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[1] We use hydrographic data from the California
Cooperative Oceanic Fisheries Investigations program to
explore the spatial and temporal variability of dissolved
oxygen (DO) in the southern California Current System
(CCS) over the period 1984–2006. Large declines in DO
(up to 2.1 mmol/kg/y) have been observed throughout the
domain, with the largest relative DO declines occurring
below the thermocline (mean decrease of 21% at 300 m).
Linear trends were significant (p < 0.05) at the majority of
stations down to 500 m. The hypoxic boundary (�60 mmol/kg)
has shoaled by up to 90 m within portions of the southern
CCS. The observed trends are consistent with advection of
low-DO waters into the region, as well as decreased vertical
oxygen transport following near-surface warming and
increased stratification. Expansion of the oxygen
minimum layer could lead to cascading effects on benthic
and pelagic ecosystems, including habitat compression and
community reorganization. Citation: Bograd, S. J., C. G.

Castro, E. Di Lorenzo, D. M. Palacios, H. Bailey, W. Gilly, and

F. P. Chavez (2008), Oxygen declines and the shoaling of the

hypoxic boundary in the California Current, Geophys. Res. Lett.,

35, L12607, doi:10.1029/2008GL034185.

1. Introduction

[2] Dissolved oxygen (DO) concentrations in the ocean
are dependent on a number of physical and biological
processes, including circulation, ventilation, air-sea ex-
change, production and respiration. Climate-driven changes
in these processes should therefore be reflected in oceanic
DO observations [Deutsch et al., 2005]. In particular,
models driven by increasing greenhouse gases predict a
decline in midwater oceanic DO as a result of enhanced
stratification and reduced ventilation [Sarmiento et al.,
1998; Keeling and Garcia, 2002]. These changes will have
a significant impact on the biological pump locally, while
changes in large-scale circulation will act to spread and
modify the oxygen signal. Spreading of low-oxygen waters

could also greatly impact many higher trophic level species,
depending on their oxic requirements. Although long time
series of DO are relatively scarce, the few regions where
they are available have seen a systematic decline [Emerson
et al., 2004; Whitney et al., 2007]. Additional regional
observations of long-term oxygen trends are critical to
evaluating the causes and implications of climate-driven
oxygen changes.
[3] Here we use historical hydrographic data from the

California Cooperative Oceanic Fisheries Investigations
(CalCOFI) program [Bograd et al., 2003] to explore the
spatial and temporal variability of DO in the California
Current, within and offshore of the Southern California
Bight (SCB). The SCB is affected by a confluence of water
masses from the subarctic Pacific, via the California Cur-
rent; from the northeastern tropical Pacific, via the Califor-
nia Undercurrent [Lynn and Simpson, 1987]; and from
lateral shifts in the boundary of the North Pacific Subtrop-
ical Gyre. The California Current is also a highly productive
region, and has undergone significant changes in lower
trophic production on seasonal [Mackas et al., 2006],
interannual [Bograd and Lynn, 2001], and decadal
[McGowan et al., 2003] time scales related to large-scale
climate forcing. The long historical time series of DO
observations within this eastern boundary current provide
a unique opportunity to investigate the relative role of
physical and biological processes in controlling oxygen

Figure 1. Map of the nominal CalCOFI survey grid. Line
and station numbers are shown.
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changes, particularly in the context of a warming ocean
[Keeling and Garcia, 2002].

2. Data and Methods

[4] The CalCOFI program has maintained quarterly sur-
veys on a geographically fixed grid offshore of southern

California since 1984 (Figure 1). Although CalCOFI sam-
pling has occurred since 1949, here we only consider the
post-1984 period, when implementation of a consistent
sampling protocol limited systematic errors [Scripps
Institution of Oceanography (SIO), 2007]. Routine Cal-
COFI station occupations (on 66 standard stations;

Figure 2. Linear trends in dissolved oxygen (mmol/kg/y) at six standard depths on the CalCOFI survey grid over the
period 1984–2006. Stations with significant linear regressions (p < 0.05) are marked black. DO time series (mmol/kg) at
stations with maximum linear trend (marked red on the maps) are shown in the insets for each standard depth.
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Figure 1) deploy a SeaBird CTD instrument with a 24-place
rosette, which is equipped with 24 10-L plastic (PVC) Niskin
bottles [SIO, 2007]. Epoxy-coated Nansen wire casts were
done prior to August 1987; 3-L PVC bottle wire casts were
done from September 1987 through April 1993. Casts
were made to �525-m depth, bottom depth permitting.
[5] DO samples were collected in calibrated 100 mL

