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ABSTRACT OF THE DISSERTATION 
 

Marine microbiome structure, diversity, and function within a coastal upwelling region 

 

 

by 

 

Chase C. James 

 

Doctor of Philosophy in Oceanography 

University of California San Diego, 2022 

Andrew E. Allen, Co-Chair 

Andrew D. Barton, Co-Chair 
 

In the pelagic environment, microbes act as the base of the food web (photosynthetic 

autotrophs), recycle nutrients (microbial loop), and perform other crucial ecosystem processes 

and services (such as carbon sequestration). The relative scale of these different process is driven 

by changes in marine microbiome community structure, diversity, and function. Over the last 

two decades, meta-omic sampling has provided a pathway forward with which to observe the 
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community structure and function of the marine microbiome at a previously inaccessible 

resolution. However, with this increase in data complexity (large numbers of identified species 

and genes), it can be challenging to synthesize results across the multitude of observed 

taxonomic and functional groups. The goal of this thesis is to provide a general framework for 

understanding marine microbiome community responses (structure, diversity, and function) to 

environmental perturbations at previously unresolvable scales.  

The first study (Chapter 2) identifies the mechanisms that shape patterns in marine 

microbiome community structure and diversity across space and time within a coastal upwelling 

region. While traditional methods (such as microscopy and flow cytometry) have highlighted 

general patterns for broad taxonomic groups and or conspicuous taxa, this study represents a 

comprehensive examination of the mechanisms that shape all types of marine microbial groups, 

and in particular, highlights cryptic groups that could not be identified through more traditional 

means.  

The second study (Chapter 3) takes a more species-centric approach and asks, what is the 

rate of habitat specificity within marine microbes? Terrestrial systems often contain many 

species that are endemic to habitats or locales. Within the marine environment, habitats are 

constantly in motion, moving dynamically across space in time. The dynamic marine 

environment, coupled with the fast generation times of most microbes is thought by many to lead 

to less habitat specificity and more cosmopolitan (universally distributed) species. By identifying 

water mases (with internally consistent physical and chemical environments) we present a view 

of habitat specificity within the marine microbiome in a way that is comparable to terrestrial 

studies.  
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The third study (Chapter 4) shifts to look at regional metatranscriptomic data and asks 

what are the mechanisms that shape the function and distribution of active marine microbes. 

Metatranscriptomics provides a framework to identify which taxa and their associated functions 

are active within a community in response to changing environmental conditions. In targeting the 

active community, we identify how environmental conditions can lead to in-situ functional traits 

within the microbial community—a crucial next step to better understanding the links between 

environmental conditions and the local to global magnitude of key ecological functions such as 

primary productivity, nutrient recycling, and carbon sequestration in the pelagic ocean. 
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Chapter 1 - Introduction 
 

Marine primary productivity accounts from roughly half of global productivity and has 

been responsible for massive shifts in the geochemistry of the Earth for over 3 billion years 

(Field et al. 1998; Falkowski, Barber, and Smetacek 1998; Falkowski, Fenchel, and Delong 

2008). Within the pelagic ocean, these effects are driven by both photoautotrophs and their 

associated heterotrophic bacterial and archaeal communities (Azam et al. 1983; Fenchel 2008; 

Not et al. 2012). Particular groups, like diatoms are known to be key players in both the local and 

global magnitude of environmental processes like primary production and carbon sequestration 

(Goldman 1993; Sommer et al. 2002; Taylor et al. 2015; Abrantes et al. 2016). While groups like 

diatoms are both notable and clearly important in determining the magnitude of numerous 

ecological services, it is safe to say the biogeographies and functional traits of most marine 

microbes remain poorly understood. 

Until recently, methods of sampling the marine microbiome have been at a relatively 

coarse resolution. Traditional light microscopy relies on identifying physiological differences 

between cells which, while possible for conspicuous species can be challenging for the majority 

of single celled prokaryotes and eukaryotes. Other methods, such as chlorophyll-α measurements 

provide a broad image of the photoautotrophic community but do little to parse out variations in 

community structure and diversity (Foukal and Thomas 2014; Taylor et al. 2015). Meta-omic 

sampling of the marine environment has provided a revolutionary new lens with which to assess 

the immense diversity and dynamic ecological community structure and function present within 

the marine microbiome (Rusch et al. 2007; J. A. Fuhrman et al. 2008; Sunagawa et al. 2015; de 

Vargas et al. 2015; Needham and Fuhrman 2016; Villarino et al. 2018; Kolody et al. 2019).  
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Major marine environmental meta-omics studies up to this point have fallen into one of 

two sampling regimes: 1) global surveys (Rusch et al. 2007; de Vargas et al. 2015; Sunagawa et 

al. 2015; Villarino et al. 2018) or 2) local (single station) time series (Needham and Fuhrman 

2016; Gilbert et al. 2012). These studies have already provided an unprecedented step forward 

with which to observe the local-to-global patterns and processes that shape marine microbiomes 

(Jed A. Fuhrman, Cram, and Needham 2015; Ibarbalz et al. 2019), however, due to their focus on 

the extremes of sampling (a single global snapshot or a continuous time series in one location), 

they are restricted in their ecological interpretations.  

Within the marine environment, observed patterns and processes are often the result of 

combined spatio-temporal processes. Water masses, which have conserved properties such as 

temperature and salinity, and other properties such as nutrient concentrations which can be 

internally variable but relatively different between water masses, represent the available habitat 

of pelagic microbiomes (D’Ovidio et al. 2010; Bowman et al. 2018; Bograd, Schroeder, and 

Jacox 2019). However, unlike terrestrial systems, these habitats are in constant motion, shifting 

across space and time. Time series collected at a single point may appear to highlight a 

succession between different communities that, when viewed in a regional context may be the 

result of multiple distinct water parcels passing through a static point. Similarly, a global 

snapshot of the marine microbiome may capture one pattern, which can vary significantly given 

seasonal or interannual environmental processes (Haury, McGowan, and Wiebe 1978). For 

marine meta-omics sampling to take the next step, collection of samples must occur across 

suitable spatial and temporal scales to reasonably capture the processes that shape the 

community structure and function of the pelagic microbiome. 
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The California Cooperative Oceanic Fisheries Investigations (CalCOFI) represents one of 

the longest and most comprehensive long-term ecological monitoring programs within the 

marine environment (Mantyla, Venrick, and Hayward 1995; Hayward and Venrick 1998; Bograd 

and Lynn 2003; Hsieh et al. 2005). Over 70 years of sampling, the CalCOFI program has 

constantly evolved to generate the best available science towards improving our understanding of 

marine systems (Taylor et al. 2015; Powell and Ohman 2015; Rudnick et al. 2017). In 2014, the 

NOAA CalCOFI Ocean Genomics (NCOG) project began collecting quarterly metabarcoding 

and metatranscriptomic samples from across the region (winter, spring, summer, and fall). The 

data analyzed in this thesis represents seven years of NCOG sampling (2014-2020) across the 

highly variable region. Samples are collected from San Diego to Point Conception and from 

nearshore (0-10km) to offshore (roughly 400km) stations. This region includes wide 

environmental gradients ranging from meso/eutrophic conditions in the nearshore as the result of 

coastal upwelling (Checkley and Barth 2009), to oligotrophic conditions similar to the North 

Pacific subtropical gyre (Bograd, Schroeder, and Jacox 2019). Conditions within the region also 

vary inter-annually as the result of El Niño/La Niña cycles and other regional anomalies (Bograd 

and Lynn 2003; Kim et al. 2009; Zaba and Rudnick 2016; Lilly and Ohman 2018). Combined, 

this study represents a major milestone in marine environmental genomic sampling, combining 

both spatial and temporal sampling at an unprecedented scale.  

Chapters 2, 3, and 4 of this thesis show analyses of meta-omics samples across space and 

time to identify connections between environmental conditions and community structure, 

diversity, and function within the marine microbiome at a previously inaccessible resolution. 

Chapter 2 captures how regional conditions drive spatial and temporal patterns in community 

structure and diversity within the marine microbiome, identifying overall microbiome patterns as 
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well as relationships across various taxonomic groups, many of which would be impossible to 

assess through traditional means. Chapter 3 explores regional rates of endemism, 

cosmopolitanism, and habitat affinity within the region. Water masses, representative of marine 

microbial habitats, are identified in a way that is comparable to terrestrial systems and used to 

ask whether the high dispersal potential within the marine environment truly leads to 

cosmopolitan microbial distributions. Finally, Chapter 4 examines the regional 

metatranscriptome and asks: 1) which environmental gradients lead to the greatest niche 

partitioning amongst active microbial members within the region and 2) how does the functional 

composition of the microbial community change as a result of environmental conditions and 

community structure. Combined, these questions aim to identify the relationship between 

environmental conditions and the resulting ecological function within the marine microbiome—a 

crucial step towards understanding the processes that shape local to global magnitude of 

microbiome functions like primary productivity, nutrient recycling, and carbon sequestration. 

Overall, the data collected from NCOG, and the resulting analyses presented in these three 

chapters represent the potential for high-resolution ecological insight when meta-omics data is 

collected at appropriate spatial and temporal scales for the system in question, in this case the 

marine environment. 
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Chapter 2 - Influence of nutrient supply on plankton microbiome 

biodiversity and distribution in a coastal upwelling region 
 

Abstract 
 

The ecological and oceanographic processes that drive the response of pelagic ocean 

microbiomes to environmental changes remain poorly understood, particularly in coastal 

upwelling ecosystems. Here we show that seasonal and interannual variability in coastal 

upwelling predicts pelagic ocean microbiome diversity and community structure in the Southern 

California Current region. Ribosomal RNA gene sequencing, targeting prokaryotic and 

eukaryotic microbes, from samples collected seasonally during 2014-2020 indicate that nitracline 

depth is the most robust predictor of spatial microbial community structure and biodiversity in 

this region. Striking ecological changes occurred due to the transition from a warm anomaly 

during 2014-2016, characterized by intense stratification, to cooler conditions in 2017-2018, 

representative of more typical upwelling conditions, with photosynthetic eukaryotes, especially 

diatoms, changing most strongly. The regional slope of nitracline depth exerts strong control on 

the relative proportion of highly diverse offshore communities and low biodiversity, but highly 

productive nearshore communities. 

2.1 Introduction 

Coastal regions disproportionally contribute to marine global primary productivity and 

are thus important both ecologically and economically (Ryther 1969a). The Southern California 

Current (SCC) region encompasses spatial and temporal gradients ranging from the eutrophic 

nearshore to the oligotrophic offshore and provides ideal conditions for quantifying variation in 

microbial community structure and biodiversity in response to dynamics associated with 

physical, chemical, and biological gradients. 
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Spatial patterns in marine microbial communities are strongly shaped by dispersal, 

environmental selection (Follows et al. 2007; Edwards, Litchman, and Klausmeier 2013; 

Nemergut et al. 2013; Villarino et al. 2018), and, on longer timescales, evolution (Collins, Rost, 

and Rynearson 2014).  Global-scale surveys, such as Tara Oceans and Malaspina (Rusch et al. 

2007; de Vargas et al. 2015; Sunagawa et al. 2015; Villarino et al. 2018) suggest that 

temperature gradients most strongly shape marine microbial community structure and 

biodiversity (J. A. Fuhrman et al. 2008; Sunagawa et al. 2015; Righetti et al. 2019). Other 

environmental conditions, such as nutrient and light availability can also provide strong bottom-

up constraints in plankton communities (Cermeño et al. 2008; Barton et al. 2010) and are 

particularly important along coastal boundaries (Ryther 1969b). Within the SCC, coastal 

upwelling creates strong spatial gradients in temperature, nutrients, and light (Mantyla, Venrick, 

and Hayward 1995; Hayward and Venrick 1998) (Fig. 2.1S). Previous studies have shown that 

phytoplankton and zooplankton communities vary along these gradients (Venrick 2009; Powell 

and Ohman 2015b; Taylor et al. 2015). Furthermore, changes in seasonal nearshore upwelling 

are thought to drive distinct differences in phytoplankton and zooplankton assemblages across 

the region with variation occurring on seasonal, interannual (El Niño/La Niña), and multidecadal 

(Pacific Decadal Oscillation) time frames (Catlett et al. 2021; Lilly and Ohman 2018a). Within 

the microbial community however, the bulk of knowledge exists at a broad level of taxonomic 

and or functional groups, masking the effects of environmental perturbation within these broad 

groups and completely missing “cryptic” groups that cannot be identified with more traditional 

methods (such as bacterial and archaeal groups).   

Metabarcoding and metagenomic datasets provide a crucial next step with which to 

explore the patterns and processes of marine microbial communities at a far higher resolution 
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and in doing so, illuminate the key processes that structure the base of the marine food web. 

However, our current understanding of the high taxonomic resolution spatial patterns in 

microbial community structure and biodiversity are limited by the spatial and or temporal scale 

of sampling. Studies often focus on changes across space or time but rarely both (Richardson et 

al. 2006; Z. Wang et al. 2019; Y. Wang et al. 2020). Global datasets of marine microbiome data 

capture spatially extensive physical and ecological domains (de Vargas et al. 2015; Ibarbalz et al. 

2019; Villarino et al. 2018) and can identify the large environmental gradients such as 

temperature that appear to shape communities across large ocean basins. In contrast, 

investigations conducted at singular stations identify changes in the marine microbiome through 

time (Jed A. Fuhrman, Cram, and Needham 2015; Gilbert et al. 2012; Karl and Lukas 1996; 

Steinberg et al. 2015), exploring questions such as how succession within one group (such as 

phytoplankton) can drive changes in the overall community composition (Needham and 

Fuhrman 2016). However, the biotic and abiotic mechanisms that shape biodiversity and 

community composition patterns often remain uncertain (Nemergut et al. 2013). Combined 

spatial and temporal metagenomic and metabarcoding sampling of marine microbial 

communities is necessary to illuminate the gaps in spatially or temporally explicit microbiome 

studies, such as whether trends happening in one location occur elsewhere or whether observed 

spatial patterns are conserved or vary across time. 

Here we leverage 995 microbial community composition observations from quarterly 

CalCOFI surveys from 2014-2020, hereafter referred to as the NOAA CalCOFI Ocean Genomics 

(NCOG) data. The CalCOFI surveys spans from highly productive coastal upwelling waters to 

oligotrophic offshore waters with NCOG sampling at both the surface and deep chlorophyll 

maximum (DCM, Fig. 2.1). With these data, we identify spatial patterns in community structure 
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and biodiversity and highlight the environmental factors that correlate with these ecological 

parameters. Next, we explore how biodiversity and community structure responded to the 2014-

2016 warm anomaly period, followed by the return of cooler conditions in 2017-2018. 

Ecological changes as a result of this shift included harmful algal blooms (Zhu et al. 2017), 

possible poleward displacements of planktonic organisms (Mcclatchie et al. 2016), and the 

occurrence of novel fish species (Walker Jr et al. 2020). Within the SCC, it has been shown that 

mesoplankton communities tend to recover from other warming events (El Niño) within one year 

(Lilly and Ohman 2018b). However, beyond trends in total chlorophyll (Kahru, Jacox, and 

Ohman 2018), little is known about the response of microbial communities to the warm events in 

2014-2016. Conditions were also distinct in 2019-2020 when the region experienced a smaller 

spring pulse of upwelling (similar to 2014-2016) that persisted from spring to early fall. To better 

understand the patterns and processes that shape the pelagic ocean microbiome our analyses 

focus on five key functional groups based on their consequential roles in marine food webs and 

biogeochemical cycles (Azam et al. 1983; Calbet and Landry 2004; Buchan et al. 2014): 

heterotrophic bacteria, cyanobacteria, Archaea, and heterotrophic and photosynthetic eukaryotic 

protists. These functional groups comprise many smaller subgroups and amplicon sequence 

variants, or ASVs.  

Within all groups, we find strong cross-shore patterns in community structure and 

diversity that align with gradients in nutrient supply to the surface ocean. Across both seasonal 

and interannual timescales, we find that the intensity of regional nutrient supply can alter cross-

shore patterns in community structure varying the availability of habitat for highly productive 

nearshore communities. These results confirm previously observed patterns in well-studied 

taxonomic groups and suggest that similar environmental forcings shape the community 
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structure and diversity of cryptic groups that were not possible to resolve through traditional 

techniques. Our study represents a synthesis of how both temporal and spatial environmental 

gradients influence microbial community assembly in a coastal upwelling biome, providing 

fundamental knowledge about the structure and diversity at the base of a highly productive and 

economically valuable ecosystem. 

2.2 Results 

Across 995 samples, small subunit ribosomal RNA gene sequencing was performed on 

the V4-V5 region of the 16S rRNA gene for prokaryotes and the V9 region of the 18S rRNA 

gene for eukaryotes. Within these samples, we identified 19,204 16Sv4-5 ASVs and 34,454 

18Sv9 ASVs (Table 2.1S). Compared to the number of 18Sv9 ASVs observed in Tara Oceans 

(207,827) or Tara Polar (65,655) (de Vargas et al. 2015), the number of ASVs found in the 

Southern California Current region was lower (Fig. 2.1e). However, of the 18Sv9 ASVs 

identified within NCOG, 43% were not found in either Tara survey, highlighting both the 

undersampling of coastal ecosystems in global datasets and the added value of repeat monitoring 

through time towards uncovering novel regional diversity. A large proportion of the ASVs that 

were only found in NCOG are dinoflagellates, though many others belonged to a diverse set of 

taxonomic groups (Fig. 2.2S). 

2.2.1 Spatial gradients in community structure and diversity 
 

Nearshore to offshore gradients in community structure were an emergent property found 

in our self-organizing maps (SOMs; see Methods) and occurred within all five key functional 

groups: heterotrophic bacteria, cyanobacteria, Archaea, and heterotrophic and photosynthetic 

eukaryotic protists (Fig. 2.2). SOMs are a neural-network, data reduction technique which we 

used to convert the highly dimensional ASV tables (995 samples x 1,000s of ASVs) into a 2-
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dimensional map (Kohonen 1997). Both surface (10m) and deep chlorophyll maximum (DCM) 

samples were included in this analysis. Community clusters identified by SOMs have been 

subsequently labeled as “nearshore” or “offshore” based upon whether they were found more 

frequently in nearshore or offshore stations (weighted centroid). For the five key functional 

groups, these clusters aligned with waters of contrasting trophic status. On average, stations 

found in the northeast, nearshore corner of the sampling grid experienced mesotrophic (2.5-8 µg 

Chl-a L-1) and eutrophic conditions (> 8 µg Chl-a L-1) (Istvánovics 2009). This contrasted 

strongly with the oligotrophic conditions found in most of the stations further offshore, where 

chlorophyll was typically low (< 2.5 µg Chl-a L-1) (Fig. 2.1Si).  

Differences in community structure, as classified by SOM clusters, were driven by the 

differential relative abundance of ASVs within each of the five main groups. Within each of the 

five groups, there were finer-grained subgroups (e.g., SAR 11 clade and diatoms) that exhibited 

differences in mean relative abundance between SOM clusters. SAR 11 ASVs were abundant in 

both the nearshore and offshore clusters (Fig. 2.3Sa). However, what initially appeared to be a 

homogenous distribution of SAR 11 across the region was driven by three distinct SAR 11 Clade 

1a ASVs: one that dominated the nearshore and two that dominated the offshore (Supplementary 

Data 1). One previously identified relationship within cyanobacteria (Partensky, Blanchot, and 

Vaulot 1999) was observed where Procholoroccus ASVs had a higher relative abundance in the 

offshore and Synechococcus ASVs had a higher relative abundance in the nearshore (Fig. 2.3Sc). 

Within the eukaryotic phytoplankton, diatoms were abundant in the nearshore but not the 

offshore SOM cluster (Fig. 2.3Se). Dominant nearshore diatom genera/species included: 

Thalassiosira, Chaetoceros, and Pseudo-nitzchia. In contrast, dinoflagellates dominated the 

offshore SOM cluster (Fig. 2.3Se). Dominant offshore dinoflagellates included: Karlodinium 
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veneficum, Warnowia, and Prorocentrum. The ASVs that show the greatest differential 

abundance (> 99th percentile) between nearshore and offshore clusters are provided in 

Supplementary Data 1. 

