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Abstract
We assess whether a supervised machine learning algorithm, specifically a convolutional neural network

(CNN), achieves higher accuracy on planktonic image classification when including non-plankton and ancillary
plankton during the training procedure. We focus on the case of optimizing the CNN for a single planktonic
image source, while considering ancillary images to be plankton images from other instruments. We conducted
two sets of experiments with three different types of plankton images (from a Zooglider, Underwater Vision
Profiler 5, and Zooscan), and our results held across all three image types. First, we considered whether single-
stage transfer learning using non-plankton images was beneficial. For this assessment, we used ImageNet images
and the 2015 ImageNet contest-winning model, ResNet-152. We found increased accuracy using a ResNet-152
model pretrained on ImageNet, provided the entire network was retrained rather than retraining only the fully
connected layers. Next, we combined all three plankton image types into a single dataset with 3.3 million
images (despite their differences in contrast, resolution, and pixel pitch) and conducted a multistage transfer
learning assessment. We executed a transfer learning stage from ImageNet to the merged ancillary plankton
dataset, then a second transfer learning stage from that merged plankton model to a single instrument dataset.
We found that multistage transfer learning resulted in additional accuracy gains. These results should have
generality for other image classification tasks.

Of the types of algorithms that can be employed in image
analysis, “supervised classification” is a term used to describe
machine learning algorithms that assign one or more labels to
the image from a predetermined list of labels. This approach is
usually based on specific “regions of interest” (ROIs) that are
labeled to facilitate further analysis, such as population
density estimates. Supervised classification algorithms require
example images with labels already assigned, commonly
referred to as “training images.” Given additional unlabeled
images as input, the algorithm calculates which group of
labeled images is the most similar to the current image and
then provides that most similar label as output. In general, the
more labeled images that are provided as training data,
the higher the resulting accuracy, although various assessments

have quantified that there are diminishing returns on training
set size. For example, Sun et al. (2017) found that “performance
on vision tasks increases logarithmically based on volume of
training data size.”

Manually labeling images is labor intensive. An alternative
to using only one’s own data is to leverage transfer learning,
where a machine learning model trained on other images is
reused to initiate training on the images of interest. Transfer
learning is not a new concept; Thrun and Pratt (1998) discussed
the theory and application of transfer learning, including a sur-
vey of work done up to that point. In one of the earliest and
most widely cited applications of transfer learning with CNNs,
Girshick et al. (2014) found a large gain in accuracy when con-
ducting “supervised pretraining for an auxiliary task, followed
by domain-specific fine-tuning” compared to training on only
the smaller domain-specific dataset by itself.

Here, we assess whether transfer learning training of a model
improves classification accuracy with planktonic datasets rela-
tive to training de novo with only the native images. Although
our design does not require the images to be novel, we believe
our results are particularly useful when trying to create a model
for the first time and/or the existing library of labeled plankton
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images is small. This situation commonly arises when newly
working with an imaging device or with deployments in a new
environment.

We also describe and assess a technique incorporating addi-
tional planktonic image datasets through sequential rounds of
tuning, starting with ImageNet, tuning on ancillary plankton
images, and tuning again on only the target images. A similar
approach has been described at least three times in recent
literature, all with inconclusive results. Lumini et al. (2023)
built ensembles of CNNs, and they include as constituents
individual CNNs trained using “two rounds tuning (2R).”
Lumini et al. used five small oceanographic datasets (three
plankton datasets of 3771; 6600; and 14,374 images, and three
coral datasets of 766 and 1123 image patches). After starting
with ImageNet, individual coral and plankton datasets were
used to train other individual coral and plankton datasets,
respectively. They found minimal benefit in 2R individually.
Guo et al. (2021) also used five datasets, four non-plankton
datasets (flowers, seedlings, and fish) ranging from 1360 to
8189 images and a planktonic dataset of 60,736 images. In
their “multistage transfer learning,” they comprehensively
compared every permutation of multistage transfer learning
on four different network sizes, and found minimal to no
gains in most cases (they did find that ImageNet provided the
best results, and the next largest library, the planktonic one,

always provided the next best starting point for transfer learn-
ing to every other domain). Orenstein and Beijbom (2017)
performed “double fine-tuning” on two planktonic datasets of
60k and 120k images. They found accuracy gains of less than
one percentage point (Orenstein and Beijbom 2017).