iodine flasks and analyzed at sea by the modified Winkler
method [Carpenter, 1965], using the equipment and proce-
dure outlined by Anderson [1971]. Estimated precision is
0.02 ml/l (�0.9 mmol/kg; SIO [2007]). Units were con-
verted to mmol/kg based on in situ potential densities.
Further details of the standard sampling and analysis pro-
cedures, along with data and derived variables, can be found
in CalCOFI data reports or online (http://www.calcofi.org/
newhome/data/data.htm).
[6] We computed linear trends of DO at six standard

levels (50, 100, 200, 300, 400 and 500 m) at each station
over the period 1984–2006, and determined the correlation
coefficient and significance value of each fit. A linear trend
was considered significant for p-values less than 0.05.
Trends were computed for all 66 nominal stations, with
the average number of occupations ranging from 93 (500 m)
to 98 (50 m). From the linear fit, we determined the
magnitude of the oxygen trend at each standard depth and
station, as well as the percent change over the 23-year
period. We did not consider surface oxygen trends, as these
are impacted by high-frequency air-sea fluxes and can vary
widely [Garcia et al., 2005].

3. Dissolved Oxygen Trends

[7] Large declines in DO have been observed throughout
the CalCOFI domain and to at least 500 m depth (Figure 2,
Table 1). In the upper 100 m, the largest declines occurred
along the shelf and slope region, within the SCB, and at the
center of Line 77, where the core of the California Current
typically enters the domain [Bograd and Lynn, 2003].
Significant linear declines (p < 0.05) in DO were observed
at 27 (24) stations at 100 m (50 m), with the largest decline
at 50 m at Station 87.40 of �2.13 mmol/kg/y. The largest
DO declines occurred during summer (July–September) on
the shelf and within the SCB, and during autumn (October–
November) within the California Current core (not shown).
A higher number of stations had significant DO declines at
mid-depths (52 stations at 200 m, 47 at 300 m), with the
largest declines (�1.8 mmol/kg/y) on the offshore end of
Lines 90 and 93. DO trends at 400–500 m were smaller

(�0.1�0.7 mmol/kg/y), but nonetheless significant
(38 stations at 400 m, 33 at 500 m). These deep declines
occurred primarily in winter (January–March; not shown).
The DO trends are also reflected in apparent oxygen
utilization (AOU; Emerson et al. [2004]), which increased
by nearly 1 mmol/kg/y at 200 m (Table 1).
[8] Although the largest absolute DO declines occurred

in the upper water column, the largest relative declines
occurred at the deeper levels (Figure 3, Table 1). The
decrease in DO over the 23-year period was generally
<10% at 50–100 m, but ranged from 10–30% at 200–
300 m. The largest relative decline in mean DO at specific
depth was �21%, observed at 300 m (Table 1). Several
stations had DO declines greater than 30% (80.55, 87.35,
87.40, 87.45, 93.30 at 200 m; 87.35, 90.110, 93.30 at 300 m).
At these deeper levels, the highest percent change in DO
occurred at the southwest corner of the domain (�26% at
93.110), and at 500 mwithin the Santa Barbara Basin (�25%
at 82.47), where a recent decline in flushing rate has resulted
in anoxic bottom conditions (S. J. Bograd et al., manuscript in
preparation). Non-significant DO increases were observed at
a few offshore stations at 50–100 m.
[9] CalCOFI samples the upper portion of the oxygen

minimum layer (OML) in the southern California Current
[Kamykowski and Zentara, 1990], thus the observed water
column DO declines can be interpreted as a shoaling of the
OML. In particular, the level of the OML representing an
accepted threshold for hypoxia (� 60 mmol/kg; Diaz and
Rosenberg [1995]) has shoaled by an average of 41 m since
1984 (Figure 4). Within the inner SCB and near Point
Conception, the hypoxic boundary has shoaled by up to
90 m (at station 93.30). The shoaling of this layer is
significant at 37 of 46 stations (Figure 4).
[10] The DO declines observed off southern California

are of similar amplitude to the mid-depth DO declines
observed in several regions of the western [Ono et al.,
2001; Andreev and Watanabe, 2002; Watanabe et al., 2003;
Nakanowatari et al., 2007] and eastern [Emerson et al.,
2004; Whitney et al., 2007] subarctic North Pacific. In shelf
regions of the northern CCS, a higher frequency of upwell-
ing-driven nearshore hypoxia has also been observed in
recent years [Grantham et al., 2004; Chan et al., 2008].
Taken together, these observations point to a basin-wide
reduction in DO.