The export rate of primary production (ef-ratio) also varied in relation to SOM clusters 

(Fig. 2.4S). Here ef-ratio is defined as new production/total production = export production/total 

production (Laws et al. 2000), where higher ef-ratio values indicate increased export of surface 

primary productivity to depth (important for carbon sequestration within the ocean). This was 

particularly evident in both the cyanobacteria and photosynthetic eukaryotic protists SOM 

clusters (Fig. 2.4Sc-d), which both showed strong and significant relationships between the 

frequency with which their nearshore cluster was observed at a given station and the mean ef-

ratio at that station over the seven years. The strong link between ef-ratio and proportion of 

nearshore and offshore communities highlights the connection between community structure and 

function, in this case the export of carbon from the ocean surface. 

SOMs were also generated for eleven more finely resolved taxonomic groups (for a list of all 

groups see Table 2.1S). Seven out of the eleven groups showed a similar nearshore-offshore 

gradient in community structure, while other groups, such as Prochlorococcus and haptophytes 

showed little to no spatial patterns in community structure (Fig. 2.5S).  

We extended the SOM analysis to examine the relationship between the frequency of observed 

community type (nearshore/offshore) against environmental covariates, using both the mean and 

coefficient of variation (coeff. var.) at each station across all seven years. In doing so, we 

identified the conditions across all seven years that best align with spatial patterns in the 

occurrence of nearshore or offshore microbial communities within the region. Coefficients of 

variation were included in this analysis as environmental variability is thought to promote 
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distinct life strategies and drive population dynamics in phytoplankton species (Grover 1990; 

Benincá et al. 2008). Nitracline depth (see Methods for definition) was a significant predictor of 

the nearshore-offshore gradient in community structure (lowest Akaike information criterion, 

AIC, Fig. 2.3), with the mean or coefficient of variation of nitracline depth being the most 

significant environmental predictor of community structure for eight out of the eleven taxonomic 

groups (Fig. 2.6S). Nitracline depth varies as the result of both abiotic and biotic factors, with 

upwelling bringing nutrients to the surface waters leading to a shallower nitracline and biological 

drawdown of nitrate within the surface ocean leading to a deepening of the nitracline. As such, 

nitracline depth is thought to be a critical indicator of nutrient supply into the surface ocean 

(Williams and Follows 2011) and can be seen as both a potential driver as well as a potential 

response to community changes. Mean chlorophyll a concentrations were also a significant 

predictor of the nearshore-offshore gradient in community structure (Fig. 2.3). However, this 

variable may not signify a mechanistic link, but instead reflect the ecosystem state, particularly 

for groups that comprise our chlorophyll a measurements (Lindegren et al. 2016).  

Mean alpha (α) diversity across all ASVs, in this case calculated as the mean per station 

per cruise diversity, generally increased away from shore (Fig. 2.4a,b). For this analysis, 

Shannon index was used as the primary measure of diversity. The lowest mean alpha diversity 

was present in the northeast, nearshore subregion of the SCC and the highest mean alpha 

diversity was seen in the furthest offshore stations in the south. Across both surface and DCM 

samples (separately) we observed the same pattern of low diversity in the nearshore and high 

diversity offshore (Fig. 2.7S). Overall diversity was higher in the DCM compared to the surface, 

this was also true for archaea, bacteria, and cyanobacteria (Fig. 2.7Sa-d). In contrast, autotrophic 

and eukaryotic protist tended to have similar levels of diversity in both the surface and DCM 
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samples (Fig. 2.7Se-f). Similar increases in mean alpha diversity away from shore were found 

among most taxonomic subgroups (e.g., Prochlorococcus, SAR 11 Clade, and Syndiniales; Fig. 

2.8S). However, the direction of the gradient was reversed (high diversity nearshore, low 

diversity offshore) for diatoms (Fig. 2.4d). Gamma diversity (ɣ; total diversity at a station over 

all time points) also increased away from shore (Fig. 2.4b), but certain groups were distinct from 

the pattern across all ASVs. For instance, within diatoms, mean alpha diversity was greatest 

nearshore, but there was little to no gradient in gamma diversity (Fig. 2.4d).  

Nitracline depth (mean/coeff. var.) was the best predictor of spatial gradients in mean 

alpha diversity for all major groups except Archaea (Fig. 2.4e) and four out of the eleven 

taxonomic subgroups (Fig. 2.9S). Three of the eleven subgroups were better predicted by the 

coefficient of variation in nitrate concentrations (Fig. 2.9S). For most groups, the relationship 

between nitracline depth and mean alpha diversity was positive, while, for certain groups such as 

diatoms, Synechococcus, and Flavobacteriales, this relationship was negative.  

Previous studies have shown that diversity-productivity relationships can be unimodal 

(Vallina et al. 2014), or vary with scale (Chase and Leibold 2002). For the subset of our data 

where primary-productivity measurements are available (Supplementary Data 2), we found a 

wide variety of productivity-diversity relationships (Fig. 2.10S). Positive productivity-diversity 

relationships occurred within flavobacteria and diatoms and negative relationships occurred for 

the SAR 11 clades, Prochlorococcus, and Syndiniales. In some groups, the productivity-diversity 

relationship appeared consistent across all time periods (e.g. Prochlorococcus, SAR 11, 

Syndiniales), while others appeared to vary depending of the time period (Haptophytes, 

Chlorophytes, Dinoflagellates, Fig. 2.10S). 

2.2.2 Temporal gradients in community structure and diversity 
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To better understand how community structure and diversity might be affected by 

temporal environmental variation, we first looked at how the environment changed over seasonal 

to interannual time scales in this region. Given the primary importance of nutrient supply in 

shaping spatial ecological gradients (Figs. 3-4), we focused on how coastal upwelling and 

nutrient availability in the surface ocean was affected across the seven-year study period.  

We examined three local indices of upwelling presented by Jacox et al. (2018): Coastal 

Upwelling Transport Index (CUTI), Biologically Effective Upwelling Transport Index (BEUTI), 

and Regionally Available Nitrate (Fig. 2.5a-c). In the SCC, physical upwelling (CUTI) and 

regionally available nitrate tend to be the lowest in late fall through winter and highest in the 

spring to early summer (Fig. 2.5 a,c). While physical upwelling (CUTI) was similar throughout 

the years of study (Fig. 2.5a), the biologically effective upwelling (BEUTI) was much lower 

during the first three years which were affected by the 2014-2015 warm anomaly and El Niño 

(Fig. 2.5b). Upwelling in 2019-2020 was unique compared to the other years, characterized by a 

spring period with relatively low CUTI and BEUTI but an overall expanded upwelling season 

(stronger upwelling into the summer and fall relative to all other years). During the anomalously 

warm years 2014-2016, nitrate concentrations were relatively low in the northeast, nearshore 

subregion of the Southern California Current region (Fig. 2.5d-f). In 2014-2016, phosphate and 

silicate concentrations were also lower close to the coast in the northeast subregion, while 

concentrations of these nutrients were higher everywhere else (Fig. 2.11S). Mixed layer and 

nitracline depths across the region were similar between nearshore and offshore stations from 

2014-2016—likely the result of intense stratification within the surface ocean (Zaba and Rudnick 

2016) (Fig. 2.11S).  
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Interannual changes in microbial community composition across contrasting warm and 

cool periods were pronounced, with the largest changes occurring within eukaryotic groups (Fig. 

2.5g-k). We compared the warm period in 2014-2016 with the relatively cool period that 

followed in 2017-2018, as these two periods had strongly contrasting environmental conditions. 

The conditions in 2019-2020, which we discuss below, were intermediate between the warm and 

cool phases—the offshore experienced a warm anomaly similar to 2014-2015 (Weber et al. 

2021), while the nearshore experienced an expanded, though moderate, upwelling season. We 

calculated the average community similarity (Bray-Curtis) between surface samples across the 

warm and cool phases for each station across our five major groups (Fig. 2.5g-k). Archaea, 

photosynthetic eukaryotic protists, and heterotrophic eukaryotic protists, showed large shifts in 

community structure between the warm and cool phases (low Bray-Curtis Similarity, Fig. 

2.5g,j,k). Cyanobacterial communities appeared to change less between the two phases than the 

other groups, particularly in the offshore (Fig. 2.5i). Changes within the samples collected at the 

deep chlorophyll maximum (DCM) between the warm and cool phases were less pronounced, 

though photosynthetic eukaryotic protist communities within the DCM were quite different 

between the two phases (Fig. 2.12S). Overall, eukaryotic groups exhibited far greater region-

wide shifts in community structure between the warm and cool phases (Fig. 2.13Sf-k). 

Prokaryotes, such as those ASVs assigned to the SAR 11 clade, had little to no change in 

community composition between the two phases (Fig. 2.13Sa-e). Groups like Prochlorococcus 

showed almost no change in community composition in the offshore between the two phases, 

while simultaneously exhibiting drastic shifts in community structure in the nearshore 

environment (Fig. 2.13Sa).  
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The 2014-2016 warm anomaly, which was localized to the upper 50 meters of the water 

column (Zaba and Rudnick 2016), had a clear influence on the effectiveness of physical 

upwelling to deliver nutrients to the surface ocean relative to 2017-2018 (Closset et al. 2021) 

(Fig. 2.5, and Fig. 2.11S). This intense stratification may have shaped where, when, and how 

communities changed across the region. To test the hypothesis that temporal changes to regional 

stratification drove microbial community structure, we examined the relationship between the 

regional, cross-shore slope of nitracline depth and the proportion of samples that were identified 

as the nearshore (per taxonomic group via our SOMs) on a cruise-by-cruise basis. The regional 

slope of nitracline depth was calculated for each cruise by first flattening the sampling grid into a 

two-dimensional plane where the x-axis was distance to the coast (km), and the y-axis was the 

nitracline depth (m) for each station. A regional slope of the nitracline depth for each cruise was 

then calculated as the best linear fit through the points in this two-dimensional plane (Fig. 

2.14S). Under normal upwelling conditions we expect the nitracline depth to be shallowest in the 

nearshore, coastal upwelling region, and deepest in the offshore, leading to a steep regional slope 

in the nitracline depth. Conversely, intense stratification of the surface ocean would promote a 

deeper nitracline depth in the nearshore and a shallower nitracline depth in the offshore, 

flattening the regional slope of nitracline depth.  

We found that during the warm and cool periods, when the regional slope of nitracline 

depth was steeper (shallow in the nearshore and deep in the offshore), a higher proportion of 

samples were identified as the nearshore community type for both photosynthetic groups 

(cyanobacteria and photosynthetic eukaryotes) as well as bacteria. Conversely, when the regional 

slope of the nitracline depth was relatively flat, fewer samples were identified as nearshore (Fig. 

2.6). Across all years (2014-2020), cruises in the spring and summer tend to have the steepest 
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regional nitracline slopes (for an illustrative example see Fig. 2.6b). Fall and winter tended to 

have shallower regional slopes in nitracline depth and also tended to have a lower proportion of 

observed nearshore communities (for an illustrative example see Fig. 2.6a). Winter 2019 

appeared to be quite distinct for this dataset, as the cruise data suggested that the region was 

experiencing the flattest regional slope in nitracline depth observed in all seven years, yet the 

proportion of nearshore communities was relatively high. However, sampling during this cruise 

was abnormally compressed (8-days across fewer stations) due to ship malfunction, making 

interpretation difficult. 

Most groups tended to have a seasonal pattern in the relative dominance of 

nearshore/offshore communities (Fig. 2.15S). SAR 11 nearshore communities were more 

common in the spring and summer (Flavobacteriales, Rhodobacterales, metazoans showed 

similar trends). Other groups such as Prochlorococcus and diatoms showed peaks in the winter, 

though the presence of an increased nearshore diatom community tended to last through the 

spring as well (Fig. 2.15S). While seasonal patterns in community structure were common across 

all groups, the pattern was not always consistent across all years. 

The 2019-2020 time period was characterized by two major anomalies, a warm, stratified layer 

of surface water (similar to 2014-2016) but localized to the offshore (Weber et al. 2021), and 

prolonged biologically effective upwelling from spring through early fall (Fig. 2.5b). These 

events combined to decrease the interseasonal variability of nutrient supply to the surface ocean 

within the SCC from 2019-2020. As a result, relationships between the nitracline slope and 

spatial extent of the nearshore communities were uncoupled in 2019-2020 (Fig. 2.6). This was 

particularly evident in diatoms and dinoflagellates, two groups that respond strongly to changes 
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in nutrient supply (Cermeño et al. 2008; Kenitz et al. 2020), where seasonal patterns in the 

relative abundance of nearshore communities disappeared in 2019-2020 (Fig. 2.15S). 

Temporal changes to mean alpha diversity occurred across both seasonal and interannual 

time scales. In contrast with the findings related to community structure, mean alpha diversity 

tended to be highest when the regional slope of nitracline depth was most flat, although, certain 

groups such as diatoms exhibited the reverse pattern though the relationship was not significant 

(2017-2018, Fig. 2.16S). Like community structure, relationships between diversity and regional 

nitracline slope were far more frequent in the earlier years of sampling (2014-2018), when 

interseasonal variability in the regional nutrient supply was higher (Fig. 2.5b). Metazoans were 

the only group that showed a relationship between the regional nitracline slope and mean alpha 

diversity in 2019-2020 (Fig. 2.16Sk). 

2.3 Discussion 
 

The depth of the nitracline was a robust predictor of community structure in the SCC 

(Fig. 2.3b). In this region, the nitracline tends to be deeper in offshore waters and shallower in 

nearshore waters (Mullin 1998), creating strongly contrasting habitats. The depth of the 

nitracline is shaped to a great degree by the strength of upwelling; when upwelling is stronger, 

the nitracline is closer to the surface, and the supply of nutrients to the surface is higher, if not 

the actual concentration of nutrients in the surface (Mullin 1998; Rykaczewski and Checkley 

2007). Nitrate limitation, as the result of variable nutrient supply, can exhibit a strong selective 

pressure on marine microbial communities, forcing organisms into metabolic tradeoffs in order 

to survive (Grzymski and Dussaq 2012). Thus, the strongly contrasting environments in the 

nearshore and offshore within the SCC select for very different communities. Because nutrients 

are rapidly consumed by microbes in the ocean surface, the concentrations of nutrients measured 
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represent the residual not consumed by microbes, and are in many cases not as good of a 

predictor of community composition when compared to the nitracline depth (Hayward and 

Venrick 1998; Kenitz et al. 2020).  

Nitracline depth was also more strongly correlated with community structure changes 

than temperature (Fig. 2.3b, Fig. 2.6S). On local to global scales, nutrient availability strongly 

shapes primary productivity and community structure (Margalef 1978; Falkowski and Oliver 

2007; Taylor et al. 2015; Mende et al. 2017; Phoma and Makhalanyane 2021). Yet in a range of 

recent studies, temperature has been shown to be a key correlate of global patterns of bacterial (J. 

A. Fuhrman et al. 2008; Sunagawa et al. 2015; Ibarbalz et al. 2019) (16S) and protistan (Ibarbalz 

et al. 2019) (18S) biodiversity and community structure as well as changes in the functional 

community composition of marine bacteria (Sunagawa et al. 2015). Surprisingly, these studies 

found little to no relationship between biodiversity, community structure, functional community 

composition and nitracline depth. A possible explanation is that global surveys of microbial 

communities have, thus far, focused their sampling effort within the open ocean, failing to 

capture strong coastal-open ocean physical and ecological gradients. The relative importance of 

environmental factors in shaping marine microbial community structure is likely to vary between 

regions (Z. Wang et al. 2019) and across different spatial scales (local to global). This is likely 

the result of both the overall selective pressure of a variable and its relative range within the 

observable spatiotemporal scope of the study. Yet here within the SCC, large spatial gradients in 

nutrient availability, compared with temperature variability, occur with both seasonal and 

interannual variability, providing a testing ground to explore the selective pressure of nutrient 

availability in a coastal upwelling region.  
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Previous studies have highlighted the strong cross-shore gradients in community structure 

in the SCC, primarily through the use of general indices (Kahru and Mitchell 2001; Taylor et al. 

2015) (such as the ratio of autotrophic carbon to chlorophyll a) or select groups of bacteria 

(Taylor et al. 2015), phytoplankton (Hayward and Venrick 1998; Venrick 2009; Taylor et al. 

2015; Barth et al. 2020; Catlett et al. 2021) and zooplankton (Powell and Ohman 2015a). The 

results generated from this study support and expand upon many of the findings from these 

previous studies. Taylor et al. 2015 (Taylor et al. 2015) found that the ratio of autotrophic carbon 

(AC) to Chl-a increased with increasing nitracline depth within the SCC and that the relatively 

low ratios of AC:Chl-a near the coast were a result of the dominant nearshore diatom 

communities which have low AC: Chl-a ratios. In turn, these diatom-dominated communities can 

lead to an “enhanced” microbial loop, with higher flows and heterotrophic bacteria standing 

stock biomass (Taylor and Landry 2018). We find similar evidence that gradients in nitracline 

depth structure community composition in both phytoplankton and bacterial groups. Given the 

level of taxonomic resolution provided by ASVs, we were able to expand upon these prior 

studies to identify that these gradients also shape the taxonomic composition within groups (such 

as diatoms, dinoflagellates, rhodobacteria, and SAR 11 clade Fig. 2.5S), highlighting spatio-

temporal variability in community structure at a previously inaccessible resolution. These results 

suggest that selection across gradients such as nutrient limitation can drive not only dominance 

between taxonomic groups with contrasting ecological niches and functions (diatoms vs 

cyanobacteria) but also drive selection within groups that are traditionally “lumped” into singular 

functional and or taxonomic groups (Fig. 2.5S, Fig. 2.8S). Furthermore, ASVs allow for the 

examination of “cryptic” groups that cannot be identified through traditional approaches 

(microscopy, flow cytometry, chl-a) such as various heterotrophic bacteria (rhodobacteria, 
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flavobacteria, SAR 11 clade) and Archaea. We found that groups such as SAR 11, which are 

often thought to have cosmopolitan distributions, are comprised of distinct strains with varying 

oligotrophic to eutrophic preferences. The patterns and processes identified within this study 

confirm the relationship between nutrient availability microbial community structure in the SCC 

while further highlighting that these selective processes not only drive preferences between large 

functional and taxonomic groups, but also within groups. 

Across most groups, mean alpha diversity was lower in the nearshore and higher offshore 

(Fig. 2.4e). The nearshore environment had relatively high nutrient concentrations and 

temporally variable habitats (Fig. 2.1S), factors which favor the competitive dominance of fast-

growing, opportunistic phytoplankton such as diatoms at the expense of other species, and likely 

leading to lower diversity nearshore (Dutkiewicz, Follows, and Bragg 2009; Barton et al. 2010; 

Vallina et al. 2014). In some cases, the coefficient of variation of nitrate was a good predictor of 

spatial biodiversity patterns (Fig. 2.9S), highlighting that the nearshore environment, with its 

high variability and episodic pulses of nutrients, may exhibit a strong selective pressure for 

organisms adapted to this variable environment. An additional explanation could be that the 

offshore subregion of the CalCOFI grid represents a mixing zone, or ecotone, combining 

subtropical and coastal communities with consequently relatively high diversity (Barton et al. 

2010; D’Ovidio et al. 2010; Clayton et al. 2013; Moisan et al. 2017). The CalCOFI grid does not, 

however, include stations spanning deep into the subtropical North Pacific, so we cannot assess 

this possibility. 