Our technique goes beyond these previous approaches in
two respects. First, we use larger datasets. Second, we combine
our ancillary images into a single, much larger and more com-
plex dataset containing images from multiple acquisition sys-
tems. We find that utilizing all ancillary images simultaneously
increases accuracy. Our motivation for including ancillary plank-
ton images is to not only improve algorithm performance on
the supervised classification task, but also to leverage human
expertise from multiple laboratories and a wide variety of taxo-
nomic specializations. Our results indicate that this technique is
effective for ML models on multiple types of plankton images,
and likely for other types of images as well.

Materials and procedures
Datasets

We used three digital image datasets in our experiments:
Zooglider images acquired in situ (Ohman et al. 2019), Zooscan
images acquired in the laboratory (Gorsky et al. 2010), and in
situ Underwater Vision Profiler 5 images (Picheral et al. 2010).

We also indirectly leveraged the ImageNet dataset. The
ImageNet Large Scale Visual Recognition Challenge has
been held annually since 2010 (Russakovsky et al. 2015).
The contest was enabled through human annotation of mil-
lions of images obtained from the internet (Deng
et al. 2009). We used a machine learning model trained on
the version of the competition dataset used from 2012 to
2015, which comprised 1.28M images from 1000 different
classes (Russakovsky et al. 2015; He et al. 2016). ImageNet
has been used extensively in Computer Vision applications,
and the 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR) awarded ImageNet “retro-
spective most impactful paper from CVPR 2009” (Martinez
2019). Some example images are shown in Fig. 1, assigned
labels such as “bell pepper” and “pizza/pizza pie.” The gran-
ularity of the classes is at the level of a layperson (e.g., “fly,”
“bee,” and “cricket” for insects, and “jellyfish,” “sea
anemone,” and “sea urchin” for aquatic organisms). A single
label is assigned to the object that is the largest and/or clos-
est to the center of the image, although other recognizable
objects may also be in the image (Fig. 1).

Zooglider images were acquired by a shadowgraph imaging
Zoocam mounted on an autonomous Zooglider (Ohman
et al. 2019). Images are captured during glider ascent between
400 m and the sea surface. Illumination is provided by a light-
emitting diode centered at 620–630 nm, so as to minimize
animal avoidance (Ohman et al. 2019). The imaged volume is
a 250 mL cylinder of collimated light. The captured images are
1296 � 964 with a pixel resolution of 40 μm, and the system

Fig. 1. Example images from each of the four datasets used (Zooglider,
Zooscan, UVP5, and ImageNet), with an indication of the site of imaging
(in situ or preserved for zooplankton images), the number of classes into
which objects were classified, and the total number of annotated images
used. For the three zooplankton sources, similar taxa are arranged in col-
umns. For ImageNet, four images were selected at random.
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is optimized for mesozooplankton ranging in size from
approximately 0.5–30 mm (Ohman et al. 2019). A segmenta-
tion algorithm (Ellen et al. 2019) is applied to identify
“regions of interest” (ROI) within each image, so as to have
only a single plankter in each ROI. We developed a training
set of 1,211,653 ROI with manual annotations corresponding
to one of 58 classes (Supporting Information Table S1).
Zooglider ROI were acquired in California Current System Long
Term Ecological Research (CCE-LTER) waters across 1511 dives
from 14 different multiday deployments spanning 2017–2020.

ZooScan is a commercially available instrument used to cre-
ate digital images of preserved plankton (Gorsky et al. 2010).
Unlike the other two image sets, Zooscanned zooplankton
were collected with a net and preserved, both steps that can
result in changes in tissue opacity, altered postures, shrinkage,
or missing appendages. ZooScan images are captured as a sin-
gle intensity channel with gray level normalization and pixel
resolution of 10.6 μm (Gorsky et al. 2010). The ZooScan hard-
ware captures the entire imaging field in a single pass, and
then ImageJ-based software executes segmentation such that
every contiguous area of dark pixels is saved as a rectangular
ROI. ROIs are augmented with small black lines in two of the
four corners of the bounding rectangle, and the ROI saved has
a margin of a few pixels beyond the bounding rectangle. A
scalebar is added in the bottom margin. All of these annota-
tions were removed prior to machine learning experiments.
For these experiments, we developed a training set of
2,138,292 manually annotated Zooscan images corresponding
to 1 of 30 classes (Supporting Information Table S1). The
images were obtained from plankton samples collected in
the CCE-LTER region on CalCOFI cruises between May 2007
and July 2020.