4. Causes of the Oxygen Decline

[11] Ocean general circulation models predict a global
reduction in mid-depth DO under global warming scenarios,
with most of this reduction attributed to enhanced near-
surface stratification [Sarmiento et al., 1998; Keeling and
Garcia, 2002]. While stratification can increase subsurface
oxygen by slowing the rate of the biological pump (i.e.,
reducing the upwelling of nutrients and subsequent photo-
synthesis and sinking of detritus), the models found that the
greater impact is a reduction in downward transport of
oxygen from well-oxygenated surface waters into the ocean
interior [Keeling and Garcia, 2002]. Thus, in this scenario,
the net impact of surface ocean warming and enhanced
stratification is a reduction in the efficiency, rather than the
rate, of the biological pump [Keeling and Garcia, 2002].
Recent studies have found a significant surface-intensified

Table 1. Overall Mean Change in DO in the CalCOFI Domain

Between 1984 and 2006a

Depth
(m)

DO2

(mmol/kg/y)
Percent

O2 Change
DAOU

(mmol/kg/y)
Peak
Station

50 �0.62 �6.4 0.72 87.40
100 �0.74 �9.4 0.87 93.30
200 �0.99 �18.3 0.96 90.110, 93.30
300 �0.81 �21.0 0.75 93.120, 90.110
400 �0.30 �14.6 0.25 93.110
500 �0.15 �14.1 0.10 93.110, 82.47
aStations with the largest changes are provided in the last column (first

DO trend magnitude, then percent change when two stations are listed).
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warming in the southern CCS, with a subsequent increase in
thermal stratification [Bograd and Lynn, 2003; Palacios et
al., 2004; Di Lorenzo et al., 2005]. The large DO declines
observed throughout the southern CCS, with the largest
relative changes occurring below the seasonal thermocline,
are consistent with a hypothesized reduction in vertical
oxygen transport.

[12] Advection of low-DO waters into the region may
also have contributed to the observed DO decline. The
spatial patterns of the DO trends off California suggest that
the region’s source waters are lower in DO content. At 50–
100 m, stations within the core of the California Current
(middle of Line 77) had among the largest absolute DO
declines (Figure 2). At 200–300 m, large declines were

Figure 3. Same as Figure 2, but percent change in DO over the period 1984–2006.
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seen within the Bight (Station 93.30; Figure 2, Table 1),
where source waters within the California Undercurrent
have seen a significant DO decline (Bograd et al., manu-
script in preparation). Recent observations have shown a
thickening of the OML in the equatorial Pacific, which
could lead to reduced oxygen supply to the CCS [Stramma
et al., 2008]. And at all depths below 200 m, offshore areas
affected by intrusions of Subtropical Gyre waters have seen
the largest absolute and relative DO declines (Figure 2,
Table 1). Experiments with ROMS model hindcasts for the
period 1950–2004 have been shown to capture the physi-
cal-biological dynamics in the California Current [Di
Lorenzo et al., 2008]. Further analysis of these experiments
(not shown) suggest that there has been increased advection
of Subtropical Waters (characterized by high temperature,
low DO) into the SCB since 1984.
[13] It is important to note that the observed DO declines

off California could have been forced locally, through
thermodynamic or biological processes, or remotely (e.g.,
a large-scale shoaling of the pycnocline and OML), and
subsequently advected to the region. We cannot distinguish
between locally-induced DO changes and the advection of
remotely-altered water masses, although both processes are
probably important. Quantification of the relative impact of
advection, stratification, and local changes in production/
respiration on the DO trends will require carefully planned
measurements as well as dedicated coupled physical-bio-
logical modeling experiments.

5. Ecological Implications of the Oxygen Decline

[14] Shoaling of the OML is expected to lead to signif-
icant and complex ecological changes in the CCS. These
include direct hypoxia-related effects on benthic organisms

where the OML contacts the continental margin [Levin,
2003] as well as on hypoxia-tolerant mesopelagic organ-
isms, including myctophid fishes and crustaceans, that
reside in its upper boundary region [Childress and Seibel,
1998]. These latter organisms impact epipelagic planktonic
communities, because they migrate to near-surface waters at
night to feed. A shoaling OML could also lead to a
compression of favorable habitat for pelagic or benthic
fishes and invertebrates [Prince and Goodyear, 2006], but
could represent an expansion of favorable habitat for
mesopelagic predators such as Humboldt squid (Dosidicus
gigas). During the last decade D. gigas has expanded its
range northward from Baja California to southeast Alaska
[Cosgrove, 2005; Gilly, 2005; Wing, 2006], and shoaling of
the OML in the northeastern Pacific during this period may
have been a relevant factor in this major ecological shift
[Gilly and Markaida, 2007].
[15] Perhaps the most severe potential ecological impact

of a shoaling OML would be the upwelling of hypoxic
water in such areas as off Point Conception. An exception-
ally large decrease in oxygen over the 50–100 m depth
range has occurred in this area (Figure 2) along with the
largest degree of shoaling (Figure 4). These trends could
lead to cascading effects on benthic and pelagic ecosystems,
including habitat compression [Chan et al., 2008], commu-
nity reorganization, and alterations in ocean acidification.
Further warming and increased stratification could lead to
substantially larger declines in oceanic DO in the CCS and
other coastal ecosystems.
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