Diatoms presented a notable exception to the observed diversity patterns, as they showed 

an opposite trend in mean alpha diversity, with higher mean alpha diversity in the more 

productive nearshore region (Fig. 2.4c). While diatoms are found in subtropical waters globally, 
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they are generally more abundant in regions and seasons with higher nutrient availability 

(Margalef 1978), and this may underpin the greater alpha diversity observed within this coastal 

zone. In contrast, we find no evidence of a nearshore-offshore gradient in diatom gamma 

diversity (Fig. 2.4d). This suggests that over the seven years, diatom community turnover was 

higher in the offshore subregion of the SCC. One possible explanation for the high overturn in 

diatoms but not other microbial assemblages stems from the intermittent presence of eddies and 

fronts in offshore waters that mediate vertical motions and nutrient supply (Combes et al. 2013; 

Chenillat et al. 2013; Chenillat, Franks, and Combes 2016). Because diatoms as a group are 

faster-growing than other microbial groups (Edwards et al. 2012), their populations respond 

faster to episodic pulses in nutrients than other groups. The intermittent passage of eddies and 

fronts in offshore waters may therefore drive an overturn of diatom ASVS while not creating a 

similar overturn in other groups.   

Variation in the intensity of coastal upwelling across seasonal to interannual time periods 

controlled the relative dominance of offshore vs. nearshore community types and diversity 

observed within the region. During periods of strong upwelling, coastal communities were more 

dominant and mean alpha diversity was lower (Fig. 2.6, Fig. 2.15S, Fig. 2.16S). Conversely, 

when the regional, cross-shore slope in nitracline depth was flat, most samples resembled the 

“offshore” community type in both structure and diversity. The 2014-2015 warm anomaly and 

subsequent 2015-2016 El Niño drastically reduced the extent of coastal upwelling and nutrient 

availability in surface waters within the region, converting nearly all available habitat into an 

environment that favored offshore communities. From 2014-2016, within fall and winter cruises, 

the majority of samples were identified as resembling an “offshore” ecotype, suggesting a drastic 

departure from the typical ecological gradients that exist in the region (Fig. 2.6). In particular, 
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the eukaryotic assemblage changed substantially between the warm and cool phases (Fig. 2.5j,k). 

Many of the taxonomic groups showed region-wide shifts in community composition between 

the two phases (for example: diatoms and Syndiniales, Fig. 2.13S). 2019-2020 brought the return 

of the marine heatwave, though unlike 2014-2016, its effects were primarily observed offshore 

(Weber et al. 2021). BEUTI measurements from the region suggest that spring upwelling for 

2019-2020 had been closer to 2014-2016, however, this upwelling persisted to some degree 

through summer and early fall (Fig. 2.5b). This may have led to our observation that for certain 

groups such as diatoms and dinoflagellates, seasonal shifts in community structure were less 

pronounced (Fig. 2.15S). These temporal changes in the marine microbial community have 

implications for higher trophic levels. For example, anchovies tend to predominate in more 

nutrient rich coastal waters while sardines are more abundant in oligotrophic conditions offshore 

(Rykaczewski and Checkley 2007). Consistent with this paradigm, following the 2014-2016 

warm anomaly, anchovy egg counts in Southern California reached high levels in 2017 and 2018 

that had not been seen since the mid 1990s (Wells et al. 2017; Thompson et al. 2018).  

While previous metabarcoding studies have explored how community structure and 

diversity changes over time at one location (Gilbert et al. 2012; Jed A. Fuhrman, Cram, and 

Needham 2015; Ward et al. 2017), here we provide a comprehensive metabarcoding exploration 

of seasonal to interannual community variation at the regional scale. The unique lens afforded by 

this dataset suggests that community variability can occur across space and time, though their 

relative influence may vary depending on the spatial extent of temporal perturbations. We find 

that the depth of the nitracline is a robust predictor of both microbial community structure and 

biodiversity and that globally important variables such as temperature are far less predictive in 

the Southern California Current. Furthermore, we found that changes in community composition 



24 

 

can be found not only between large functional groups, but also within groups that are often 

considered functionally similar. Metabarcoding also allows for the investigation of “cryptic” 

groups whose patterns and processes have previously been inaccessible. Across the seven years 

we show that changes to the spatial patterns of community structure and biodiversity coincide 

with seasonal and interannual changes to the steepness of cross-shore physical gradients 

(nitracline depth). Physical differences within the region between the warm (2014-2016) and 

cool (2017-2018) phases brought drastic changes in community composition, whereas reductions 

in the interseasonal variability of nutrient supply from 2019-2020 led to a more “static” 

community structure across the region. Combined, these results highlight the clear benefits of 

genomic surveys that sample across both space and time. Provided that there is adequate support 

and infrastructure to do so, future studies should be conducted in a similar manner if we are to 

better understand the linkages between the physical environment and microbial community 

structure and biodiversity. 

2.4 Methods 
 

2.4.1 Study location and sample collection 

 
The Southern California Current ecoregion is a component of one of the world’s most 

productive eastern boundary currents. Productivity in the region is largely driven by seasonal 

upwelling—triggering the dominance of bloom forming eukaryotic phytoplankton (like diatoms) 

in the spring that serve as the base of a food web supporting a diverse ecosystem and many 

economically important fisheries (Hayward and Venrick 1998; Venrick 2009; Bograd, 

Schroeder, and Jacox 2019). 

Molecular and environmental data were collected on quarterly CalCOFI cruises (winter, 

spring, summer, and fall). At each station, seawater was collected near the surface (10 m) and the 
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depth of the chlorophyll maximum, which varies in time and space. The chlorophyll maximum is 

identified on the downcast of the CTD and subsequently sampled on the upcast of the CTD. If 

these two depths coincided with one another then only one seawater sample was collected.  

Two types of stations were sampled during this study: cardinal stations and productivity stations. 

Cardinal stations were sampled every cruise and occur on lines 80 (stations 55.0, 70.0, 80.0, 

100.0), 81.8 (station 46.9) and 90 (stations 37.0, 53.0, 70.0, 90.0, 120.0) (Fig. 2.1a). Productivity 

stations, which measure 14C primary production at approximately local noon were also sampled. 

The locations of productivity stations vary from cruise to cruise depending on where the ship is 

located each day at approximately local noon. Productivity stations can overlap with cardinal 

stations during a given cruise if the ship is located at a cardinal station at local noon.  

Both molecular and environmental data were collected from a CTD rosette. Temperature 

and salinity were measured with a Seabird 911+ CTD. CTD salinity is validated against bottle 

samples which were analyzed via a Guildline Portasal Salinometer model 8410A. Nitrate, 

phosphate and silicate measurements were analyzed with a QuAAtro continuous segmented flow 

autoanalyzer (SEAL Analytical). For chlorophyll a, seawater was filtered onto GF/F filters and 

then measured with the acidification method. Full methods for environmental data collection and 

analysis can be found at: https://calcofi.org/references/methods. At primary productivity stations, 

14C half-day incubations were started at local noon and measured as mg of carbon per m3 per 

half day. Integrated primary production in the euphotic zone was then calculated as the average 

primary production across six light levels. For a complete procedural walkthrough of 

productivity incubations see: https://calcofi.org/references/methods/25-primary-

productivity.html. For this study, primary productivity measurements were doubled to estimate 

the total production per full light day. The nitracline depth is a derived variable and is calculated 
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as the depth where nitrate concentrations exceed or reach 1 μM via a linear interpolation based 

on discrete depth measurements. Metadata for all samples can be found in Table 2.2S. 

2.4.2 DNA collection and extraction 
 

Approximately 0.5 – 2 L of seawater was filtered through a 0.22 µm Sterivex-GP filter 

unit (MilliporeSigma, Burlignton, MA, USA) for all DNA samples. Samples were immediately 

sealed with a sterile luer-lock plug and hematocrit sealant, wrapped in aluminum foil, and flash 

frozen in liquid nitrogen. DNA was extracted with the NucleoMag Plant Kit for DNA 

purification (Macherey-Nagel, Düren, Germany) on an epMotion 5057TMX (Eppendorf, 

Hamburg, Germany) as described here: https://dx.doi.org/10.17504/protocols.io.bc2hiyb6. DNA 

was assessed on a 1.8% agarose gel after extraction. 

2.4.3 Amplicon sequencing and analysis 
 

Amplicon libraries targeting the V4-V5 region of the 16S rRNA gene and V9 region of 

the 18S rRNA gene were generated as described here: https://www.protocols.io/view/amplicon-

library-preparation-bmuck6sw. Briefly, DNA was amplified via a one-step PCR using the TruFi 

DNA Polymerase PCR kit (Azura, Raynham, MA, USA). For 16S, the 515F 

(GTGYCAGCMGCCGCGGTAA)  and 926R (CCGYCAATTYMTTTRAGTTT) primer set was 

used (Parada, Needham, and Fuhrman 2016). For 18S, the 1389F (TTGTACACACCGCCC) and 

1510R (CCTTCYGCAGGTTCACCTAC) primer set was used (Amaral-Zettler et al. 2009). 

Each reaction was performed with an initial denaturing step at 95°C for 1 minute followed by 30 

cycles of 95°C for 15 seconds, 56°C for 15 seconds, and 72°C for 30 seconds. Custom mock 

communities (Parada, Needham, and Fuhrman 2016)  were included in the sequencing runs (Fig. 

2.17S). 2.5 µL of each PCR reaction was ran on a 1.8% agarose gel confirm amplification. PCR 

products were purified using Beckman Coulter AMPure XP beads following the standard 1x 
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PCR clean-up protocol. PCR quantification was performed in duplicate using Invitrogen Quant-

iT PicoGreen dsDNA Assay kit. Samples were then pooled in equal proportions into seven pools 

for the 16s data and five pools for the 18s data followed by another 0.8x AMPure XP bead 

purification. Pools was evaluated on an Agilent 2200 TapeStation and quantified with Qubit HS 

dsDNA. Each pool was sequenced at the University of California, Davis Sequencing Core on a 

single Illumina MiSeq lane (2 x 300 bp for 16S, 2 x 150bp for 18S) with a 15% PhiX spike-in. 

For the 2014-2016 data, the 18s pool was sequenced on an Illumina NextSeq (2 x 150 bp). 

Amplicons were analyzed with QIIME2 v2019.104 (Bolyen et al. 2019). Briefly, 

demultiplexed paired-end reads were trimmed to remove adapter and primer sequences with 

cutadapt (Martin 2011). Trimmed reads were then denoised with DADA2 to produce amplicon 

sequence variants (ASVs) (Callahan et al. 2016). Each pool was denoised with DADA2 

individually to account for different error profiles in each run. Taxonomic annotation of ASVs 

was conducted with the q2-feature-classifier classify-sklearn naïve-bayes classifier (Bokulich et 

al. 2018; Pedregosa et al. 2011) against SILVA (Release 138) (Pruesse et al. 2007) for 16S 

amplicons or PR2 v4.13.0 (Guillou et al. 2013) for 18S amplicons. 

Tara Oceans and Tara Polar data were downloaded from the European Nucleotide 

Archive under the project accessions PRJEB6610 

[https://www.ebi.ac.uk/ena/browser/view/PRJEB6610] and PRJEB9737 

[https://www.ebi.ac.uk/ena/browser/view/PRJEB9737]. Raw sequences were analyzed in the 

QIIME2 environment with DADA2 as described above. As run information was not available, 

each sample was analyzed with DADA2 individually; however, on average each sample contains 

enough reads to accurately estimate the error rates (>1 million reads).  
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For this study, we rarefied our libraries to 17,000 reads, maintaining 99% of our samples (11 

were removed due to small library sizes). While there have been arguments on either side 

concerning rarefaction in microbiome datasets (McMurdie and Holmes 2014; Gloor et al. 2016; 

Cameron et al. 2021), we believe that the wide variability in our library sizes, ranging from 

thousands of reads to hundreds of thousands of reads, justifies our decision to rarefy—large 

differences in library size can drastically alter biodiversity estimates (Cameron et al. 2021). 

2.4.4 Biodiversity metrics 
 

The Shannon Index was used in our measures of both alpha and gamma diversity. Mean 

alpha diversity was calculated per station (Fig. 2.4, Fig. 2.9S) or per cruise (Fig. 2.6, Fig. 2.16S). 

Gamma diversity was calculated by summing together all observed reads per station before 

calculating a Shannon Index to get the total gamma diversity per station across all seven years of 

sampling (Fig.4). Beta diversity was calculated as a Bray-Curtis Similarity (Fig. 2.5, Fig. 2.12S, 

Fig. 2.13S). Both Shannon Index and Bray-Curtis similarity were calculated using the vegan 

package in R (Oksanen et al. 2020). 

2.4.5 Self-organizing maps (SOMs) 
 

Self-Organizing Maps (SOMs) are a data reduction technique capable of reducing highly 

variable data into a two-dimensional map while retaining properties of the original highly 

dimensional data. Consequently, SOMs are suitable for identifying distinct ecological 

communities with amplicon data, as they can reduce the complexity of tens of thousands of 

unique species (ASVs) to a small set of discrete communities (Bowman et al. 2017).  For these 

data we generated the SOMs on a 6x6 neuronal map using the SOMbrero package in R (Boelaert 

et al. 2014). SOMs included all 984 individual samples. For each taxonomic group, once a SOM 

was generated, hierarchical clustering was used to cluster neurons (nodes of the map) together, 
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identifying the two most distinct community clusters present on the maps (see Table 2.1S for a 

list of taxonomic groups). See Fig. 2.2 and Fig. 2.5S for station maps representing the relative 

dominance between the two SOM clusters for all taxonomic groups. 

2.4.6 Generalized linear models (GLM) 
 

Generalized linear models (GLMs) were used to test the relative importance of 

environmental conditions on plankton community structure in the California Current. For the 

first set of models (Fig. 2.3 and Fig. 2.6S), the response variable was the frequency at which a 

specific community (nearshore or offshore), as defined by the SOMs, was found at a given 

station. A binomial fit was used as the range of possible values was between 0 and 1. For the 

second set of models (Fig. 2.4 and Fig. 2.9S), the response variable was mean alpha diversity. In 

this case, the fit was normal as the distribution of mean alpha diversity values was close to 

normal. GLM’s only considered stations with at least four data points (one year). Single 

parameter models were compared to one another using the Akaike Information Criterion (AIC) 

to identify the most suitable model (Johnson and Omland 2004). 

2.4.7 Generalized additive models (GAM) 
 

Generalized additive models were used to fit Shannon index-distance to coast (Fig. 

2.4a,d) and productivity-diversity relationships (Fig. 2.10S). Here, GAMs were used as they 

provide a flexible and simple means of identifying relationships between variables without the 

need to specify a specific type of relationship (linear, exponential, logistic) per fit. 

2.4.8 Data availability 
 

The 16S rDNA raw reads have been deposited at NCBI under Bioproject IDs 

PRJNA555783 [https://www.ncbi.nlm.nih.gov/bioproject/PRJNA555783], PRJNA665326 

[https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA665326] and PRJNA804265 
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[https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA804265] and Biosample accession nos. 

SAMN25705811-SAMN25706151, SAMN16250568-SAMN16251083, and SAMN25756929-

SAMN25757078 and for the 2014-2016, 2017-2019, and 2020 periods respectively. The 18S 

rDNA raw reads have been deposited at NCBI under Bioproject IDs PRJNA555783 

[https://www.ncbi.nlm.nih.gov/bioproject/PRJNA555783], PRJNA665326 

[https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA665326], and PRJNA804265 

[https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA804265] and Biosample accession nos. 

SAMN25710021-SAMN25710361, SAMN16251281-SAMN16251796, and SAMN25757352-

SAMN25757501 for the 2014-2016, 2017-2019, and 2020 periods respectively. 

Tara Oceans and Tara Polar 18Sv9 sequences can be found at the European Nucleotide Archive 

under the project accession IDs PRJEB6610 

[https://www.ebi.ac.uk/ena/browser/view/PRJEB6610] and PRJEB9737 

[https://www.ebi.ac.uk/ena/browser/view/PRJEB9737] respectively.  

Associated sample metadata are provided in the Supplementary Data 2 file.  

2.4.8 Code availability 
 

The code for this study is located at 

https://github.com/ChaseCJames/NCOG_Spatial_Environ (James et al. 2022).  

DOI: 10.5281/zenodo.6359865 

2.5 Figures 
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Figure 2.1: NCOG sampling and the physical environment of the Southern California Current region. a, 

the number of samples collected at each CalCOFI station from 2014-2020. Stations highlighted by 

squares are the Cardinal Stations (sampled every cruise) b, location of all samples by distance to coast (X-

axis) and depth (Y-axis) c, mean nitracline depth (m) measured at each station across all seven years. d, 

mean SST (°C) from NOAA’s OI SST V2 Dataset. White open circles represent the location of CalCOFI 

stations e, overlap between NCOG 18Sv9 ASVs with those present in Tara Oceans and Tara Polar. 
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Figure 2.2: Nearshore and offshore gradients in community structure within five major microbial groups. 

(a-e) Colors indicate the frequency that the community at each location is offshore (red, top row) or 

nearshore (blue, bottom row) in character. The designation of nearshore vs. offshore community is 

determined by the cluster whose weighted centroid is closer to the coast. The weighted centroid for each 

cluster is shown as a circled plus symbol in the opposite color. 
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Figure 2.3: Environmental drivers of community structure. a, example relationship between mean 

nitracline depth (m) and the frequency of observed community clusters (“Nearshore” in blue or 

“Offshore” in red) per station for cyanobacteria. Lines represent a generalized linear model with a 

binomial fit. Shading represents a 95% confidence interval around the model fit b, relative importance of 

all explanatory variables (mean and coefficient of variation) used to predict the frequency of SOM 

clusters at a given station. As in the example (a), relationships were assessed via a generalized linear 

model with a binomial fit. Larger circles represent lower AIC values within a column; in other words, 

variables with larger circles are likely to be more important drivers than variables with smaller circles. 

Relationships that are not significant (p > 0.05) are colored in gray. Circles and their associated AIC 

values should not be compared across columns, only within columns, as AIC values are specific to each 

response variable. Relationships were analyzed between the frequency of observed community clusters 

and the mean and coefficient of variation (Coeff. Var.) of environmental variables. Environmental 

variables included: temperature (Temp), salinity, NO3, PO4, SiO4, chlorophyll a (Chl-a), and nitracline 

depth (NCD). 
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Figure 2.4: Spatial patterns and drivers of diversity. a, map showing the mean alpha diversity for all 

ASVs for each station. b, mean alpha (blue) and gamma diversity (green) per station for all ASVs as a 

function of distance to shore (km). Shannon index was used as the primary measure of diversity and was 

calculated as the mean per station per cruise for this analysis. Relationships are fit as a generalized 

additive model (GAM) with a 95% confidence interval. c, map showing the mean alpha diversity for 

diatoms for each station. d, mean alpha (blue) and gamma diversity (green) per station for diatoms as a 

function of distance to shore (km). Relationships are fit as a generalized additive model (GAM) with a 

95% confidence interval (shading). e, relative importance of all explanatory variables (mean and 

coefficient of variation) used to predict mean alpha diversity at a given station. Relationships between 

environmental variables and diversity were assessed via a generalized linear model with a gaussian fit. 