Underwater Vision Profiler (UVP5; Picheral et al. 2010) images
were acquired between 2008 and 2019 as part of the CCE-LTER
process cruise studies (https://ccelter.ucsd.edu/cruise-documents/).
The UVP5 was lowered on a CTD-rosette at 30–60 mmin�1.
UVP5 images were acquired in situ with a fixed focal lens aimed
perpendicular to a sheet of water illuminated by a collimated
625 nm LED (Picheral et al. 2010). Each frame consists of a
22 � 18 cm volume imaged as 1280 � 1024 pixels (pixel resolu-
tion 174 μm). For these experiments, we developed a training set
of 145,419 annotated images assigned to one of 42 classes
(Supporting Information Table S1).

For all three plankton image libraries used in our experi-
ments, roughly 40% of the images are detritus, artifacts, or
unknown, 40% of the images are copepods, and 20% are other
biological objects.

We aggregated these 3.45 million images in two ways. First,
we concatenated the datasets, resulting in 130 classes, each con-
sisting only of images from a single instrument (58 Zooglider +
30 ZooScan + 42 UVP5), which we refer to as the “combined”
dataset. Second, we assemble a dataset based on aligning the
same image categories from different instruments. This pro-
cedure resulted in a new set of labels consisting of 50 classes

for these 3.45 million images, most of which consisted of
images from multiple instruments, which we refer to as the
“aligned” dataset. Note that the construction of the “com-
bined” dataset requires reduced plankton taxonomic knowl-
edge, but the construction of the “aligned” dataset requires
considerable expertise to judge whether or not classes from
different instruments should be considered equivalent. As
constructed, each of these datasets, therefore, contains 40%
ancillary images for Zooglider, 65% ancillary images for
ZooScan, and 95% ancillary images for UVP5.

Computing hardware
Most experiment replicates were executed on a server with

multiple Tesla V100 SXM2 GPUs, each of which has 32GB of
RAM. Alternatively, a server with a single Tesla K40c with 12GB
of RAM was used for early trials. Depending on the specific con-
figuration and dataset, most models occupied 10–12GB of GPU
memory while executing. GPUs were configured to use CUDA
11.4. Convolutional neural network models were built using
Pytorch (Paszke et al. 2019), specifically torch 1.8.0 + cu111,
torchvision 0.9.0 + cu111. Underlying notable dependencies
used were Python 3.7.4, conda 4.12.0, and Numpy 1.17.2.

CNN architectures used
We selected ResNet-152 (He et al. 2016) as the basis for our

initial transfer learning experiments because of its wide usage.
ResNet-152 won the ImageNet classification contest in 2015
(Russakovsky et al. 2015). PyTorch provides the ResNet net-
work structure available as well as a set of weights resulting
from training on ImageNet data (Paszke et al. 2019). We con-
ducted our experiments using 152 layers because it was the
largest pretrained network available, thus providing the best
results, with the tradeoff of requiring additional computa-
tional resources and training time.

ResNet architectures feature two notable implementation
decisions. First is that ResNets include a ReLU, or Rectified
Linear Unit, activation function that is applied to the output
of the convolutional layers (Supporting Information Fig. S1a).
ReLU activation is used in place of sigmoid activation because
very large activations still have a gradient. Sigmoid activations,
however, have gradients that approach zero. Another advan-
tage of ReLU is that individual calculations are quicker because
ReLU obviates the need for millions of exponential arithmetic
computations during each epoch to fit each neuron’s output
to a sigmoid curve. In addition, the ResNet architecture also
includes shortcut connections, where a copy of the output
from one layer is supplied as additional input to a later layer
(Supporting Information Fig. S1a,b).

Procedures—Preprocessing
The pretrained ImageNet model requires three-channel

(RGB) images of size 128 � 128 pixels as input. All three of
our instruments acquire single-channel images, so we cloned
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that channel to match the expected number of input channels
rather than discard pretrained filters from ImageNet.

