vs. 0.543), the gains from compositing are truly dramatic;
the S-map’s forecast skill averaged 0.099 over the 23 in-
dividual time series, and the AR model of optimal order
5 averaged �0.045. If the coastal species do not belong to
an equivalence class, we would not expect to see such high
interannual predictability. More significantly, the permu-
tation and homogeneous set tests indicate that the non-
linear signature is not a statistical artifact. Not surprisingly,
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if data from other ecological domains (e.g., open ocean
species) are included in the composites, the results dete-
riorate (table 1). We conclude that the dynamics of the
CalCOFI coastal larval fishes can be well modeled by a
low-dimensional attractor. The next step in modeling this
system would be to search for physical or biological co-
variates that reduce dimensionality and increase forecast
skill when included in the S-map analysis (for an example
of this process, see Dixon et al. 1999).

The large gains in predictability achieved by compos-
iting, linear or not, may be indicative of a significant phe-
nomenon; any individual species time series becomes more
predictable, given information about the other members
of the community with which that species interacts. In-
deed, the gains in predictability observed here are probably
due to the clearer picture of the community dynamics
provided by a 23-fold increase in sample size. The relatively
weak nonlinear signal is a by-product of these data sets
aggregating across slightly heterogeneous samples. There
may be a trade-off in compositing depending on how het-
erogeneous the samples are; large heterogeneous sample
sizes potentially can dampen the nonlinear signature. This
effect has been seen in a variety of contexts (Sugihara 1994;
Sugihara et al. 1996, 1999; Royer and Fromentin 2006)
where aggregation tends to mask the nonlinear part of the
signal. Because one might expect stronger nonlinear sig-
natures on smaller scales (Sugihara et al. 1999; Hsieh et
al. 2005a), any finding of nonlinearity in this context is
therefore robust.

Conclusion

This article outlines techniques for extending nonlinear
forecasting methods so that they can be applied to short
ecological time series. These methods can be used to mea-
sure effective dimensionality and nonlinearity and improve
forecasts in short ecological time series. Knowing how
complex a system is—that is, the number of variables in-
teracting, whether nonlinear interactions need to be em-
phasized, and how much predictability might be expected
for the system—is an essential step to building better-
informed models. Building a simple model for a system
would be unrealistic if the data show that the number of
free parameters required (dimensionality) for a given level
of prediction accuracy is very large. On the other hand,
if a system is found to be low dimensional, in principle,
it should be feasible to develop a mechanistic forecast
model to better understand how that system works (Dixon
et al. 1999, 2001). For example, Dixon et al. (1999) iden-
tified the mechanisms explaining how three unrelated forc-
ing mechanisms (lunar phase, turbulence, and wind di-
rection) could cause episodic fluctuations in larval fish
supply through their nonlinear “perfect-storm-like” com-

bination. This gives rise to a multivariate form of phase-
space reconstruction (embedding) where the coordinate
axes were explicitly the three physical variables in opera-
tion (lunar phase, turbulence, and wind direction). This
example demonstrates that even with lagged-coordinate
constructions of just one time series, nonlinear methods
can exhibit powerful forecasting ability and can represent
a clear step toward better prediction and understanding
of natural systems.
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