Larger circles represent lower AIC values within a column. Circles and their associated AIC values 

should not be compared across columns. Color represents the correlation coefficient between each 

explanatory variable and mean alpha diversity. Gray circles represent relationships that are not significant 

(p > 0.05). Relationships were analyzed between diversity and the mean and coefficient of variation 

(Coeff. Var.) of environmental variables. Environmental variables included: temperature (Temp), salinity, 

NO3, PO4, SiO4, chlorophyll a (Chl-a), and nitracline depth (NCD). 
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Figure 2.5: Physical and ecological changes in the region across time. a, annual cycle of Coastal 

Upwelling Transport Index (CUTI). b, Biologically Effective Upwelling Transport Index (BEUTI). c, 

regionally available nitrate time for the studied time period (2014-2020). Lines are 2-month moving 

averages and the colors palettes represent three distinct time periods, 2014-2016 (red), 2017-2018 (blue), 

and 2019-2020 (gold). CUTI (m2 s-1) is a regionally integrated rate of vertical volume transport. BEUTI 

(μM m-1 s-1) is an estimate of nitrate flux into the surface mixed layer. Regionally available nitrate (μM) 

is the concentration of nitrate at the base of the mixed layer and can be calculated by dividing BEUTI by 

CUTI (see Jacox et al. 2018 for a full explanation). d, mean nitrate (μM) concentrations at 10 m depth at 

each CalCOFI station during the warm period (2014-2016). e, mean nitrate concentrations during the cool 

period. f, the difference in nitrate concentrations between the two phases (2014-2016) – (2017-2018). g-k, 

maps of the mean Bray-Curtis similarity (Legendre and Legendre 2012) between samples from the warm 

(2014-2016) and cool (2017-2018) phase for each station. Maps show surface samples for our five main 

groups (g Archaea, h Bacteria, i Cyanobacteria, j Photosynthetic Eukaryotic Protists, and k Heterotrophic 

Eukaryotic Protists). For DCM samples, see Fig. 11S. 
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Figure 2.6: Temporal shifts in regional nitracline gradients align with relative community dominance. a, 

illustrative example highlighting a cruise (Winter 2015) where the regional slope in nitracline depth is 

relatively low. The black line indicates the regional slope in the nitracline depth with a 95% confidence 

interval around the model fit (glm). Points indicate individual samples taken during this cruise. The color 

of the points indicates cyanobacteria communities that were identified by SOMs as either “nearshore” 

(blue) or “offshore” (red). b, illustrative example highlighting a cruise (Summer 2019) where the regional 

slope in nitracline depth is much greater. The black line indicates the regional slope in the nitracline depth 

with a 95% confidence interval around the model fit (glm). Points indicate individual samples taken 

during this cruise. The color of the points indicates cyanobacteria communities that were identified by 

SOMs as either “nearshore” (blue) or “offshore” (red). c-g, proportion of samples per cruise that were 

identified by SOMs as “nearshore” communities relative to the slope in the nitracline across the entire 

region. Shapes represent the different seasons during which cruises took place (circle = winter, square = 

spring, diamond = summer, triangle = fall) and the colors represent samples that were collected from 

2014-2016 (red), 2017-2018 (blue), or 2019-2020 (gold). Data were fitted as separate linear models per 

phase, shading represents the 95% confidence interval around the model fit. 

  



37 

 

 

 

2.6 Supplementary Information 
 
Table 2.1S: List of groups used in analysis. Groups listed in bold and shaded in grey are the key 

functional groups used for the main analysis. Finer taxonomic groups are listed below the broad groups.  
 

Group # of ASVs Amplicon Region 

Archaea 621 16S 

Heterotrophic Bacteria 17142 16S 

Cyanobacteria 511 16S 

Photosynthetic Eukaryotic 

Protists  
7770 18S 

Heterotrophic Eukaryotic 

Protists 
24311 18S 

Prochlorococcus 224 16S 

Synechococcus 40 16S 

Flavobacteriales 1559 16S 

Rhodobacterales 476 16S 

SAR 11 Clade 873 16S 

Diatoms 620 18S 

Dinoflagellates 

(without Syndiniales) 
4494 18S 

Syndiniales 5698 18S 

Haptophytes 483 18S 

Chlorophytes 1056 18S 

Metazoans 1943 18S 

  



38 

 

Table 2.2S:  Composition of 18Sv9 ASVs endemic to each dataset (columns 2-4) or found in multiple 

datasets (columns 5-8). Zeros represent groups where no ASVs are found within a given dataset or dataset 

overlap.  
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Figure 2.1S: Mean spatial gradients in physical and ecological variables shown in color: (a) temperature 

(°C), (b) salinity (PSU), (c) mixed layer depth (m), (d) nitracline depth (m), (i) chlorophyll a (μg/L), (j) 

nitrate (μM), (k) phosphate (μM), and (l) silicate (μM). Spatial gradients in the coefficient of variation 

(Coeff. var.) are shown in grayscale for: (e) temperature, (f) salinity, (g) mixed layer depth, (h) nitracline 

depth, (m) chlorophyll a, (n) nitrate, (o) phosphate, and (p) silicate. 
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Figure 2.2S: Proportional taxonomic composition of ASVs that are endemic to NCOG, TARA Oceans, 

and TARA Polar. Colors represent the proportional dominance of broad taxonomic groups within the 

ASVs that are endemic to each dataset. Total number of endemic ASVs per dataset can be found in Fig. 

1e. 
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Figure 2.3S: Mean relative abundance of taxonomic groups in both the nearshore and offshore clusters 

for major groups: (a) bacteria, (b) heterotrophic eukaryotic protists, (c) cyanobacteria, (d) archaea, and (e) 

photosynthetic eukaryotic protists. Mean relative abundance is calculated as the mean abundance of all 

ASVs within a taxonomic group per cluster. Taxonomic groups are ordered, from top to bottom, by their 

difference in mean relative abundance within the offshore versus the nearshore: Δ Mean Relative 

Abundance = Mean Offshore Relative Abundance – Mean Nearshore Relative Abundance. A positive 

difference (red) indicates the mean relative abundance is greater in the offshore and a negative difference 

(blue) indicates the mean relative abundance is greater in the nearshore. The size of the circles represents 

the number of ASVs found within each taxonomic group. Listed taxonomic groups include those that 

were most abundant or are thought to be ecologically important. The rest of the ASVs are included in the 

“Other” categories found in each subplot. 
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Figure 2.4S: Relationship between ef-ratio (calculated from Eq. 2 of Laws, D’Sa, and Naik 2011) and the 

frequency of SOM clusters per station from 2014-2020 for the five major taxonomic groups: (a) archaea, 

(b) bacteria, (c) cyanobacteria, (d) photosynthetic eukaryotic protists, and (e) heterotrophic eukaryotic 

protists. Cragg and Uhler’s pseudo R2 was used to assess the goodness of fit95 between mean ef-ratio and 

frequency. Shading represents the 95% confidence interval around each model fit. 
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Figure 2.5S: Nearshore and offshore gradients in community structure within the eleven taxonomic 

groups: (a) Prochlorococcus, (b) Synechococcus, (c) Flavobacteriales, (d) Rhodobacteriales, (e) SAR 11 

Clade, (f) Diatoms, (g) Dinoflagellates, (h) Syndiniales, (i) Haptophytes, (j) Chlorophytes, and (k) 

Metazoans. Colors indicate the frequency that the community at each location is offshore (red, top row) or 

nearshore (blue, bottom row) in character. The designation of nearshore vs. offshore community is 

determined by the cluster whose weighted centroid is closer to the coast. The weighted centroid for each 

cluster is shown as a target in the opposite color. 

  



44 

 

 
Figure 2.6S: Relative importance of all explanatory variables (mean and coefficient of variation) used to 

predict the frequency of offshore vs. nearshore clusters at a given station for taxonomic specific groups. 

Relationships were assessed via a generalized linear model with a binomial fit. Larger circles represent 

lower AIC values within a column. Relationships that are not significant (p > 0.05) are colored grey. 

Circles and their associated AIC values should not be compared across columns. Relationships were 

analyzed between the frequency of observed community clusters and the mean and coefficient of 

variation (Coeff. Var.) of environmental variables. Environmental variables included: temperature 

(Temp), salinity, NO3, PO4, SiO4, chlorophyll a (Chl-a), and nitracline depth (NCD). 
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Figure 2.7S: Mean alpha diversity for (a) all ASVs and the five major groups: (b) archaea, (c) bacteria, 

(d) cyanobacteria, (e) heterotrophic eukaryotic protists, and (f) photosynthetic eukaryotic protists at each 

CalCOFI station in both surface samples (top panel) and deep chlorophyll maximum samples (bottom 

panel) across all years (2014-2020). Scale bars for each group are consistent across depths (surface and 

deep chlorophyll maximum). 
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Figure 2.8S: Mean alpha diversity for the eleven taxonomic groups: (a) Prochlorococcus, (b) 

Synechococcus, (c) Flavobacteriales, (d) Rhodobacteriales, (e) SAR 11 Clade, (f) Diatoms, (g) 

Dinoflagellates, (h) Syndiniales, (i) Haptophytes, (j) Chlorophytes, and (k) Metazoans at each CalCOFI 

station across all samples and years (2014-2020). 
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Figure 2.9S: Relative importance of all explanatory variables (mean and coefficient of variation) as used 

to predict mean alpha diversity at a given station for the finer taxonomic groups. Relationships were 

assessed via a generalized linear model with a gaussian fit. Larger circles represent lower AIC values 

within a column. Circles and their associated AIC values should not be compared across columns. Color 

represents the correlation coefficient between each explanatory variable and mean alpha diversity. Gray 

circles represent relationships that are not significant (p > 0.05). Shannon index was used as the primary 

measure of diversity and was calculated as the mean per station per cruise for this analysis. Relationships 

between environmental variables and diversity were assessed via a generalized linear model with a 

gaussian fit. Larger circles represent lower AIC values within a column. Circles and their associated AIC 

values should not be compared across columns. Color represents the correlation coefficient between each 

explanatory variable and mean alpha diversity. Gray circles represent relationships that are not significant 

(p > 0.05). Relationships were analyzed between diversity and the mean and coefficient of variation 

(Coeff. Var.) of environmental variables. Environmental variables included: temperature (Temp), salinity, 

NO3, PO4, SiO4, chlorophyll a (Chl-a), and nitracline depth (NCD). 
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Figure 2.10S: Productivity-diversity relationship for all eleven taxonomic groups: (a) Prochlorococcus, 

(b) Synechococcus, (c) Flavobacteriales, (d) Rhodobacteriales, (e) SAR 11 Clade, (f) Diatoms, (g) 

Dinoflagellates, (h) Syndiniales, (i) Haptophytes, (j) Chlorophytes, and (k) Metazoans. The data was 

subset to include only productivity station samples where 14C was measured. Productivity-diversity 

relationships were fit with a generalized additive model (GAM). Significant relationships are denoted by 

a red line (2014-2016), blue line (2017-2018), or gold line (2019-2020). Lines represent the best GAM fit 

with shading representing a 99% confidence interval. Richness (total number of ASVs) rather than 

Shannon Index is used in this figure as this is the standard for fitting productivity-diversity relationships 

(Vallina et al. 2014; Chase and Leibold 2002). 

  



49 

 

 
Figure 2.11S: Mean spatial gradients of physical and ecological variables in 2014-2016 and 2017-2018 

are shown in grayscale. The difference between the two time periods is shown in color. Variables include: 

(a) temperature (°C), (b) salinity (PSU, practical salinity units), (c) mixed layer depth (m), (d) nitracline 

depth (m), (e) chlorophyll a (μg/L), (f) nitrate (μM), (g) phosphate (μM), and (h) silicate (μM) 

 

 
Figure 2.12S: Maps of the mean Bray-Curtis similarity (Legendre and Legendre 2012) between deep 

chlorophyll maximum (DCM) samples from the warm (2014-2016) and cool (2017-2018) phase for each 

station for our five main groups: (a) archaea, (b) bacteria, (c) cyanobacteria, (d) photosynthetic eukaryotic 

protists, and (e) heterotrophic eukaryotic protists. 
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Figure 2.13S: Maps of the mean Bray-Curtis similarity (Legendre and Legendre 2012) between surface 

samples from the warm (2014-2016) and cool (2017-2018) phase for each station. Maps show surface 

samples for our eleven taxonomic groups: (a) Prochlorococcus, (b) Synechococcus, (c) Flavobacteriales, 

(d) Rhodobacteriales, (e) SAR 11 Clade, (f) Diatoms, (g) Dinoflagellates, (h) Syndiniales, (i) 

Haptophytes, (j) Chlorophytes, and (k) Metazoans. 
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Figure 2.14S: Examples of cruises with variable regional nitracline slopes. (a), winter 2015 where there 

was a shallow regional nitracline slope (similar nitracline depth across the entire region). (b), summer 

2019 where there was strong nearshore upwelling (shallow nitracline) contrasted with a deep nitracline far 

offshore (c), Regional slope of the nitracline for each cruise. Color of the points and lines represents the 

mean date for a given cruise. Slopes were fit with a generalized linear model (d), Relationship between 

Biological Effective Upwelling Transport Index (BEUTI) and the regional nitracline slope. Grey line 

shows the daily BEUTI values while the blue line shows a 3-month moving average centered around the 

mean cruise date (points). Red line shows the nitracline slope for each cruise. The inlaid plot shows the 

correlation between Mean BEUTI and Nitracline Slope where higher BEUTI values correlated with 

steeper slopes in the nitracline. 
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Figure 2.15S: Time series illustrating the proportion of samples per cruise that were identified as 

“nearshore” communities. Points are colored based on the season during which each cruise took place. 

Panel represent each of our eleven taxonomic groups: (a) Prochlorococcus, (b) Synechococcus, (c) 

Flavobacteriales, (d) Rhodobacteriales, (e) SAR 11 Clade, (f) Diatoms, (g) Dinoflagellates, (h) 

Syndiniales, (i) Haptophytes, (j) Chlorophytes, and (k) Metazoans. 
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Figure 2.16S: Mean alpha diversity in relation to the slope in the nitracline depth across the entire region. 

Shapes represent the different seasons during which cruises took place (circle = winter, square = spring, 

diamond = summer, triangle = fall) and the colors represent samples that were collected from 2014-2016 

(red), 2017-2018 (blue), or 2019-2020 (gold). Data were fitted as separate linear models per phase. 

Shading represents the 95% confidence interval around the model fit. Panels represent each of our eleven 

taxonomic groups: (a) Prochlorococcus, (b) Synechococcus, (c) Flavobacteriales, (d) Rhodobacteriales, 

(e) SAR 11 Clade, (f) Diatoms, (g) Dinoflagellates, (h) Syndiniales, (i) Haptophytes, (j) Chlorophytes, 

and (k) Metazoans. 

  



54 

 

 
Figure 2.17S: Even and staggered mock communities for: (a), 16S and (b), 18S. Custom mock 

communities were the same as those found in Parada et al. 2016 (Parada, Needham, and Fuhrman 2016). 

SAR86_c is expected in our staggered community (0.002 expected relative abundance) but is not seen in 

any mock community samples. 

 

2.7 Acknowledgements 
 

CCJ acknowledges graduate student support by Scripps Institution of Oceanography. 

This study was supported by National Science Foundation, California Current Ecosystem Long 

Term Ecological Research Grants, CCE-LTER Phase II and III (NSF-OCE-1026607 and NSF-



55 

 

OCE-1637632), and NSF-OCE-1756884, NOAA (NOAA OAR Omics, CIMEC 

NA15OAR4320071, and ECOHAB NA19NOS4780181), and Gordon and Betty Moore 

Foundation grants GBMF3828 to AEA. 

We would like to acknowledge former CalCOFI director David M. Checkley and Margot 

Bohan from the NOAA Office of Ocean Exploration and Research (OER) for their vision and 

guidance during the initial phase of the NCOG program and current CalCOFI director Brice X. 

Semmens for his continued support. We are also especially grateful to California Current 

Ecosystem, Long Term Ecological Research (CCE-LTER) and CalCOFI project and team 

members and crew who have assisted with the NCOG program 2014-present. 

Chapter 2, in full, is a reprint of the material as it appears in James, C. C., Barton, A. D., 

Allen, L. Z., Lampe, R. H., Rabines, A., Schulberg, A., Zheng, H., Goericke, R., Goodwin, K. 

D., Allen, A. E. (2022). Influence of nutrient supply on plankton microbiome biodiversity and 

distribution in a coastal upwelling region. Nature Communications. The dissertation author was 

the primary investigator and author of this paper.  

  



56 

 

Chapter 3 - Endemism, cosmopolitanism, and habitat specificity 

within a coastal marine microbiome 
 

Abstract 
 

The prevalence of endemic and cosmopolitan taxa, as well as the habitat specificities of 

taxa within the marine microbiome are not well known. Here, using a seven-year record of 

prokaryotic and eukaryotic metabarcodes spanning 445 samples in the Southern California 

Current region, we quantify the proportion of taxa exhibiting endemic and cosmopolitan 

distributions in this region, as well as identify the general characteristics of habitat affinity within 

marine microbes. We find that the majority of taxa occupy a space between endemism and 

cosmopolitanism, occurring in some but not all habitats. These taxa also tend to have no habitat 

affinities and are relatively rare. Approximately 10% of taxa were significantly endemic while 

around 30% were cosmopolitan. Perhaps surprisingly most cosmopolitans while dispersed across 

all habitats, had an affinity to one habitat. Compared to terrestrial microbiomes, most marine 

microbes are not endemic to the habitat level, however they are also not cosmopolitan. Rather, 

most marine microbes appear to be randomly distributed and moderately rare. 

3.1 Introduction 
 

Marine microbes comprise the base of the marine food web and are responsible for many 

environmental functions with local to global effects such as primary productivity, nutrient 

recycling, and carbon sequestration (Field et al. 1998; Falkowski et al. 2008; Not et al. 2012). 

These processes and their relative local magnitude are determined by the community 

composition within the marine microbiome, which ultimately is shaped by the distribution of 

individual species. The distribution of species are shaped in relative degrees by four major 

ecological forces: speciation, selection, dispersal, and drift (Vellend 2010). Within the pelagic 
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environment, dispersal, driven by the movement of water within surface currents, is thought to 

play a major role in microbial distributions (Villarino et al. 2018), leading many to suggest that 

most marine microbes are globally distributed (Fenchel & Finlay 2004; Gibbons et al. 2013). 

Species distributions fall along a wide spectrum. Within the ocean, bacterial species, such 

as those belonging to the SAR 11 Clade are thought to have ubiquitous distributions and are 

likely to occur in nearly every genomic sample of the marine environment (Morris et al. 2002). 

Species with global distributions, but not to the extreme of ubiquitous species, are known as 

cosmopolitans. Within the marine environment, cosmopolitans are thought to occur most 

frequently within microbes or large mobile megafauna (Costello et al. 2017). Endemic species, 

which fall on the opposite side of the distribution spectrum from cosmopolitans, are defined as 

species found in particular regions or habitats. While cosmopolitanism is thought to be more 

common within marine microbes, global surveys such as Tara Oceans and Malaspina have found 

evidence of regional microbial endemism. Within diatoms, rates of endemism were found to 

range from 2.3% to 53.3% depending on the region (Malviya et al. 2016). Studies of global 

ciliate diversity found rates of endemism ranging from 8.8% to 16% (Gimmler et al. 2016; 

Canals et al. 2020). This pattern is in stark contrast to terrestrial microbiomes, where endemism, 

rather than cosmopolitanism appears to be the norm. Within North American soil fungal 

communities, endemic species constitute 40% of the species richness on a sample by sample 

basis, and over 80% of regional species richness (Talbot et al. 2014). It is likely that the 

differences in habitat structure between terrestrial and marine systems drives these large 

differences in overall species distribution patterns.  

Unlike terrestrial systems, pelagic habitats are not defined by their location, but rather by 

the physical and chemical makeup of internally consistent water masses, or seascapes. These 
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seascapes move and mix with one another as the result of currents. Within a region like the 

Southern California Current (SCC), seascapes expand and contract both seasonally and 

interannually and mix together chaotically at the submesoscale level (Lévy et al. 2018; Bograd et 

al. 2019; Martín et al. 2020). While endemism within a terrestrial environment may be defined as 

those species found in only one location, within the marine environment, locations are rarely 

representative of consistent habitats. Within the marine environment it is therefore difficult to 

define what is endemic versus what is cosmopolitan. Furthermore, the mixing of habitats at the 

submesoscale level can lead to organisms being found in drastically different habitats from their 

preferred biome. 