All images from the three datasets were variously sized rect-
angles with scalebars and accompanying text that needed to be
removed. Our preprocessing, therefore, consisted of three steps
(Fig. 2). First, we cropped each image to remove the scalebars.
Next, we added empty pixels (padding) to either the horizontal
or vertical sides of the image to create a square ROI.

Padding was split evenly to keep the ROI centered
(e.g., an equal number of rows was added to the top and
bottom of the image). The specific value of the pixel pad-
ding depended on the instrument; for the ZooScan and
UVP5, we padded with pure white pixels to match the back-
ground, and for the Zooglider we padded with random pixel
values, where the pixel values were selected from a Gauss-
ian distribution centered on the average greyscale value of
all images, and a variance that resulted in a speckled back-
ground consistent with most Zooglider images. Finally, we
resized each ROI to 128 � 128 pixels. If the ROI was larger
than 128 � 128, we downscaled the image. If the ROI was
smaller than 128 � 128, we padded the image with more
empty pixels to avoid introducing artifacts. For our datasets,
roughly 95% of all ROIs were smaller than 256 � 256.
After finding in limited experiments that larger network
sizes did not provide noticeable accuracy gains, we used the
128 � 128 ImageNet pretrained model.

Procedures—Training models
For each model, we split the dataset into 80% training

data, 10% validation data, and 10% test data. We trained
models to convergence, stopping after 10 consecutive epochs
showed no reduction in validation loss (Fig. 3c). For each
trial, we specified Python’s random seed, such that a specific

train/validation/test split was used for every applicable
treatment, thereby preventing some treatments from getting
“easier” splits. We conducted five replicates per treatment.

Our hyperparameter tuning was limited to the initial explo-
ration conducted with the goal of finding values that per-
formed adequately with all three data types. We selected
hyperparameters that resulted in training and validation loss
curves that iteratively trained a model as expected (Fig. 3c)
and produced optimal accuracy on the training data. In
Fig. 3a,b, we illustrate training and validation loss curves that
the user should seek to avoid. Our search included an evalua-
tion of the learning rate, three different dropout rates, and
three different optimizers, primarily on ResNet-18 models,
with some validation on ResNet-50 and ResNet-152. For
ResNet-152 models, we did not tune hyperparameters individ-
ually per dataset or per trial, to avoid confounding factors in
our transfer learning analysis. Accordingly, our overall accu-
racy should be treated as a floor. For these trials, we used a
weight decay of 0.00005 and a learning rate of 0.00005.

When utilizing transfer learning, if the two image libraries
have a different number of labeled classes, then the existing
model cannot be used as is, and one or more layers need to be
modified. For example, an architecture trained on ImageNet
will produce 1000 class probabilities, and it is unlikely that
the target plankton image library has exactly 1000 different
labeled classes. At a minimum, the last fully connected layer
needs to be modified to match the new label quantity. Since
at least one layer needs to be altered, most practitioners
choose to replace all fully connected layers (Fig. 4). In this
manner, the convolutional layers can be thought of as “feature
extractors” which generate input for the fully connected layes,
which can be thought of as the “classifier.” The least computa-
tionally intensive approach to fit this model to new data is to

Fig. 2. Image preprocessing steps. First, cropping is executed to remove scalebars and text. Next, the image is padded (if needed) so that the height
and width match (square grid of pixels). Next, each image is resized to a consistent 128 � 128 matrix.
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leave the convolutional layers alone and modify only the
weights in these final classification layers (e.g., Mitra
et al. 2019; Rodrigues et al. 2018). Mitra et al. (2019) modi-
fied and tuned the fully connected layer structure to classify
one of seven different classes of foraminifera. Rodrigues
et al. (2018) completely replaced the fully connected layers
with a support vector machine (SVM) to serve as the classi-
fier and then tuned the SVM to label their 20 classes of
plankton. Note that in these cases, the image libraries
totaled only 1437 and 5175 images, respectively. The more
computationally intensive approach is to train all network
layers (convolutional and fully connected) on the target
images (e.g., Orenstein and Beijbom 2017). In our transfer
learning experiments, we directly compared the efficacy of
retraining only the modified fully connected layers with
fine-tuning all network layers.

For our assessment of the efficacy of ancillary images, we
executed transfer learning twice per experiment (Fig. 5). For
the first iteration, we started with a pretrained ImageNet
model, replaced the last fully connected layer of the net-
work with one of the appropriate sizes for our number of
target classes, and tuned all layers while training on either
our “combined” or “aligned” dataset (Fig. 5a,b). After this
initial transfer, we conducted a second round of transfer
learning, again replacing the last layer of the network, then
training to converge on a single instrument’s images
(Fig. 5c,d). We used the same train validation test split
for individual images from the target instrument type, so
that the network was not getting an artificial boost
from having images in the test set of the second round of

transfer learning that had been used as training images in
the first round.

Performance metrics
We use unweighted Top-1 accuracy as our primary perfor-

mance metric. Top-1 means that even though the model may
predict non-zero probabilities for more than one class, only
the highest probability label is used in the accuracy computa-
tion (i.e., no partial credit). Unweighted means that all labels
are treated with equal weight, that is, the model does not dis-
proportionately benefit from identifying any particular class
over another. We report a number of epochs rather than time
elapsed because we were running multiple trials in parallel,
sometimes using the same GPUs, and always using the
same shared system memory and hard drive on a shared
system. Therefore, elapsed time varied depending on the sys-
tem load during execution. An example confusion matrix
illustrating class-specific accuracies may be seen in Supporting
Information Fig. S2.

Assessment
Is transfer learning beneficial?

We first consider whether transfer learning results in more
accurate classifications for a plankton image dataset when
compared with a same-sized network initialized with random
weights and trained only with the target plankton images.
For the three plankton datasets considered (Zooglider,
ZooScan, UVP5), a ResNet-152-sized model with random ini-
tialization trained de novo on plankton images provided

Fig. 3. Examples of (a, b) undesirable and (c) desired training and validation loss curves. (a) Erratic validation loss, which increases by an order of mag-
nitude from its lowest point. (b) Results after reducing the learning rate by an order of magnitude. With the network weights being adjusted more gradu-
ally, the validation loss declines but shows no evidence of reaching a minimum. (c) Smooth, continuous training loss, which indicates the weights are
being adjusted by an appropriate amount. Here, validation loss reaches a minimum at epoch 26. Since our stopping condition was 10 epochs without
improvement to the validation set loss, training concluded after 36 epochs.
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overall mean accuracy ranging from 94.25% to 91.85% to
84.28% for the three datasets, respectively (Table 1, top row).
Transfer learning from a ResNet-152 model pretrained using
ImageNet images, and tuning only the fully connected layers
on one of the types of plankton images (cf. Fig. 4), resulted
in considerably lower classification accuracy and often a
larger number of epochs (Table 1, second row). The best accu-
racy for all three types of plankton images was obtained
when using transfer learning from a ResNet-152 model pre-
trained using ImageNet images, but tuning all weights in all
layers of the network against the plankton images (Table 1).
In addition to the highest accuracy, tuning all layers resulted
in the smallest number of epochs required to obtain a stable
solution. Therefore, we conclude that transfer learning is
beneficial for both accuracy and computational resource
usage for plankton image classification.

Is there additional accuracy gain resulting from transfer
learning with ancillary images?

We then consider whether the use of ancillary images that
originate from different types of imaging devices, together
with multiple rounds of training, provides better results than
transfer learning from ImageNet alone. For the three plank-
ton datasets considered (Zooglider, ZooScan, UVP5), the extra
transfer learning step using the Combined dataset resulted in
overall mean accuracies of 95.14%, 92.87%, and 87.52%,
equating to gains of 0.59, 0.57, and 2.09 percentage points,
respectively (Table 2). Using the Aligned dataset for the extra
transfer learning round of training provided gains over
ImageNet alone, but less than the combined strategy, and
also required more training epochs. The first step of training
the network on the aligned dataset required an average of
47 epochs, while training the network on the combined

Fig. 4. (a) A convolutional neural network (CNN) with a 128 � 128-pixel copepod image being used for computation against five convolutional/pooling
layers (rectangular prisms) to the left of the dotted line, and three fully connected layers to the right of the dotted line. (b) A CNN in a transfer learning
experiment, where all network layers are loaded using weights derived from training against a different dataset, such as ImageNet (shown here as house-
hold objects/animals) before the three fully connected layers are replaced with slightly different-sized layers (in orange outline).
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dataset required an average of 40 epochs. The number of
epochs reported in Table 2 rows 2 and 3 is cumulative. For
example, the transfer learning step starting with the
40-epoch combined model and training on Zooglider images

required an average of 14 epochs, resulting in a cumulative
average of 54 epochs. Therefore, we conclude that the use of
ancillary images is beneficial for accuracy, but aligning the
datasets is not worth the extra effort.