In this study we aim to address the challenge of comparing rates of endemism and 

cosmopolitanism in a comparable way to terrestrial systems and ask the following questions: 1) 

are marine microbes found in preferred habitats and 2) what proportion of microbes are endemic, 

cosmopolitan, and ubiquitous within a regional context? For this study we utilize a seven-year, 

survey of marine microbial community composition consisting of 445 surface samples within the 

Southern California Current (SCC) referred to as the NOAA CalCOFI Ocean Genomics (NCOG) 

data. The region is characterized by a wide variety of conditions from the highly productive 

nearshore to the oligotrophic offshore (Fig. 3.1). Seasonal upwelling also drives large-scale 

changes in community composition and spatial patterning (Bograd & Lynn 2003; Barth et al. 

2020; Catlett et al. 2021, James et al. 2022). To explore these questions in a way that was 

comparable to terrestrial systems, we first had to define consistent habitats within the SCC 

region. Based on a previous study by Bograd et al. 2019, we identified the three major water 

masses primarily responsible for the habitats present in the region’s surface waters. These three 

habitats were: the Pacific Subarctic Water (PSUW) which is advected in from the north via the 
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California Current, the Eastern North Pacific Central Water (ENPCW) which enters the region in 

its southwestern most corner and is sourced from the subtropical gyre, and finally Pacific 

Equatorial Water (PEW), which is advected into the surface primarily in the nearshore and 

arrives to the region via the California Under Current (Bograd et al. 2019).  

Following the classification of our samples into these internally consistent habitats we 

identify the rates of regional endemism (found in one water mass), cosmopolitanism (found in 

every water mass), or ubiquity (found in every sample). We also assessed what proportion of 

species had a significant affinity to zero, one, or two habitats within the region—testing whether 

selection for preferred habitats is a strong driver of regional microbial biogeographies. Finally, 

we examine to what extent taxa found in NCOG are found elsewhere using data collected by 

both Tara Oceans and Tara Polar, which provide a global context for our regional analyses. 

Combined this approach explores the relative effects of dispersal and selection on marine 

microbial distributions and identifies rates of endemism, cosmopolitanism, and ubiquity in a way 

that is comparable to previous terrestrial studies. 

3.2 Results 
 

The following results represent our analysis of a 1,000-member library ensemble (see 

Methods), and reported values represent the mean value across all members or are shown as a 

distribution of values across all members. Overall, we observed 13,012 distinct prokaryotic (16S) 

amplicon sequence variants (ASVs) and 24,737 distinct eukaryotic (18Sv9) ASVs across the 

1,000-member ensemble in the Southern California Current region (SCC), of which many were 

incredibly rare. The majority of observed ASVs across both prokaryotes and eukaryotes were 

rare in both total abundance and occurrence, where occurrence is defined as either occurring in a 

sample or station (Fig. 3.2). More than half of the prokaryotic and eukaryotic ASVs had on 
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average fewer than 10 reads and occurred in less than 3 samples or stations. ASVs that occurred 

in more samples tended to also be more abundant (Fig. 3.1Sa). In both 16S and 18Sv9, we 

observed that 50% and 53%, respectively, of ASVs were found at most in only one sample 

across all 1,000 ensemble members. To better understand these ASVs that were only found in 

one sample, referred to as singletons, we explored the distribution of reads for singleton ASVs 

compared to all other ASVs (Fig. 3.1Sb). We found that the mean number of reads for singleton 

ASVs was 3.12 and 5.30 reads for prokaryotes and eukaryotes, respectively. In contrast, the 

mean number of reads for all other ASVs was 1,305 and 1,101 for prokaryotes and eukaryotes, 

respectively. Singletons were removed from the remaining analyses as it did not make sense to 

test the significance of habitat affinity for ASVs that are seen only once across the 445 samples. 

Thus, the following analyses were conducted across 6,771 and 12,274 non-singleton prokaryotic 

and eukaryotic ASVs respectively. 

Habitats are typically defined in the ocean by their environmental properties such as 

temperature, salinity, and nutrients; habitats are constantly in motion within the ocean.  Bograd 

et al. (2019) identified three main pelagic water masses, or habitats, in SCC region: the Pacific 

Subarctic Upper Water (PSUW; relatively fresh and cool), the East North Pacific Central Water 

(ENPCW; warm, salty, and nutrient-poor), and the Pacific Equatorial Water (PEW; cool, salty, 

and nutrient-rich). We used a method called Self-Organizing Maps (SOMs, Kohonen 1997) to 

cluster our samples into these three water masses using temperature, salinity, and NO3 + NH3 

(µM) data (Fig. 3a-b). Our SOM clusters matched the hydrographic and chemical characteristics 

(temperature, salinity, nutrient concentrations) and spatial distributions of these three water 

masses described by Bograd et al. (2019). 



61 

 

ASVs were then categorized into four classes based on their occurrence across these three 

water masses: endemic, cosmopolitan, ubiquitous, and semi-dispersed. Endemic ASVs were 

defined as ASVs that were only present in one water mass across all 1,000 ensemble members 

(see Fig. 3.3c for an endemic example). Cosmopolitan ASVs were defined as ASVs that are 

present in at least one sample of all three water masses across all 1,000 iterations (see Fig. 3.3d 

for a cosmopolitan example). Ubiquitous ASVs were defined as ASVs that were seen in every 

sample. Semi-dispersed ASVs occupy the space between endemism and cosmopolitanism and 

were defined as ASVs that only occur in two water masses or are sometimes seen in one or three 

water masses but not across all 1,000 iterations.  

Following this classification, we tested whether ASVs were significantly overabundant in 

each water mass, hereafter referred to as habitat affinity. The mean relative abundance per ASV 

per water mass was compared against a null distribution to assess whether ASVs had a 

significant affinity towards any given water mass (see Methods for details). In other words, is an 

ASV relatively more abundant than expected due to random chance in a given water mass? This 

test was used as both a significance test for endemism (see Fig. 3.3e for an endemic example) 

and to explore overall habitat affinity for water masses across all ASVs (see Fig. 3.3f for a 

cosmopolitan example). 

Across all taxa we find a wide variety of both occurrence classes, from endemism to 

ubiquity. 50.0% of prokaryotes and 52% of eukaryotes fell under the semi-dispersed category, as 

their distributions were neither endemic nor cosmopolitan (Fig. 3.4a-b). Cosmopolitanism was 

the next most common category with 29.0% of prokaryotic ASVs and 31.7% of eukaryotic ASVs 

occurring in all three water masses. Rates of endemism were 20.5% for prokaryotes and 16.1% 
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for eukaryotes. Ubiquity was the rarest categorization with only 3 prokaryotic and 2 eukaryotic 

ASVs out of 6,771 and 12,274 total ASVs, respectively, found in all samples.  

Taxa show various levels of habitat affinity, from no affinity up to an affinity for two of the three 

water masses (maximum). 55.1% and 60.0% of prokaryotic and eukaryotic ASVs had no 

significant habitat affinity (Fig. 3.4c-d). A species with no affinity for a particular water mass 

means that its distribution does not differ significantly from random.  The bulk of ASVs with no 

habitat affinities were from the semi-dispersed category—65.4% for prokaryotes and 64.9% for 

eukaryotes. Semi-dispersed ASVs with no habitat affinities tend to have a similar rarity to 

endemics but appear randomly dispersed (Fig. 3.4g-h). Of the remaining ASVs, 43.6% and 

39.0% for prokaryotes and eukaryotes respectively had an affinity for one water mass within the 

region. Only 86 prokaryotic ASVs and 123 eukaryotic ASVs had an affinity for two water 

masses.  

Endemics and cosmopolitans (besides the handful of ubiquitous taxa) sit and the ends of 

regional distribution patterns, yet these taxa do not all share similar habitat affinity patterns. For 

both prokaryotes and eukaryotes, roughly 50% of endemics appeared to have a significant habitat 

affinity for their respective water masses. Thus, the rates of significant habitat-specific endemism 

were 10.8% and 8% for prokaryotes and eukaryotes. Even though they are found everywhere, the 

majority of cosmopolitan ASVs had habitat affinities for either one or two water masses. Of the 

five ubiquitous ASVs, only one had no habitat affinity.  

One question that arises is whether there are observed relationships between overall 

abundance and either occurrence type or the rate of habitat affinity. For both prokaryotes and 

eukaryotes, there was a significant relationship (nested ANOVA, p < 0.001 for both) between 

overall (across all samples) ASV mean relative abundance and occurrence category (Endemic, 
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Semi-Dispersed, Cosmopolitan, Ubiquitous). Endemic ASVs were the most rare and ubiquitous 

ASVs were the most common (Fig. 3.4g-h). There was also a significant nested effect within 

each category between the number of water mass affinities and overall mean relative abundance 

for both prokaryotes and eukaryotes (nested ANOVA, p < 0.001 for both). ASVs with higher 

overall relative abundance had affinities for more water masses. Thus, the opposite is also true, 

ASVs with no water mass affinity, which are most ASVs, tend to be the most rare. 

We also explored the spatial distribution of ASVs with habitat affinity across the three 

distinct water masses (Fig. 3.5). 43.6% and 39% of prokaryotic and eukaryotic ASVs show a 

habitat preference for one water mass (Fig. 3.5a-b).  1.3% and 1.0% of prokaryotic and 

eukaryotic ASVS show a habitat preference for two water masses (Fig. 3.5a-b). The majority of 

ASVs, 55% and 60% of prokaryotes and eukaryotes, show no affinity for any particular water 

mass (Fig. 3.5a-b).  Within prokaryotes (Fig. 3.5a) affinity for PSUW, ENPCW, and PEW was 

13.0%, 16.0%, and 14.6%, respectively. In contrast, the proportion of eukaryotic ASVs that had 

an affinity for the ENPCW (19.4%) was approximately double the proportion of ASVs with 

affinities for the PSUW (10.9%) and PEW (8.7%). Of the 86 prokaryotic ASVs and 123 

eukaryotic ASVs with two water mass affinities the majority had affinities for the PSUW and 

ENPCW, 72.1% and 90.2% respectively. No ASVs had an affinity for the ENPCW + PEW.  

Next, we explored to what extent ASVs that had an affinity to a given water mass 

dominated relative abundance within each water mass (Fig. 3.5e-h). While ASVs with an affinity 

for a particular water mass represent a minority of total richness we suspect that they should be 

more dominant in their preferred habitat. Within the PSUW, ASVs with a habitat affinity for the 

PSUW or PSUW + ENPCW represented 47.5% and 30.8% of the relative abundance of 

prokaryotes and eukaryotes, on average per sample (Fig. 3.5c-d). Within the ENPCW, habitat-
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specific ASVs comprised 42.6% and 41.8% of the prokaryotic and eukaryotic relative abundance 

on average per sample (Fig. 3.5e-f). Within the PEW, these values were the highest, as the 

relative abundance of PEW-affinity prokaryotic and eukaryotic ASVs was 56.5% and 50.2% 

respectively (Fig. 3.5g-h). The relative abundance of ASVs with no habitat affinity varied 

between prokaryotes and eukaryotes. Across all water masses, prokaryotic ASVs with no habitat 

affinity represented on average 5% of the relative abundance per sample. In contrast, eukaryotic 

ASVs with no habitat affinity represented on average 22% of the relative abundance per sample. 

This represents a major difference between prokaryotes and eukaryotes and the relative 

contribution of these randomly distributed ASVs within local ecological communities.  

One question that remained was whether there were taxonomic differences between those 

ASVs that had no affinity to a habitat versus those with an affinity to one or two particular 

habitats. We found that across all habitat affinity types (No Water Mass Affinities, ENPCW, 

PSUW, PEW, PSUW + ENCPW, PEW + PSUW) the relative dominance of taxonomic groups 

varied for both prokaryotes (Fig. 3.2S) and eukaryotes (Fig. 3.3S). Within prokaryotes, 

Alphaproteobacteria, Gammaproteobacteria, and Bacteroidia were the most taxonomically rich 

groups and had many species in each affinity group. For eukaryotes, Syndiniales and 

Dinophyceae were the most taxonomically rich and occurred across all affinity groups. Within 

eukaryotic communities there was a large number of ASVs that fell outside of the 30 most 

taxonomically rich groups (labeled as Other Eukaryotes, Fig. 3.3S). In general, the majority of 

ASVs per taxonomic group had no water mass affinities, however there were exceptions. Within 

prokaryotes, the majority of Lentisphaeria and Nitrospinia ASVs had an affinity for the PEW 

(Fig. 3.2Sc).  Within eukaryotes, the majority of Telonemia ASVs had an affinity for the PSUW 

(Fig. 3.3Sc). For many groups, where the majority of ASVs have no water mass affinity, we still 
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find preferences for particular water masses for those ASVs with affinities. For instance, 16S 

ASVs within Nitrososphaeria, a class of ammonia oxidizing archaea, and 18Sv9 ASVs within the 

cercozoan groups Filosa-Thecofilosea both have strong affinities for the PEW even though the 

majority of ASVs within each group have no water mass affinity. Group wide preference could 

be an indication of environmental specialization occurring at a relatively high taxonomic level, 

whereas those groups with relatively evenly distributed occurrence across all affinity types may 

indicate that this level of taxonomic aggregation does not align with niche specialization.  

Finally, we quantified the degree of overlap between our NCOG data and global survey 

data (Tara Oceans and Tara Polar). On average, 71.2% of prokaryotic ASVs and 37.3% of 

NCOG eukaryotic ASVs were not found in any Tara samples. Overlap between NCOG and Tara 

surveys was highest in the Pacific and Atlantic basins. Intermediate levels of overlap occurred 

between NCOG and the Indian Ocean, Red Sea, and Mediterranean Sea. Lowest levels of 

overlap occurred between NCOG and the Southern Ocean, Arctic Ocean, and Tara Polar North 

Atlantic samples (Fig. 3.6a-b). We also explored the rate of overlap between ASVs in our 

occurrence categories (Endemic, Semi-Dispersed, Cosmopolitan, and Ubiquitous). In general, we 

found that the degree of overlap between NCOG and Tara Oceans regions aligned strongly with 

the total diversity found in each region of Tara’s globally sampling with higher regional diversity 

(# of ASVs) leading to a higher degree of overlap. Ubiquitous NCOG ASVs were seen in nearly 

every single region for both 16S and 18Sv9. Cosmopolitan NCOG ASVs had the most striking 

relationship between regional diversity and overlap—low-diversity regions contained few of the 

cosmopolitan NCOG ASVs while high-diversity regions contained up to 39.0% and 74.7% of the 

NCOG cosmopolitans for prokaryotes and eukaryotes, respectively (Fig. 3.6c-d).  
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Since Tara samples were collected from primarily open-ocean stations, we were also 

interested in whether ASVs with an affinity for more oligotrophic conditions would overlap 

more strongly with global Tara data. To explore this question, we binned ASVs with particular 

affinities into three groups: oligotrophic (affinities for ENPCW, PSUW, and ENPCW + PSUW), 

meso/eutrophic (PEW), and no water mass affinities. In low-diversity regions we observed little 

to no difference between these groups. However, in high-diversity regions we observed a higher 

rate of overlap between oligotrophic-associated ASVs in NCOG and those ASVs found from 

Tara when compared to both meso/eutrophic group and those ASVs with no water mass affinities 

(Fig. 3.6e-f). In general, ASVs with no water mass affinities had the least overlap with regional 

Tara datasets, a surprising finding given their numerical (richness) dominance in NCOG.  

Overlap between NCOG and Tara samples varied amongst taxonomic groups and from 

region to region, as certain prokaryotic ASVs (Fig. 3.4S) and eukaryotic ASVs (Fig. 3.5S) found 

in NCOG were more or less likely to be found globally. Within prokaryotes, Thermoplasmata 

ASVs were overrepresented in the overlap of NCOG and Tara for all regions but the Southern 

Ocean. Within the Southern Ocean, the limited overlap was driven almost completely by the 

three most diverse prokaryotic groups (Alphaproteobacteria, Gammaproteobacteria, and 

Bacteroidia, Fig. 3.4Sb). Within eukaryotes overrepresented taxonomic groups were more 

variable from region to region than prokaryotes. Eukaryotic groups that were overrepresented in 

multiple regional overlaps included: Choanoflagellatea, Prymnesiophyceae, and Filosa-

Imbricatea. The overlap between eukaryotic NCOG ASVs and eukaryotic Southern Ocean ASVs 

included far more unique taxonomic groups compared to prokaryotic groups, even though the 

overlap between NCOG and the Southern Ocean was small in both cases (Fig. 3.5Sb). 

3.3 Discussion 
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Overall, we found that the majority of ASVs identified within the Southern California 

Current (SCC) region were rare in both abundance and occurrence (Fig. 3.2). Roughly half of the 

prokaryotic and eukaryotic diversity was represented by singletons ASVs that only occurred in 

one sample. Within the non-singleton ASVs, the majority had no habitat specificity (Fig. 3.4). 

These species were relatively rare (occurrence and abundance, Fig. 3.4g-h) and on average had 

less overlap with global samples than those ASVs with habitat preferences (Fig. 3.6c-f). These 

results align with previous findings which have highlighted the overabundance of rare species 

within the marine microbiome (Bachy & Worden 2014; Logares et al. 2014; Ser-Giacomi et al. 

2018). A possible explanation for the overabundance of rare taxa in our observations and their 

overabundance generally within the marine microbiome could be the dynamic mixing of habitats 

within the ocean. In a study by Martín et al. 2020 (Martín et al. 2020), researchers suggested that 

the chaotic mixing of water masses, characterized by well-mixed areas interspersed with steep 

gradients, effectively isolates species from larger patches of suitable habitat, reducing the 

likelihood of highly abundant species, while also reducing competition across the entire range of 

a given habitat—preserving populations of ecological equivalent or even maladapted species 

within a particular habitat. That these rare ASVs had relatively low overlap across Tara regions 

may indicate that at a global scale, the relative effects of selection and drift outweigh the regional 

effects of chaotic mixing. 

Cosmopolitan species were the second-most numerically rich non-singleton category 

representing 29.0% and 31.7% of the non-singleton prokaryotic and eukaryotic ASVs 

respectively. The majority of cosmopolitans had an affinity to one water mass and tended to be 

more abundant when compared to endemics or other rare taxa (Fig. 3.4). Large abundances 

combined with habitat preferences may indicate that mass effects (the diffusion of populations 
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from areas of high to low density) may lead to their cosmopolitan distributions at the regional 

scale (Leibold et al. 2004). Cosmopolitans also showed the strongest positive relationship 

between regional diversity and the percent overlap between Tara and NCOG (Fig. 3.6c-d). 

Regions of low total diversity within Tara correspond to either dispersal bottlenecks 

(Mediterranean and Red Sea) or strong environmental gradients (Arctic and Southern Ocean) and 

as such, may present strong barriers to the immigration of NCOG cosmopolitans. Combined, 

these results indicate that for abundant marine microbes, selection and dispersal may be the 

strongest factors for determining both local and global biogeographies.  

Endemic species were the third-most common non-singleton category and were evenly 

split between ASVs with no significant habitat affinity, and those with a significant habitat 

affinity. In total, 10.8% of non-singleton prokaryotes and 8% of non-singleton eukaryotes were 

significantly overabundant and endemic to a single habitat. Compared to terrestrial microbiomes 

these rates are relatively low, 40% of per sample richness and 80% of regional richness was 

endemic to a given location (Talbot et al. 2014). Like other rare taxa, marine microbial endemics 

may be able to survive local extinction via the chaotic mixing of water masses at the 

submesoscale level (Martín et al. 2020).  

Finally, only five taxa across both prokaryotic and eukaryotic ASVs occurred in every 

sample within NCOG. Of these five, only one eukaryotic taxon showed no affinity towards a 

particular habitat or habitats. Ubiquitous ASVs had a nearly perfect overlap across all Tara 

global regions. Yet, some ubiquitous ASVs were missing from the Tara regions with the lowest 

prokaryotic and eukaryotic richness respectively (Fig. 3.6c-d). Like cosmopolitans, the 

biogeographies of these ubiquitous taxa appear to be largely structured by their ecological 
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preferences, however, unlike cosmopolitans it appears that even the steepest dispersal barriers or 

selective gradients do not hinder the global occurrence of these taxa. 

If selection were the most important factor for structuring marine microbial communities, 

we would expect increased dominance of ASVs with habitat affinities in their respective habitats. 

Within prokaryotic assemblages, this appeared to be the case. ASVs that had an affinity with a 

particular habitat had higher relative abundances within samples in that habitat. In contrast with 

prokaryotes, a relatively large proportion of eukaryotic communities were comprised of rare taxa 

with no water mass affinities. This difference between prokaryotic and eukaryotic communities 

aligns with results from a study by Logares et al. 2020 (Logares et al. 2020), which suggested 

that within the marine microbiome, prokaryotic communities may be more structured by 

selection whereas eukaryotic communities may be more structured by dispersal. While selection 

still can influence eukaryotic community composition, non-specific eukaryotic taxa may be more 

abundant, particularly in a well-mixed region like the SCC.  

Through the combined sampling across both NCOG and Tara we have explored rates of 

marine microbial endemism, cosmopolitanism, ubiquity, and habitat specificity across regional 

to global scales. We find continued evidence that the marine microbiome is dominated by 

numerically rare taxa which may persist locally due to the dynamic mixing of ocean habitats. 

Abundant taxa tend to have increased habitat specificity but higher dispersal potential leading to 

regional cosmopolitanism. The distributions of more abundant taxa appears to be driven by both 

selection and dispersal at both local and global scales, barring a few exceptionally common taxa. 

Finally, within prokaryotes, habitat-specific community structure is largely dominated by taxa 

specific to that habitat. Eukaryotic communities are also dominated by taxa specific to their 

respective habitats, however, non-specific taxa are far more common in these communities 
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relative to prokaryotic communities. Combined, these results suggest that within the SCC, 

selection may be a stronger community-structuring force in prokaryotic communities relative to 

eukaryotic communities. Overall this study confirms recent suggestions that the majority of 

marine microbes are unlikely to be globally ubiquitous (van der Gast 2015; Ward et al. 2021), 

but rather show distinct biogeographies that, while perhaps at different scales relative to 

macroorganisms and terrestrial systems, are driven by the same core ecological processes of 

dispersal, selection, and drift (Vellend 2010). 

3.4 Methods 
 

3.4.1 Study location and sample collection 
 

NOAA CalCOFI Genomics Project (NCOG) data were collected within the Southern 

California Current (SCC) region, a productive eastern boundary current ecosystem. The data 

analyzed here consist of 445 surface (nominally at 10m depth) samples collected quarterly from 

2014-2020. Cardinal stations on CalCOFI lines 80 (stations 55.0, 70.0, 80.0, 100.0), 81.8 (station 

46.9), and 90 (stations 37.0, 53.0, 70.0, 90.0, 120.0) were sampled every cruise. Primary 

productivity stations, which measure 14C primary production at approximately noon were also 

sampled. Productivity stations vary from cruise to cruise depending on where the ship is located 

each day at approximately midday.  

Both molecular (described in more detail below) and environmental data (temperature, 

salinity, nutrients) were collected via a CTD rosette. Temperature and salinity were measured 

with the Seabird 911 CTD. Salinity measurements were compared to bottle samples that were 

measured with a Guildline Portasal Salinometer model 8410A. Nutrients (NO3 and NH3) were 

measured with a QuAAtro continuous flow autoanalyzer (SEAL analytical). For a 



71 

 

comprehensive description of collection and processing methods related to the NCOG database, 

see James et al. (2022). 

3.4.2 DNA collection and extraction 
 

Approximately 0.5 – 2 L of seawater was filtered through a 0.22 µm Sterivex-GP filter 

unit (MilliporeSigma, Burlignton, MA, USA) for all DNA samples. Samples were immediately 

sealed with a sterile luer-lock plug and hematocrit sealant, wrapped in aluminum foil, and flash 

frozen in liquid nitrogen. DNA was extracted with the NucleoMag Plant Kit for DNA 

purification (Macherey-Nagel, Düren, Germany) on an epMotion 5057TMX (Eppendorf, 

Hamburg, Germany) as described here: https://dx.doi.org/10.17504/protocols.io.bc2hiyb6. DNA 

was assessed on a 1.8% agarose gel after extraction. 

3.4.3 Amplicon sequencing and analysis 
 

Amplicon sequence variant (ASV) libraries used in this analysis targeted the V4-V5 

region of the 16S rRNA gene for prokaryotes and V9 region of the 18S rRNA gene for 

eukaryotes. See James et al. 2022 for a more detailed description of both the primer sets and 

methodology. For full protocols visit: https://www.protocols.io/view/amplicon-library-

preparation-bmuck6sw. 

3.4.4 Rarefaction of amplicon data (1,000-member library ensemble) 
 

NCOG and Tara samples had a wide variety of library sizes. We therefore rarefied our 

data to a consistent level of 20,024 reads for prokaryotes and 30,347 reads for eukaryotes, 

representing the 99th percentile of library sizes across all samples for prokaryotes and eukaryotes 

respectively, to remove the effect of sequencing noise (library size) on our results. Repeated 

rarefaction is preferred to a singular rarefaction step as rarefaction can lead to the loss of novel 

but rare taxa, which is particularly important for this study as we aimed to identify the rates of 

https://dx.doi.org/10.17504/protocols.io.bc2hiyb6
https://www.protocols.io/view/amplicon-library-preparation-bmuck6sw
https://www.protocols.io/view/amplicon-library-preparation-bmuck6sw
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endemism, cosmopolitanism, and habitat specificity within the region (Cameron et al. 2021). 

Thus, we repeated the rarefaction step 1,000 times and then ran our analyses on each of these 

rarefied microbiome tables. Results for all figures represented the mean values across the entire 

1,000-member ensemble, with standard deviations highlighted where appropriate. In doing so, 

we were able to statistically assess the occurrence and habitat specificity of rare taxa that might 

not be observed through a single rarefaction step. 

3.4.5 Self-organizing maps (SOMs) 
 

We used SOMs to categorize and differentiate marine habitats based upon environmental 

conditions. SOMs are a machine learning approach capable of reducing highly dimensional data 

into a two-dimensional map (Kohonen 1997). SOMs have previously been used to identify 

‘seascapes’ along the Western Antarctic Peninsula (Bowman et al. 2018). We followed a similar 

procedure using three physical parameters: temperature, salinity, and NO3 + NH3 to construct our 

SOM. Once the SOM was generated, we used hierarchical clustering to cluster the SOM into 

three seascapes. These seascapes, called the Eastern North Pacific Central Water (ENPCW), 

Pacific Subarctic Upper Water (PSUW), and Pacific Equatorial Water (PEW), align with the 

temperature, salinity, and nutrient concentrations of the three major water masses that comprise 

surface waters in the SCC (Bograd et al. 2019). The spatial distribution of three core ocean 

habitats varied through time, reflecting the dynamic nature of the marine environment. 

3.4.6 Null model for water mass affinity 
 

We used a null model test to assess whether ASVs had a significant affinity for any given 

seascape. Null models were generated for each ASV and each rarified library. Below we have 

outlined the step-by-step processes for identifying the water mass affinity for an individual taxon 
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within each water mass for one ensemble member. This process was then applied across all taxa 

and across all 1,000 ensemble members.  

First, we calculated the mean relative abundance of a taxon in each water mass (�̅�𝐸𝑁𝑃𝐶𝑊,

�̅�𝑃𝑆𝑈𝑊, �̅�𝑃𝐸𝑊). Then, the relative abundances of a taxon were reshuffled across all samples (with 

replacement) 1,000 times. From these 1,000 surrogate abundance distributions we calculated 

1,000 null mean relative abundances per water mass. P-values were calculated for actual mean 

relative abundances compared to their respective null distributions with the following equation: 

𝑝 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒 𝑚𝑒𝑎𝑛𝑠>𝑎𝑐𝑡𝑢𝑎𝑙 𝑚𝑒𝑎𝑛

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒 𝑚𝑒𝑎𝑛𝑠
(1)  

To assess the overall significance of water mass affinity within a taxon across all 

ensemble members we calculate the mean p-value per water mass per taxa across all 1,000 

libraries. 

3.4.7 Tara Oceans and Tara Polar samples 
 

In this study, we explored the overlap between NCOG ASVs and Tara Oceans and Tara 

Polar ASVs. For both 16S and 18Sv9, we only used samples that were collected by filtering 

seawater via a peristaltic pump (excluding net samples for 18Sv9). For 16S, the size fractioned 

filter was 0.22 µm to 1.6 µm. For 18Sv9, this included multiple size fractions ranging from 0.22 

µm to 200 µm. 

3.4.8 Data availability 
 

The 16S rDNA raw reads are available for the 2014-2016, 2017-2019, and 2020 periods 

at NCBI under Bioproject IDs PRJNA555783, PRJNA665326 and PRJNA804265 and 

Biosample accessions SAMN25705811-SAMN25706151, SAMN16250568-SAMN16251083, 

and SAMN25756929-SAMN25757078. The 18S rDNA raw reads for the 2014-2016, 2017-

2019, and 2020 periods have been deposited at NCBI under Bioproject IDs PRJNA555783, 
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PRJNA665326, and PRJNA804265 and Biosample accessions SAMN25710021-

SAMN25710361, SAMN16251281-SAMN16251796, and SAMN25757352-SAMN25757501. 

Tara Oceans and Tara Polar 18Sv9 sequences can be found at the European Nucleotide 

Archive under the project accession IDs PRJEB6610 and PRJEB9737. Tara Oceans and Tara 

Polar 16S and 18Sv9 sequences can be found at the European Nucleotide Archive under the 

project ID: PRJEB402. 

3.5 Figures 
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Figure 3.1: Description of the sampling regime and physical environment over 2014-2020. a, Number of 

samples per station. Squares highlight Cardinal stations which are sampled every cruise. b, Mean 

temperature (°C) per station. c, mean salinity (PSU) per station. d, mean NO3 + NH3, µM per station. 
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Figure 3.2: Rank curves for 16S and 18Sv9. a, log10-log10 relationship between mean abundance (reads) 

and abundance rank. b, log10-log10 relationship between mean occurrence (samples) and occurrence 

rank. c, log10-log10 relationship between mean occurrence (stations) and occurrence rank. Color 

indicates either 16S (pink) or 18Sv9 (blue) ASVs. Shading around the means (points) show the upper 

(95%) and lower (5%) percentiles of either abundance or occurrence, calculated from the 1,000-member 

library ensemble. 
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Figure 3.3: a, Three-dimensional environmental space for the 445 samples with temperature, salinity, and 

NO3 + NH3 data. Axes show potential temperature (°C) and salinity (PSU). The size of the points 

represents NO3 + NH3 (µM) of each sample. Color of the points represents the identified SOM clusters 

which align with known water masses: Pacific Subarctic Upper Water (PSUW, blue), East North Pacific 

Central Water (ENPCW, green), and Pacific Equatorial Water (PEW, orange). Solid black lines indicate 

isopycnals of constant seawater density (also in c and d). b, Map showing the most dominant water mass 

per station, where the size of the circles represents the frequency with which that water mass is observed 

at a given station. c-d, Example temperature and salinity diagram showing the occurrence and relative 

abundance of an endemic and cosmopolitan ASV, respectively, across all 445 samples. The color of the 

points represents the relative abundance of the ASV per sample. Blue, green, and orange shaded regions 

show the boundary of each water mass. The size of the points represents NO3 + NH3 (µM) of each 

sample. e-f, Example significance vs abundance diagrams for the endemic and cosmopolitan ASVs in c-d, 

highlighting which water mass(es) the ASVs had a significant affinity for (p-value < 0.05, dashed line). 

The x-axis shows the mean relative abundance within a water mass – the overall (across all samples) 

mean relative abundance for that ASV. The y-axis shows the p-value associated with each mean relative 

abundance per water mass (see methods for p-value calculation). A high value along the x-axis means that 

the abundance within a water mass is higher than the mean overall abundance for that taxon across all 

samples. Values below the dashed line on the y-axis represent ensemble members where the abundance 

was significantly greater in a water mass then the null (p-value < 0.05). Thus, in this example, the 

endemic ASV is significantly overabundant in the water mass it is observed in, while the cosmopolitan 

species, while found everywhere, is only significantly overabundant in the ENPCW. 
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Figure 3.4: a-b, Percentage of 16S and 18Sv9 ASVs respectively, in each descriptive category (Endemic, 

Semi-Dispersed, Cosmopolitan, and Ubiquitous). Values above each bar show the number of ASVs in 

each category. c-d, Percentage of 16S and 18Sv9 ASVs respectively, in each affinity (0 water mass 

affinities, 1 water mass affinity, or 2 water mass affinities). Values above each bar show the number of 

ASVs in each category. e-f, Percentage of 16S and 18Sv9 ASVs respectively, in each affinity level per 

descriptive category. g-h, Distributions of mean overall (across all samples) relative abundance across all 

16S and 18Sv9 ASVs respectively. Distributions are separated per descriptive category and affinity level. 
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Figure 3.5: a-b, Map indicating the percentage (numbers in boxes) of 16S and 18Sv9 ASVs respectively 

that have an affinity for: no water masses, one water mass (PSUW, ENPCW, or PEW), or two water 

masses (PSUW + ENPCW, PSUW + PEW, or ENPCW + PEW). c-d, Mean per sample relative 

abundance of 16S and 18Sv9 ASVs respectively within PSUW samples for each affinity group. e-f, Mean 

per sample relative abundance of 16S and 18Sv9 ASVs respectively within ENPCW samples for each 

affinity group. g-h, Mean per sample relative abundance of 16S and 18Sv9 ASVs respectively within 

PEW samples for each affinity group. Mean per sample relative abundances are calculated by summing 

the relative abundances of ASVs in each affinity group per sample, then an average is calculated per 

affinity group based on samples within each water mass. 
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Figure 3.6: a-b, Maps highlighting the overlap between NCOG and Tara Oceans and Tara Polar. Size of 

circles indicates the mean number of ASVs identified per region per database. Stroke color represents the 

database for the respective data (NCOG, Tara Ocean, or Tara Polar). a, fill color represents the percentage 

of NCOG ASVs found in each respective region/database for 16S. b, fill color represents the percentage 

of endemic NCOG ASVs (observed at only one station in NCOG) found in each respective 

region/database for 16S. c, Relationship between regional richness (per database) and the % overlap 

between NCOG 16S ASVs and regional 16S ASVs. Colors represent the four occurrence categories 

(Endemic, Other, Cosmopolitan, and Ubiquitous). d, Relationship between regional richness (per 

database) and the % overlap between NCOG 18Sv9 ASVs and regional 18Sv9 ASVs. Colors represent 

the four occurrence categories (Endemic, Other, Cosmopolitan, and Ubiquitous). e, Relationship between 

regional richness (per database) and the % overlap between NCOG 16S ASVs and regional 16S ASVs. 

Colors represent combined affinity categories (Oligotrophic, Eutrophic, and No Water Mass Affinities). f, 

Relationship between regional richness (per database) and the % overlap between NCOG 18Sv9 ASVs 

and regional 18Sv9 ASVs. Colors represent combined affinity categories (Oligotrophic, Eutrophic, and 

No Water Mass Affinities). 
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3.6 Supplementary Information 

 
Figure 3.1S: a, Occurrence versus log10 number of reads, or abundance, for 16S and 18Sv9. Color 

indicates either 16S (pink) or 18Sv9 (blue) ASVs. b, Histograms of mean total reads (log10) per ASV 

split between Singletons (ASVs only seen in one sample, purple) and everything else (yellow) for 16S 

and 18Sv9. Outline color indicates either 16S (pink) or 18Sv9 (blue) ASVs. 
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Figure 3.2S: Taxonomic composition of 16S ASVs with significant affinities per water mass or water 

mass combination. a, Total number of ASVs per affinity type (All ASVs, No Water Mass Affinities, 

PSUW, ENPCW, PEW, ENPCW + PSUW, and PEW + PSUW). b, Relative proportion of ASVs in broad 

taxonomic groups per affinity type (All, No Water Mass Affinities, PSUW, ENPCW, PEW, ENPCW + 

PSUW, and PEW + PSUW). c, Percentage of ASVs per taxonomic group in each affinity group (bar 

colors). Colors next to taxonomic groups indicate the color for that taxonomic group in subpanel b. 
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Figure 3.3S: Taxonomic composition of 18Sv9 ASVs with significant affinities per water mass or water 

mass combination. a, Total number of ASVs per affinity type (All ASVs, No Water Mass Affinities, 

PSUW, ENPCW, PEW, ENPCW + PSUW, and PEW + PSUW). b, Relative proportion of ASVs in broad 

taxonomic groups per affinity type (All, No Water Mass Affinities, PSUW, ENPCW, PEW, ENPCW + 

PSUW, and PEW + PSUW). c, Percentage of ASVs per taxonomic group in each affinity group (bar 

colors). Colors next to taxonomic groups indicate the color for that taxonomic group in subpanel b. 
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Figure 3.4S: Taxonomic composition of 16S ASVs per region. a, Relative proportion of ASVs in broad 

taxonomic groups per regional dataset. b, Representation of broad taxonomic groups (# ASVs) in each 

regional dataset relative to their representation across all NCOG 16S ASVs. Δ Relative Occurrence = 

Proportional Richness per region / Proportional Richness within NCOG per taxonomic group. Larger 

numbers indicate that a given taxonomic group represents a larger proportion of a particular regional 

richness compared to its proportional richness in NCOG. Zero values indicate that that taxonomic group 

is not found in a particular region. 
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Figure 3.5S: Taxonomic composition of 18Sv9 ASVs per region. a, Relative proportion of ASVs in 

broad taxonomic groups per regional dataset. b, Representation of broad taxonomic groups (# ASVs) in 

each regional dataset relative to their representation across all NCOG 18Sv9 ASVs. Δ Relative 

Occurrence = Proportional Richness per region / Proportional Richness within NCOG per taxonomic 

group. Larger numbers indicate that a given taxonomic group represents a larger proportion of a particular 

regional richness compared to its proportional richness in NCOG. Zero values indicate that that 

taxonomic group is not found in a particular region. 
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Chapter 4 - Metatranscriptomics reveal marine microbial 

realized niche and ecological function 
 

Abstract 
 

The taxonomic and functional composition of the marine microbiome dictates the 

magnitude of many key ecosystem services within the pelagic system including the relative rates 

of primary productivity, nutrient recycling, and carbon sequestration. Using metatranscriptomic 

data from a coastal upwelling region sampled over seven years (2014-2020), we explore the 

relationships between environmental gradients and their effect on taxonomic niche partitioning 

and functional biogeography. Across all prokaryotes and eukaryotes, we find that niche 

optimums within temperature and nitracline depth are variable, niche optimums vary among 

taxa, and are selective, populations decrease quickly away from optimums, indicative of strong 

niche partitioning among taxa across these environmental gradients. Across all taxa, functional 

gene composition varies most strongly across gradients in salinity, however, temperature and 

nitracline depth tend to be more important in shaping the relative abundance of different 

functional gene classes within broad taxonomic groups such as eukaryotic phytoplankton. 

Finally, we find that most groups show community-wide shifts in functional responses to 

environmental conditions, except eukaryotic phytoplankton, in which functional shifts occur with 

large shifts in community dominance, highlighting the importance of ecologically uneven but 

high-productivity eukaryotic phytoplankton communities in shaping the structure and function of 

the coastal oceanic region. 

4.1 Introduction 
 

Spatial and temporal differences in community structure and functional composition 

within the marine microbiome dictate the local magnitude of the ecosystem functions at the base 
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of the pelagic food web (Falkowski, Fenchel, and Delong 2008; Fuhrman 2009; Fuhrman, Cram, 

and Needham 2015). Some ecosystem functions, such as primary productivity are important for 

regional economic success of coastal fisheries (Stock et al. 2017), while others like carbon 

sequestration, a natural process for shunting atmospheric carbon to the deep ocean, have global 

climate implications and can vary largely as a result of changes to the active microbial 

community (Abrantes et al. 2016). 