Fig. 5. Transfer learning from ImageNet on our (a, c) combined and (b, d) aligned datasets. (a) Combined: each class from each instrument is treated
as its own class (e.g., Zooglider Chaetognath and Zooscan Chaetognath are assigned separate labels). (b) Aligned: each class is defined as a grouping of
related classes from all instruments (e.g., Zooglider Chaetognath and Zooscan Chaetognath are assigned the same label). (c, d) Each is then used as the
basis for a second transfer learning step using the image classes for a single instrument (here Zooglider).

Table 1. Training a CNN de novo on a ResNet-152 size model compared with transfer learning from a ResNet-152 model pretrained
using ImageNet images. For each of the three imaging devices (Zooglider, ZooScan, and UVP5), the best results (as % accuracy of
trained model [mean � 95%] and minimum number of epochs required) are obtained when performing transfer learning from
ImageNet and tuning the weights of all layers.

Experiment

Zooglider ZooScan UVP5

Accuracy (%) Epochs (N) Accuracy (%) Epochs (N) Accuracy (%) Epochs (N)

ResNet-152 de novo (random initialization) 94.25 � 0.05 68 91.85 � 0.41 51 84.28 � 0.42 102

Transfer from ImageNet (tuning fully

connected layers only)

86.11 � 1.76 90 80.55 � 0.67 80 67.24 � 0.30 108

Transfer from ImageNet (tuning all layers) 94.55 � 0.06 29 92.30 � 0.06 31 85.43 � 0.25 35

Table 2. Transfer learning from ImageNet (from Table 1, tuning all layers) compared with multistage transfer learning using the
ancillary images formulated as the aligned and combined datasets (see Fig. 4c,d). Both aligned and combined approaches provide gains
(as % accuracy of trained model [mean � 95%]); however, the gains are greater using the combined network for all three cases.

Experiment

Zooglider ZooScan UVP5

Accuracy (%) Epochs (N) Accuracy (%) Epochs (N) Accuracy (%) Epochs (N)

Transfer from ImageNet 94.55 � 0.06 29 92.30 � 0.06 26 85.45 � 0.34 37

Transfer from aligned 94.96 � 0.22 62 92.44 � 0.29 65 86.59 � 0.61 74

Transfer from combined 95.14 � 0.06 54 92.87 � 0.05 53 87.52 � 0.13 59
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Discussion
For all three of our plankton image datasets, we found that

retraining the entire network provided better results than train-
ing only the fully connected layers and also converged in fewer
epochs. One possible reason is that ImageNet consists of full-
color, full-scene heterogeneous images, while the transfer target
is millimeter-scale plankton images with more similar back-
grounds. Our assumption is that when the convolutional layer
weights are fixed, the ImagNet-only “feature extractor” pro-
duces a noisy signal regarding the components of the plankton
image, which hampers the overall network performance. This
noisy “feature extractor” then requires more epochs to converge
than the cleaner signal produced by the convolutional layers
when their weights are fine-tuned to be, more specifically, a
“plankton extractor.” We find it notable that in all three cases,
however, including ImageNet was advantageous.

While we only evaluated training all convolutional layers or
one, convolutional layers could be trained or fixed in many per-
mutations, such as fixing the first few layers and allowing the rest
to be retrained. Yosinski et al. (2014) provide a good summary of
the tradeoffs of each approach as well as a quantitative assessment
of different combinations of retraining vs. fixing varying numbers
of convolutional network layers. They found that splitting the
ImageNet dataset in half (each half with 645,000 images in
500 classes), using the full network (i.e., copying all layers of
weights), and then allowing all layers to be retrained yields the
best result. They also found that transfer learning while freezing
all of the convolutional layers is detrimental, yielding approxi-
mately 10% lower Top-1 accuracy than just using a randomized
network initialization. Our results agree well with this finding.

Yosinski et al. (2014) specifically found that transfer learning
from one half of ImageNet to the other provided a 2.1% boost
in Top-1 accuracy over the baseline. Since their Top-1 baseline
accuracy was around 62%, this boost is approximately a 6%
reduction in error. Although our absolute boost is smaller, our
baseline accuracies are higher, so their finding is similar to the
error reduction we found, which corresponds to 6%, 8%, and
7% for Zooglider, ZooScan, and UVP5, respectively (note that
the additional error reduction from including our ancillary
images is 12%, 8%, and 16%, respectively; Table 2). Yosinski
et al. concluded that “initializing with transferred features can
improve generalization performance even after substantial fine-
tuning on a new task, which could be a generally useful tech-
nique for improving deep neural network performance” and we
find their maxim extends to multiple rounds of transfer learn-
ing with ancillary plankton images.

Our UVP5 training set is approximately an order of magni-
tude smaller than either of our other two plankton datasets,
and it showed the largest benefit of transfer learning from
ImageNet, both in terms of accuracy gain (1 percentage point)
and improvement in training time (one third the number of
epochs required). The largest accuracy gain from multistage
transfer learning also occurred when with the UVP5 image set
(2 percentage points). This is a notable result because newly

developed validation datasets nearly always begin small. The
gain to Zooglider and ZooScan image classifications, while
smaller, can still be of appreciable benefit in scientific studies
and for specific plankton categories.

All three of our plankton image datasets are relatively unbal-
anced. If fully balanced, each class would be represented in
� 1.5–3% of the images. Each of our datasets has a single class,
detritus, which occurs disproportionately frequently, although
much less so that typically observed in field images, where the
frequency of occurrence is often over 90%. Plankton datasets
could be more balanced by doing one or more of the following:
augmenting rarer classes (e.g., Li et al. 2021), subsampling detri-
tus (e.g., Lee et al. 2016), or eliminating or combining rare clas-
ses. Johnson and Khoshgoftaar (2019) survey implementations of
all three, and find inconclusive results. For our plankton images,
we believe augmentation benefits all classes. Subsampling reduces
the overall number of training images, running counter to the
general finding of more images being better. Rather than com-
bining rarer classes, they often need to be preserved because they
can be of high scientific interest. We performed some initial
investigation into obtaining a more balanced dataset by decimat-
ing the amount of detritus. Based on a small sample size (not
shown) this approach seemed to have a detrimental effect on
accuracy for the detritus class but did not improve accuracy on
rare classes. Gonz�alez et al. (2017) argue that the dataset should
reflect the underlying population, with which we agree.

There are three additional practical reasons why we believe that
the unbalanced nature of our datasets is appropriate for our use
case. First, we are processing entire batches of images from our
instruments, so the proportions in our datasets are roughly similar
to the proportions at which we will continue to acquire data in
the future. Second, balancing the dataset is intended to assist with
performance on rare classes, but when we further analyzed the
models’ performance by examining confusion matrices, we found
that the model still shows some skill on rare classes and transfer
learning helps with accuracy on rare classes. Finally, our results
show that exposing the network to a larger number of images is
beneficial (even if originating from different sources), so it would
be inconsistent with that finding for us to discard images.

Recommendations
In summary, our recommendations for training a CNN to

classify plankton images begin with assembling as many anno-
tated plankton images as possible, even if images are from seem-
ingly disparate sources. We recommend not expending effort to
align the datasets, as simply combining them provided better
results. We recommend selecting a network of a size that has
achieved reasonably good results on similarly sized datasets in
other domains, then finding a pretrained model of that size on
ImageNet or a similar source. When performing transfer learning
on the combined dataset, allow all layers of the network to be
retrained, not merely the fully connected layers. Finally, conduct
a brief set of hyperparameter searches during a second round of
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transfer learning, again allowing all layers of the network to
retrain, during which the combined model is retrained on only
the target plankton images. These results should be genera-
lizeable to other types of image classification.
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Fig. S1:  (A) “Residual ‘Bottleneck’ Building Block,” which facilitates deeper networks while 10 

limiting the number of free parameters.  (B) An abbreviated view of the whole network (ResNet 11 