Within coastal upwelling regions like the Southern California Current (SCC), strong 

cross shore gradients, shaped by a nutrient rich nearshore and an oligotrophic offshore, lead to 

drastically different environmental, and subsequent ecological communities across the region 

(Checkley and Barth 2009; Venrick 2009; Taylor and Landry 2018). Across the region, 

communities vary in terms of species richness, community evenness, and ecological function 

(Hayward and Venrick 1998; Venrick 2009; Taylor et al. 2015, James et al. 2022). Changes in 

function are often assumed in relation to changes in taxonomy, or estimated via bulk 

measurements (Taylor et al. 2015; Stukel et al. 2017). However, these methods remain incapable 

of resolving the direct connections between species and their function. Metatranscriptomics 

provide a dynamic view of ecological communities, highlighting those species that are actively 

expressing genes in response to environmental conditions, and in doing so provides a tool for 

how changes in community composition can affect spatio-temporal patterns in community 

function (Dupont et al. 2015; Harke and Gobler 2015; Landa et al. 2017; Kolody et al. 2019; 

2022).  

Marine metatranscriptomes have been utilized to explore a variety of ecological 

questions, from changes in community function in day-night cycles (Kolody et al. 2019), global 

patterns of community function (Vorobev et al. 2020), and niche partitioning within ecologically 
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important taxa, such as diatoms (Alexander et al. 2015). However, the scope of these studies has 

often been restricted taxonomically, functionally, or as a result of constraints to the sampling 

scheme and thus many general ecological inquires remain unexplored. 

Here we use a seven-year regional dataset of marine microbial metatranscriptomes 

sampled as part of the quarterly CalCOFI (California Cooperative Fisheries Investigation) 

surveys. These 323 metatranscriptomic samples are part of the NOAA CalCOFI Ocean 

Genomics project (NCOG, James et al. 2022). Data is collected at each station from both the 

surface and deep chlorophyll maximum layer with stations spanning from the nutrient-rich 

nearshore to the oligotrophic offshore (Fig. 4.1, Bograd, Schroeder, and Jacox 2019). Given the 

contrasting nearshore and offshore environments, these data capture relatively large gradients in 

temperature and nutrient supply within the surface ocean (Fig. 4.1S). As previously highlighted, 

major ecological functions in the marine environment are set by the microbiome and are a 

combination of which taxa are there and the functions those organisms carry out. The goals of 

this study will therefore be twofold, to identify the patterns and processes that shape the active 

microbial community and to understand the biogeography of functional gene classes and their 

relationship to both community structure and environmental conditions. We attempt to address 

the first question by identifying the niche optimums of taxa across a multitude of environmental 

gradients including: temperature, salinity, NO3, PO4, SiO3, nitracline depth, mixed layer depth, 

and sample depth. Next, we explore the biogeographies of functional gene classes using the 

EuKaroyotic Orthologous Groups (KOG) database. We explore whether environmental gradients 

align with overall shifts in the relative abundance of KOG classes and examine the individual 

relationships between KOG classes and environmental covariates.  
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Across all taxa, we find that niche optimums are significantly different than mean 

environmental conditions, with taxa more active and abundant in warmer, nutrient poor waters. 

This aligns with previous findings from metabarcoding work which identified higher diversity in 

the oligotrophic stations of the region (James et al. 2022). Niche optimums across both 

temperature and nitracline depth were unique as they were both variable (optimums were more 

distinct from one another) and selective (per taxa abundances declined significantly away from 

their respective optimums). This pattern was observed not only across all taxa but within select 

groups including heterotrophic bacteria, cyanobacteria, eukaryotic phytoplankton, and 

heterotrophic eukaryotic protists, indicating that temperature and nitracline depth lead to strong 

niche partitioning across and within many taxonomic groups of marine microbes. Across all taxa, 

functional biogeography was driven by large changes in the relative expression of genes related 

to energy production and conversion, which were most correlated with changes in salinity. Most 

other KOG classes were negatively correlated with increases in temperature and salinity, 

indicating increased functional diversity in the nutrient-rich nearshore. The majority of these 

shifts occurred across the entire community with the response shared across taxa. However 

certain groups, like eukaryotic phytoplankton shifted dramatically in terms of function in 

association with changes in community evenness. Combined, these analyses capture the direct 

link between environmental conditions and community structure and function and in doing so 

uncover the dynamics that determine key ecological services at the regional scale. 

4.2 Results 
 

The NCOG metatranscriptomic data analyzed in this study consists of 323 samples from 

2014-2020 collected within the Southern California Current (SCC) region. Samples were 

collected at the surface and deep chlorophyll maximum (DCM) at each station (Fig. 4.1). For this 
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study we examined open reading frames (orfs) whose best taxonomic hit aligned with known 

prokaryotic and eukaryotic taxa. We identified 1,998 distinct taxa categorized into the following 

five groups: archaea (60), heterotrophic bacteria (1,571), cyanobacteria (76), eukaryotic 

phytoplankton (159), and heterotrophic eukaryotic protists (132).  

We used these 1,998 taxa to assess the taxonomic niche partitioning of marine microbes 

within the SCC, with niches defined by eight environmental variables (temperature, salinity, 

NO3, PO4, SiO3, mixed layer depth, nitracline depth, and sample depth Fig. 4.2, Fig. 4.1S). For 

each taxon, we calculated the total number of transcripts per liter per sample. We used these 

values as our “weighting” to identify niche optimums, for each taxon across all environmental 

covariates (example shown in Fig. 4.2a, see Eq. 3 in methods). For each taxon, we also 

calculated the slope between total transcripts L-1 and environmental distance to the optimum, 

where negative slopes indicate decreases in population size away from the optimum. Slopes that 

are not significantly negative (p > 0.05) or positive were set to zero. To make the value more 

intuitive, we take the absolute value of the slope following the previous step and refer to this 

value as habitat specificity (γ), with large positive values indicating the most habitat-specific 

relationships and zero values indicating no habitat-specific relationships. Following the 

identification of individual niche optimums, we assessed the distribution of optimums across all 

eight environmental variables (Fig. 4.2b, Fig. 4.2S). Distributions can vary in terms of their 

means (different from the mean environmental conditions), variability (narrower or wider), and 

internally (whether taxa show habitat specificity to their optimums). For example, a narrow 

distribution (low variability) could be the result of many taxa with similar niche optimums and 

high habitat specificity (Fig. 4.2c) or low habitat specificity (Fig. 4.2d). Similarly, a wide 
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distribution, where optimums range widely across an environmental gradient may occur 

alongside high (Fig. 4.2e) or low (Fig. 4.2f) habitat specificity on the taxon level. 

We first assessed whether the means of the distributions were greater or less than the 

mean of the environmental variables (two-sided t-test, p-value < 0.01). We found that every 

distribution of optimums was significantly greater or less than the mean of the associated 

environmental gradient (Fig 3a). Temperature and nitracline depth optimums were higher than 

the mean environmental conditions. All other variables had lower optimum distributions 

compared to the means of the respective environmental variables. The variability of optimum 

distributions was different across all environmental parameters. Salinity had the highest 

variability while nutrients (NO3, PO4, and SiO3) and depth had the lowest variability across 

optimums (Fig. 4.3a). Within our broad groups, archaea had the fewest significant differences 

between optimums and the mean environment (Fig. 4.3Sa). Salinity optimums were most 

variable in heterotrophic bacteria (Fig. 4.3Sc) and less so for all other groups, suggesting that the 

overall variability in salinity optimums was largely attributable to variability amongst 

heterotrophic bacteria. Eukaryotic phytoplankton showed strong preferences for shallow 

nitracline, mixed layer, and sample depth, all much shallower than their respective means (Fig. 

4.3Sg). Overall, some patterns were consistent across groups. For instance, temperature 

optimums were always warmer than the mean temperature (though this wasn’t significant in 

archaea).  

Finally, we compared the variability of optimum distributions to the mean habitat 

specificity across all environmental parameters (Fig. 4.3b, see Fig. 4.4S for distributions of 

habitat specificity). While salinity had the highest variability across all environmental 

parameters, it also had the lowest mean habitat specificity, suggesting that optimums do not 
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necessarily align with changes in abundance, and that populations are not found in particular 

salinity ranges. In contrast, both temperature and nitracline depth had intermediate levels of 

variability coupled with the highest mean values of habitat specificity. This could be indicative 

of niche partitioning, where taxa fall into relatively narrow individual niches distributed across a 

wide variety of both temperatures and nitracline depths. Nutrients optimums tended to have 

relatively low variability but had intermediate levels of habitat specificity. Since nutrients are 

taken up rapidly within the surface ocean, this weaker signal in both variability and habitat 

specificity when compared to nitracline depth was likely due to a mismatch between current 

population size and current nutrient levels, the latter of which isn’t necessarily indicative of the 

conditions responsible for the observed population sizes. Across the broad groups both 

temperature and nitracline depth optimums tended to show intermediate levels of variance and 

some of the highest levels of habitat specificity (Fig. 4.3S). Within eukaryotic phytoplankton, 

both depth and nitracline depth had high levels of habitat specificity, highlighting that many 

eukaryotic phytoplankton are more active and abundant at shallower depths (surface vs DCM) 

and in regions with shallower nitracline depths (nearshore). 

Following the analysis of taxonomic niche distributions, we identified relationships 

between the environment and the functional response of the marine microbial community. Using 

the EuKaroyotic Orthologous Groups (KOG) database, orfs were binned into 23 functional 

classes of genes. We first assessed the relationship between the relative abundance of the 23 

KOG classes and our environmental parameters. Since our response variable was multinomial 

(23 classes) we used Dirichlet regressions to assess the relationships between environmental 

variables and the relative abundances of KOG classes (Fig. 4.4). Across all taxa, we found that 

salinity was most highly correlated with the relative abundance of all 23 KOG classes (Fig. 4.4a). 
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Within three of the five broad taxonomic groups, temperature was the most highly correlated 

with changes in the relative abundance of KOG classes, followed by nitracline depth and salinity 

(Fig. 4.4b). Some groups showed alternative relationships, such as Archaea, whose function was 

most highly correlated with gradients in PO4 and cyanobacteria, where functional response 

aligned with changes in depth. Across all taxa, the largest changes in function were primarily 

driven by the relative abundances of genes associated with energy production and conversion, 

which decreased with increasing salinity. Since many KOG classes are relatively low abundance 

compared to the major groups, we also explored the correlations between individual KOG 

classes and environmental parameters (Fig. 4.5a). Most KOG classes showed significant negative 

relationships with both temperature and nitracline depth indicating an increased importance of 

most functional classes relative to energy production and conversion in cooler temperatures and 

shallower nitracline depths.  

To test whether changes in functional composition were the result of community wide 

responses or shifts in taxonomy we explored two community metrics: 1) the correlation between 

the per-sample total relative abundance of a KOG class across all taxa and the per-sample mean 

relative abundance of a KOG class across taxa and 2) the community evenness, measured by 

total transcripts L-1 per taxon (Fig. 4.5b). Across all taxa the trend in energy production and 

conversion appeared to be strongly associated with a community-wide response. In contrast, few 

patterns emerged because of large shifts in community evenness. Across all KOG classes we 

observed a handful of conserved seasonal patterns. The relative abundance of energy production 

and conversion was lowest in the spring and relatively consistent through the other seasons. In 

contrast, KOG groups like amino acid transport and metabolism, RNA processing and 

modification, and coenzyme transport and metabolism showed increased relative abundance in 
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the spring. Another pattern common to many KOG groups was an increased relative abundance 

in the fall, which occurred for many KOG groups such as cell motility, defense mechanisms, and 

nuclear structure (Fig. 4.5c). Finally, across all seven years the relative abundances of KOG 

classes were quite stable. From 2018-2019 we observed a dip in the relative abundance of energy 

production and conversion which coincided with an increase in most other categories during this 

time (Fig. 4.5d).  

Beyond the patterns observed across all taxa, we also explored the relationships between 

KOG classes and environmental variables within each of the five broad taxonomic groups (Fig. 

4.5-9S). Within archaea, many relationships between individual KOG classes and environmental 

variables were not significant. Most archaeal KOG classes showed community-wide functional 

shifts with little to no change in community evenness (Fig. 4.5S). Within heterotrophic bacteria 

the correlation structure between KOG classes and environmental parameters was similar to the 

structure observed across all taxa. Overall, most changes in functional relative abundance 

appeared to occur community wide. However, some functions such as RNA processing and 

modification and inorganic ion transport and metabolism appeared to be driven by changes in the 

community—increases in the relative abundance of these KOG classes coincided with decreases 

in community evenness (Fig. 4.6S). Cyanobacteria again showed a similar correlation structure 

to heterotrophic bacteria, however, certain KOG classes had more prominent environmental 

relationships, such as carbohydrate transport and metabolism and posttranslational modification, 

protein turnover, chaperones (Fig. 4.7S). Across all broad groups, eukaryotic phytoplankton 

show the most drastic departure from the structure observed in other groups. Most KOG classes 

within eukaryotic phytoplankton showed significant correlations with environmental parameters. 

Strong correlations with shallower nitracline depths and higher nutrient concentrations occurred 
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across most Metabolism KOG classes. Notably, almost all functional KOG classes had strong 

negative correlations with eukaryotic phytoplankton community evenness (Fig. 4.8S). In other 

words, the most dominant taxa drive large-scale changes in the function of the community. 

Finally, within heterotrophic eukaryotic protist communities we again found strong relationships 

between KOG classes and environmental variables. However, unlike eukaryotic phytoplankton, 

the function of heterotrophic eukaryotes appeared to align with community-wide shifts in 

function rather than shifts in community evenness (Fig. 4.9S).  

While KOG classes provide an informative mid-level description of functional changes to 

the community, there is immense gene diversity below the level of KOG class. To better 

understand which genes were responsible for observed shifts in community function we 

identified which orfs aligned most closely with the overall changes in relative abundance of each 

KOG class (Tables 4.1-3S). Aconitase, a component within the first steps of the TCA cycle 

appeared as one of the primary genes responsible for changes within the energy production and 

conversion KOG class. Likewise, Acetyl-CoA transporters which falls under the KOG class 

inorganic ion transport and metabolism, were presumably acting to transport Acetyl-CoA to the 

TCA cycle (Table 4.1S). Many of the genes within the broader KOG category of cellular 

processing and signaling have been shown to be upregulated in the evening in day-night cycle 

studies and within this study were positively correlated with depth across all taxa (Fig. 4.5a), 

providing further evidence that these genes may be less active under UV-stress (Kolody et al. 

2019, Table 4.2S). Ribosomal proteins were common within the broad category of information 

processing and storage and are known to be strongly associated with cellular growth rates 

(Ottesen et al. 2013, Table 4.3S). As such, KOG classes within the broad category of information 
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processing and storage correlated with increased nutrients and shallow nitracline depths, 

indicating growth was maximal for many taxa in these nutrient replete conditions (Fig. 4.5a). 

4.3 Discussion 
 

The results presented here represent a fundamental step forward in spatial and temporal 

sampling of the active pelagic microbiome. The strong gradients in many environmental 

variables across the region from the meso/eutrophic nearshore to the oligotrophic offshore 

provided the ideal testing ground to observe spatial and temporal patterns in both taxonomic and 

functional biogeographies across prokaryotic and eukaryotic microbial assemblages. Previous 

work found that microbial community structure and diversity within the SCC was largely 

structured by the availability of nutrients to the surface ocean (where nitracline depth represents 

a proxy for nutrient availability) across space and time (James et al. 2022). Here we found that 

both temperature and nutrient availability most strongly structured the niches of active 

prokaryotic and eukaryotic taxa within the region (Fig. 4.3). While variables like salinity showed 

the highest variability in niche optimums, it appeared populations of most taxa do not decline 

significantly as they moved away from salinity optimums (Fig. 4.3b, Fig. 4.4Sb). In contrast, 

both temperature and nitracline depth showed intermediate levels of variability amongst niche 

optimums and relatively high habitat specificity (Fig. 4.3b). We found that this was not only the 

case across all taxa, but that these environmental gradients appeared to partition niches within a 

majority of the broad taxonomic groups as well (Fig. 4.3S).  

One explanation for the increased importance of temperature could be that we are 

identifying niche optimums by a weighted centroid approach wherein the weightings are total 

transcripts L-1 per taxon. Total transcripts L-1 are the result of both abundance (more cells lead to 

more transcripts L-1) and activity (per cell levels of activity may change according to 
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environmental conditions). As such, the niche optimum represents a combination of both 

abundance and activity and is likely to change as a result of environmental conditions more than 

abundance alone. While this blending of two factors could be seen as a disadvantage of the 

methodology, we believe that the identification of an “active” niche presents a unique lens with 

which to view the community structure—highlighting those active members that contribute to 

the in-situ magnitude of ecological functions (such as primary productivity and carbon 

sequestration) across the region. We note that dormant taxa referred to as the “microbial seed 

bank” can be important drivers of changes in community function and may not be detected as 

readily through metatranscriptomics alone, becoming active episodically in response to changing 

conditions (Lennon and Jones 2011; Gibbons et al. 2013). While this method may not capture 

their full biogeographic extent, we believe that in highlighting these taxa at their most abundant 

and active we may better identify the conditions during which these taxa contribute most to the 

overall functional landscape of the community.  

Overall, we found that changes to the functional biogeography of the regional 

microbiome were most correlated with gradients in salinity (Fig. 4.4). Across disparate biomes, 

salinity has been shown to be a major determinant of bacterial diversity (Lozupone and Knight 

2007). Within the marine environment however, global studies have found temperature and light 

are more highly correlated with diversity and function than salinity (Sunagawa et al. 2015). 

Within the SCC, salinity is an indicator of the major water masses that contribute to the region’s 

waters (Bograd, Schroeder, and Jacox 2019). While we do not dismiss salinity’s role in 

determining the community composition across microbes globally and between biomes, we 

believe that within this regional context, differences between water masses, which align with 

gradients in salinity, are most likely to structure the observed changes in functional composition. 
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Across all ASVs, changes in functional composition were largely driven by changes in the 

relative abundance of genes related to energy production and conversion (Fig. 4.4a). The saltiest 

waters within the region are part of the Pacific Equatorial Water (PEW) and tend to be 

subsurface and nutrient rich, upwelling to the surface in the nearshore (Bograd, Schroeder, and 

Jacox 2019). In these samples, the relative abundance of energy production and conversion 

reached its lowest point, while other KOG classes such as translation, ribosomal structure and 

biogenesis increased. In contrast, within the oligotrophic environment the bulk of transcription 

occurred within the energy production and conversion KOG class, likely as the result of limited 

resources making other functions too metabolically expensive.  

In general, shifts in function appeared to occur across the entire community, with taxa 

responding to gradients in environmental conditions in similar ways (Fig. 4.5b). However, 

eukaryotic phytoplankton exhibited a different pattern: shifts in the relative abundance of most 

functional classes were negatively correlated with community evenness (Fig. 4.8S). Within the 

nearshore environment, a select few eukaryotic phytoplankton tend to be dominant at an given 

time or location, forming blooms (Not et al. 2012; Needham and Fuhrman 2016). As such these 

blooms can significantly alter the functional landscape within the nearshore environment. 

Offshore, eukaryotic phytoplankton communities tended to be more even, and energy production 

and conversion represented a larger proportion of the relative abundance of transcripts, aligning 

with observations across all taxa. Eukaryotic phytoplankton, such as diatoms, are important 

ecologically as they shape the magnitude of many regional and global ecological functions 

generated within the marine microbiome (Taylor et al. 2015; Malviya et al. 2016; Tréguer et al. 

2017). That functional shifts within eukaryotic phytoplankton are driven by only a few taxa 
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should provide further impetus to better understand the resilience of these ecologically crucial 

taxa.  

Regionally comprehensive transcriptional datasets such as this one represent a major leap 

forward in our understanding of how marine microbiomes respond to environmental conditions. 