– 152).  ReLU = Rectified Linear Unit; Conv. = Convolution; fc = Fully Connected.  See text for 12 

explanation. Reproduced from He et al. (2016) (permission being requested). 13 
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 33 

        
 ZOOGLIDER   UVP5   ZOOSCAN 

 
Aligned Group Name N=58    N=42   N=30 

 
Acantharia Acantharia with Large Tests Acantharia  

 Acantharia Sun-like Acantharia-like  
 

Appendicularia Appendicularia Fritillaria without 
House 

Appendicularia Body Appendicularia 

 Appendicularia Fritillaria with House Appendicularia House 
 Appendicularia without House  
 Appendicularia with House  
 

Artifacts  Artifact Badfocus and Artifacts 
  Badfocus Artifact Bubbles 
  Bubble  
 

Chaetognatha Chaetognatha Chaetognatha Chaetognatha 
 

Cladocera Cladocera  Cladocera 
 

Cnidaria+Ctenophora Ctenophora Beroe Cnidaria + Ctenophora 
 Ctenophora Velamens Cnidaria 
 Hydromedusae Narcomedusae Ctenophora  
 Hydromedusae Trachymedusae Hydrozoa 
 Hydromedusae Trachymedusae Large Siphonophora 
 Siphonophora Solmaris  
 



4 
 

Collodaria Collodaria Colonial Collodaria  
 

Copepoda Copepoda Others Copepoda Copepoda Calanoida 
 Copepoda Oithona Copepoda-like Copepoda Harpacticoida 
 Eucalanidae Copepoda Oithona-like 
 Copepoda Others 
 Copepoda Poecilostomatoida 
  Copepoda Eucalanidae 
 

Crustacea Others Amphipoda Crustacea Crustacea Others 
  Amphipoda 
  

Detritus Detritus Detritus-Fiber Detritus 
 
 

Diatoms Diatoms High Concentrations Diatoms  
 Diatoms without Spines 
 Diatoms with Spines 
 

Doliolida + Salpida Doliolida + Salpida Doliolida Doliolida 
 Salpida Salpida 
 

Echinodermata Echinodermata Larvae Echinodermata Echinodermata Larvae  
 

Euphausiacea Euphausiacea Furcilia Eumalacostraca Euphausiacea + Decapoda 
 

Multiples  Double Sphere Multiples 
 

Nauplii + Calyptopes Nauplii + Calyptopes  Nauplii 
 

Ostracoda Ostracoda Ostracoda Ostracoda 
 



5 
 

Others  Others Others 
  

Polychaeta Polychaeta Annelida Polychaeta 
 Tomopteris 
 

Pteropoda Pteropoda  Pteropoda + Atlantidae 
 

Pyrosomata Pyrosomata Pyrosomata 
 

Rhizaria Phaeodarea Geodesic Unknown Phaeodaria Rhizaria  
 Phaeodarea Oblong Aulacantha 
 Phaeodarea Pin Cushions Aulosphaeridae 
 Phaeodarea Sphere with Small Spines Castanellidae 
 Phaeodarea with Branches Coelodendridae 
 Foraminifera Foraminifera 
 Rhizaria-like 
 

Spheres Spheres Black Spheres Dark  
 Spheres White 
 

Groups identified only for a single instrument 
 UNIQUE to ZOOGLIDER UNIQUE to UVP5 UNIQUE to ZOOSCAN 
 Ceratium Elongated Stick Bryozoa Larvae 
 Comets Feces Eggs 
 Dense Background Solitary Black Heteropoda 
 Dense Fibers 
 Disks 
 Edges 
 Fluffs Black 
 Overturns 
 Quasispheres 
 Spheres Dark Center 



6 
 

 Spindles 
 Star Spines 
 Tentacles 
 Tentacles with White Streaks 
 Threads 
 Translucent Clubs 
 Translucent Spheres 
 Unknown 
 V-shaped with Horizontal Line 
 Walnuts with Noses 
 Worms Others 

 34 

Table S1.  Listing of individual class names for each of three instruments (Zooglider, UVP5, Zooscan) and the corresponding aligned 35 

group names used for aligned trials.  Aligned trials used 50 total classes (shown in boldface): 23 multi-instrument groups plus 27 36 

unique classes identified by a single instrument.  Numbers beneath instrument name indicate the number of originally identified class 37 

names. 38 
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