Here we demonstrate a potential path forward for exploring the entire community assemblage 

(prokaryotes and eukaryotes) through the active lens provided by metatranscriptomes. We find 

that temperature and nitracline depth drive separation of the niche optimums of taxa, while 

simultaneously leading to high intra-taxon habitat specificity. We identify salinity, a marker of 

various regional water masses, as the strongest correlate of community-wide shifts in the relative 

abundance of functional gene classes—a pattern driven by large shifts in the relative abundance 

of genes related to energy processing and conversion. Finally, we note that changes in the 

relative abundance of functional gene classes within eukaryotic phytoplankton assemblages often 

aligns with changes in community evenness, indicating that functional shifts in this ecologically 

important community are driven by few, dominant taxa. Combined, these analyses aim to 

address fundamental ecological questions about taxonomic niche partitioning and functional 

biogeography but at a far greater resolution than has previously been possible, setting the 

framework for how transcriptional data can be used to unravel longstanding inquiries in the field. 

4.4 Methods 
 

4.4.1 Study location and sample collection 
 

The NOAA CalCOFI Genomics Project (NCOG) metatranscriptome data was collected 

from 2014-2020 within the Southern California Current (SCC) region. This region is part of a 

highly productive eastern boundary current that is both ecologically diverse and economically 
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important. For this study we examined 323 samples that were collected from the surface (0m) to 

150m. NCOG data is collected quarterly (winter, spring, summer, and fall).   

Metatranscriptome and environmental data were collected with a CTD rosette. 

Temperature and salinity were measured with the Seabird 911 CTD. Salinity measurements were 

compared to bottle samples that were measured with a Guildline Portasal Salinometer model 

8410A. Nutrients were measured with a QuAAtro continuous flow autoanalyzer (SEAL 

analytical). 

4.4.2 RNA collection, extraction, and sequencing 
 

0.2-2.2 L of seawater was filtered through a 0.22 µm Sterivex-GP filter unit 

(MilliporeSigma, Burlignton, MA, USA) for RNA samples. Samples were immediately sealed 

with a sterile luer-lock plug and hematocrit sealant, wrapped in aluminum foil, and flash frozen 

in liquid nitrogen. For a full step-by-step sampling procedure see: 

https://www.protocols.io/view/noaa-calcofi-ocean-genomics-ncog-sample-collection-

eq2lypdorlx9/v1 

RNA extraction is done using a Macherey-Nagel NucleoMag RNA kit. Automated liquid 

handling was performed on an eppendorf EpMotion 5075t with multi-hcannel pipettes. For full 

extraction procedure see: https://www.protocols.io/view/sterivex-rna-extraction-

n92ldy277l5b/v1  

From 2014-2019, 100ng of total RNA as input, ribosomal RNA was removed using Ribo-

Zero Magnetic kits (Illumina). We modified the composition of Removal Solutions with the 

mixture of plant, bacterial, and human/mouse/rat Removal Solution in a ratio of 2:1:1. Agilent 

TapeStation 2200 checked the quality of rRNA removal RNA. The rRNA-deplete total RNA was 

used for cDNA synthesis by Ovation RNA-Seq System V2 (TECAN, Redwood City, USA).  

https://www.protocols.io/view/noaa-calcofi-ocean-genomics-ncog-sample-collection-eq2lypdorlx9/v1
https://www.protocols.io/view/noaa-calcofi-ocean-genomics-ncog-sample-collection-eq2lypdorlx9/v1
https://www.protocols.io/view/sterivex-rna-extraction-n92ldy277l5b/v1
https://www.protocols.io/view/sterivex-rna-extraction-n92ldy277l5b/v1
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Double stranded cDNA was fragmented using Covaries E210 system with the target size of 

300bp. 100ng of fragmented cDNA as input into the Ovation Ultralow System V2 (TECAN, 

Redwood City, USA) following the manufactures protocol. Ampure XP beads (Beckman 

Coulter) were used for final library purification. Library quality was analyzed on a 2200 

TapeStation System with Agilent High Sensitivity DNA 1000 ScreenTape System (Agilent 

Technologies, Santa Clara, CA, USA). Resulting libraries were subjected to paired-end Illumina 

sequencing. 

Due to the discontinuing of Ribo-Zero magnetic kits (Illumina), we used riboPOOL for 

rRNA deletion for 2020 samples. Thus, for 2020 samples 80ng of total RNA as input, ribosomal 

RNA was removed using riboPOOL Seawater kit (Galen Laboratory Supplies, North Haven, 

Connecticut, USA). The riboPOOL Seawater kit is customized for us with the composition of 

Removal Solutions with the mixture of Pan-Prokaryote riboPOOL, Pan-Plant riboPOOL and 

Pan-Mammal in a ratio of 6:1:1. Agilent TapeStation 2200 checked the quality of rRNA removal 

RNA. The rRNA-deplete total RNA was used for cDNA synthesis by Ovation RNA-Seq System 

V2 (TECAN, Redwood City, USA). 

For 2020 samples, Double stranded cDNA was fragmented using Covaries E210 system 

with the target size of 300bp. 50ng of fragmented cDNA as input into the NEBNext Ultra II 

DNA Library Prep Kit for Illumina (New England Biolabs, Ipswich, MA, USA) following the 

manufactures protocol. Ampure XP beads (Beckman Coulter) were used for final library 

purification. Library quality was analyzed on a 2200 TapeStation System with Agilent High 

Sensitivity DNA 1000 ScreenTape System (Agilent Technologies, Santa Clara, CA, USA). 

Resulting libraries were subjected to paired-end Illumina sequencing. 

4.4.3 RNASeq assembly and annotation 
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Input paired-end fastq sequences were trimmed of any adapters, primers and low quality 

bases by using either blastall program (NCBI, v2.2.25) (Altschul et al. 1990) or single-step fastp 

program with trimmomatic option (fastp, v0.22.0 (Chen et al. 2018); trimmomatic, v0.36) 

(Bolger, Lohse, and Usadel 2014)). The trimmed paired and unpaired sequences were then 

depleted of rRNA sequences with riboPicker, v0.4.3 (Schmieder, Lim, and Edwards 2012) and 

separated from RNA Spike-in standards 1 and 8 (ThermoFisher).  

The command-line program clc assembler, v5.2.1 (Qiagen) was used to assemble 

processed sequences into contigs in the following sequence:  assembled individual libraries; 

assembled contigs (minimum contig size: 200 bases) from individual assemblies in groups 

(group = samples in the same cluster by their 18S rRNA content) and merged the resulting 

contigs with cd-hit (Li and Godzik 2006) requiring a minimum overlap of 300 bases and 

sequence identity of 0.95; finally, assembled merged group assemblies into a global set of 

contigs using the same method described for merging individual assemblies into group-specific 

contigs. The preceding steps are performed in two separate analyses for NCOG libraries 

generated in years 2014 through 2018 and later in 2019-2020, following which transabyss-merge 

program (Robertson et al. 2010) was used to merge the two sets of assemblies into one with the 

settings of '--mink 23 --maxk 31'. 

Open reading frames (orfs) were generated from the contigs in the global assembly by 

using ORF-caller FragGeneScan, v1.31 (Rho, Tang, and Ye 2010). Trimmed sequences were 

mapped to the predicted ORFs using the command-line program clc mapper, v5.2.1 (Qiagen) to 

generate mapped read counts for each ORF. The identified ORFs in the assembled global contigs 

were annotated by Timelogic© tera-blastp (Active Motif Inc., Carlsbad, CA), HMMER, v3.3.2 

(Eddy 2011), kofamscan, v1.3.0 (Aramaki et al. 2020) analysis programs using PhyloDB (JCVI, 
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internal), PFAM [https://pfam.xfam.org/], TMHMM (Krogh et al. 2001), KOFAM/KEGG 

(https://github.com/takaram/kofam_scan), transporters (JCVI, internal), organelle (JCVI, 

internal) and KOG (https://mycocosm.jgi.doe.gov/help/kogbrowser.jsf) (Tatusov et al. 2003) 

databases.  The ORFs were assigned to the best taxonomic species/group as determined by LPI 

(Lineage Probability Index) (Podell and Gaasterland 2007) generated from the BLAST search of 

the taxonomy subset of PhyloDB database. 

4.4.4 Transcripts per liter calculation 
 

Transcripts per liter were calculated using spike-ins quantities of known standards. 

Following the calculation of transcripts per million (TPM) within each sample we calculated the 

ratio of expected versus observed TPM values of each spike per sample. We calculated the 

average ratio between the two spikes per sample, then divided this ratio by the known volume of 

seawater filtered per sample to get a scalar between TPM and the actual number of transcripts 

per liter. To get transcripts per liter (TPL) per sample, we multiplied the sample specific scalar 

value by the TPM per orf for each sample, to get a final TPL value for each orf per sample. 

4.4.5 Data normalization 
 

Each environmental variable, E, was normalized to a µ = 0 and σ = 1 with the following 

equation: 

𝐸𝑖,𝑗 =  
(𝐸𝑖,𝑗 −  �̅�𝑖)

𝜎𝑖
 (1) 

across i environmental variables (E) and j samples.  

To calculate habitat specificity, Transcripts L-1 (TPL) were also normalized to a µ = 0 and 

σ = 1 with the following equation 

𝑇𝑃𝐿𝑖,𝑗,𝑘 =  
(𝑇𝑃𝐿𝑖,𝑗,𝑘 −  𝑇𝑃𝐿̅̅ ̅̅ ̅

𝑖,𝑘)

𝜎𝑖,𝑘
 (2) 
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Across i environmental variables, j samples, and k taxa. 

4.4.6 Calculating niche optimums (weighed centroid) 
 

Niche optimums were calculated for each taxon across each environmental variable. 

Optimums were calculated using a weighted centroid approach where the “weighting” was the 

total transcription of a taxon. The equation for niche optimums is as follows: 

𝑁𝑖𝑐ℎ𝑒 𝑂𝑝𝑡𝑖𝑚𝑢𝑚𝑖,𝑘 =  
∑ 𝐸𝑖,𝑗 × 𝑘𝑗

𝑛
𝑗=1

∑ 𝑘𝑗
𝑛
𝑗=1

 (3) 

Where Ei represents a given environmental variable scaled to (µ = 0, σ = 1, Eq. 1), k, 

represents the total transcripts L-1 for a taxon, and j, represents a sample from 1 to n, where n is 

the total number of samples (323). 

4.4.7 Dirichlet regression for relative expression of KOG classes 
 

To explore which environmental parameters best predicted the relative abundance of our 

23 KOG classes we ran a Dirichlet regression using the DirichletReg package (Maier 2014) in R. 

Unlike a binomial logistic regression which is used to fit a dichotomous response variable (such 

as Yes/No), a Dirichlet regression allows us to fit a multinomial response variable—which in this 

case is the relative abundance of our 23 KOG classes. For this study we compared the fits of 

singular explanatory variables using Akaike Information Criterion (AIC) values, where the 

lowest value indicates the variable with the best fit. 

4.5 Figures 
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Figure 4.1: a, number of samples per station from 2014-2020 b, mean total transcripts L-1 per station c, 

vertical and horizontal location of samples. Samples were collected at the surface and deep chlorophyll 

maximum (DCM). For this study we explored only samples less than 150m deep. 
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Figure 4.2: a, example relationship between Temperature (normalized to µ = 0, σ = 1) and total 

transcripts L-1 for Synechococcus RS9917 across all 323 samples. Dashed red line indicates the weighted 

centroid of temperature where the weighting is the total transcripts L-1 for this taxon. Inset graph shows 

the relationship between Total transcripts L-1 and the distance from the centroid. Pearson’s correlation is 

used to assess the significance of this relationship and is used to determine the habitat specificity of each 

taxa across each environmental variable. b, Distribution of normalized temperature values (grey) across 

all 323 samples and the distribution of weighted centroids for temperature (blue) across all 1,998 taxa c-f, 

example distributions of Transcripts L-1 across environmental parameters. c, Narrow distribution of niche 

optimums between species, each with steep declines in abundance away from the optimum. d, Narrow 

distribution of niche optimums between species, but with less of a decrease in abundance away from the 

optimum. e, Wide distribution of niche optimums between species, each with steep declines in population 

away from the optimum f, Wide distribution of niche optimums between species, but with less of a 

decrease in abundance away from the optimum. 
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Figure 4.3: a, summary of weighted centroid distributions across all variables. X-axis represents the 

difference between the mean of the weighted centroids versus the mean of the environmental variable 

(asterisks represent p-values < 0.01, two-tailed t-test). Y-axis shows the variances across all weighted 

centroid distributions. b, relationship between the variance of weighted centroid distribution and the mean 

habitat specificity for each environmental variable. 
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Figure 4.4: a, example relationship between salinity and the 23 KOG classes for all 1,998 taxa. 

Relationship was fit with a Dirichlet regression. b, table of AIC values showing which variables are most 

predictive of the relative abundance of all 23 KOG classes (Dirichlet regression). Largest, darkest circles 

represent the lowest AIC scores. Scores are also ranked from 1-8 where 1 represents the most significant 

relationship and 8 represents the least significant relationship. 
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Figure 4.5: Individual KOG Class summary a, Relationship between individual KOG classes and 

physical and chemical variables. Colors represent the direction and magnitude of correlation while the 

size of the circles represents the absolute magnitude of the correlation. No circle indicates the relationship 

is not significant. b, Relationship between the relative abundance of a KOG class ecological community 

parameters (mean relative abundance and group evenness). Where mean relative abundance is calculated 

as the mean relative abundance of a given KOG class across all prokaryotic and eukaryotic genera and 

group evenness is calculated as the Shannon Evenness Index for total transcription of all eukaryotic 

phytoplankton genera. c, Mean seasonal trend in the relative abundance of KOG classes d, yearly trend in 

the relative abundance of all KOG classes. 

 

4.6 Supplementary Information 
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Figure 4.1S: Maps highlighting spatial gradients in each environmental parameter (a Temperature, c 

Salinity, e NO3uM, g PO4uM, i SiO3uM, k Nitracline Depth, and l Mixed Layer Depth). Cross sectional 

view highlighting gradients in environmental variables across both depth and distance offshore (b 

Temperature, d Salinity, f NO3uM, h PO4uM, j SiO3uM). 
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Figure 4.2S: Distributions of normalized environmental values (grey) across all 323 samples and the 

distribution of weighted centroids for each environmental value (blue) across all 1,998 taxa. 

Environmental variables include: a temperature, b Salinity, c NO3, d PO4, e SiO3, f nitracline depth, g 

mixed layer depth, and h depth. 
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Figure 4.3S: Summary of weighted centroid distributions across all variables for the five major groups (a 

Archaea, c Heterotrophic Bacteria, e Cyanobacteria, g Eukaryotic Phytoplankton, and i Heterotrophic 

Eukaryotic Protists). X-axis represents the difference between the mean of the weighted centroids versus 

the mean of the environmental variable (asterisks represent p-values < 0.01, two-tailed t-test). Y-axis 

shows the variances across all weighted centroid distributions. Relationships between the variance of 

weighted centroid distribution and the mean habitat specificity for each environmental variable for each 

of the five major groups (b Archaea, d Heterotrophic Bacteria, f Cyanobacteria, h Eukaryotic 

Phytoplankton, and j Heterotrophic Eukaryotic Protists). 

  



114 

 

 
Figure 4.4S: Distributions of habitat specificity across all 1,998 taxa within each environmental variable. 

Environmental variables include: a temperature, b Salinity, c NO3, d PO4, e SiO3, f nitracline depth, g 

mixed layer depth, and h depth. 
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Figure 4.5S: Individual KOG Class summary for Archaea. a, Relationship between individual KOG 

classes and physical and chemical variables. Colors represent the direction and magnitude of correlation 

while the size of the circles represents the absolute magnitude of the correlation. No circle indicates the 

relationship is not significant. b, Relationship between the relative abundance of a KOG class ecological 

community parameters (mean relative abundance and group evenness). Where mean relative abundance is 

calculated as the mean relative abundance of a given KOG class across all prokaryotic and eukaryotic 

genera and group evenness is calculated as the Shannon Evenness Index for total transcription of all 

eukaryotic phytoplankton genera. c, Mean seasonal trend in the relative abundance of KOG classes d, 

yearly trend in the relative abundance of all KOG classes. 
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Figure 4.6S: Individual KOG Class summary for Heterotrophic Bacteria. a, Relationship between 

individual KOG classes and physical and chemical variables. Colors represent the direction and 

magnitude of correlation while the size of the circles represents the absolute magnitude of the correlation. 

No circle indicates the relationship is not significant. b, Relationship between the relative abundance of a 

KOG class ecological community parameters (mean relative abundance and group evenness). Where 

mean relative abundance is calculated as the mean relative abundance of a given KOG class across all 

prokaryotic and eukaryotic genera and group evenness is calculated as the Shannon Evenness Index for 

total transcription of all eukaryotic phytoplankton genera. c, Mean seasonal trend in the relative 

abundance of KOG classes d, yearly trend in the relative abundance of all KOG classes. 
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Figure 4.7S: Individual KOG Class summary for Cyanobacteria. a, Relationship between individual 

KOG classes and physical and chemical variables. Colors represent the direction and magnitude of 

correlation while the size of the circles represents the absolute magnitude of the correlation. No circle 

indicates the relationship is not significant. b, Relationship between the relative abundance of a KOG 

class ecological community parameters (mean relative abundance and group evenness). Where mean 

relative abundance is calculated as the mean relative abundance of a given KOG class across all 

prokaryotic and eukaryotic genera and group evenness is calculated as the Shannon Evenness Index for 

total transcription of all eukaryotic phytoplankton genera. c, Mean seasonal trend in the relative 

abundance of KOG classes d, yearly trend in the relative abundance of all KOG classes. 

  



118 

 

 
Figure 4.8S: Individual KOG Class summary for Eukaryotic Phytoplankton. a, Relationship between 

individual KOG classes and physical and chemical variables. Colors represent the direction and 

magnitude of correlation while the size of the circles represents the absolute magnitude of the correlation. 

No circle indicates the relationship is not significant. b, Relationship between the relative abundance of a 

KOG class ecological community parameters (mean relative abundance and group evenness). Where 

mean relative abundance is calculated as the mean relative abundance of a given KOG class across all 

prokaryotic and eukaryotic genera and group evenness is calculated as the Shannon Evenness Index for 

total transcription of all eukaryotic phytoplankton genera. c, Mean seasonal trend in the relative 

abundance of KOG classes d, yearly trend in the relative abundance of all KOG classes. 
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Figure 4.9S: Individual KOG Class summary for Heterotrophic Eukaryotic Protists. a, Relationship 

between individual KOG classes and physical and chemical variables. Colors represent the direction and 

magnitude of correlation while the size of the circles represents the absolute magnitude of the correlation. 

No circle indicates the relationship is not significant. b, Relationship between the relative abundance of a 

KOG class ecological community parameters (mean relative abundance and group evenness). Where 

mean relative abundance is calculated as the mean relative abundance of a given KOG class across all 

prokaryotic and eukaryotic genera and group evenness is calculated as the Shannon Evenness Index for 

total transcription of all eukaryotic phytoplankton genera. c, Mean seasonal trend in the relative 

abundance of KOG classes d, yearly trend in the relative abundance of all KOG classes. 
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Table 4.1S: KOG classes under the broader ‘Metabolism’ KOG group. Individual orfs that are the most 

correlated with their overall class and represent the largest proportion of transcripts. 
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Table 4.2S: KOG classes under the broader ‘Cellular Processing and Signaling’ KOG group. Individual 

orfs that are the most correlated with their overall class and represent the largest proportion of transcripts. 
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Table 4.3S: KOG classes under the broader ‘Information Storage and Processing’ KOG group. Individual 

orfs that are the most correlated with their overall class and represent the largest proportion of transcripts. 
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Chapter 5 - Conclusion 
 

The purpose of this thesis is to uncover the processes that shape regional patterns of 

marine microbial structure, diversity, and function at the high-resolution provided by meta-omics 

sampling. Combined, the results presented here confirm many of the patterns and processes 

observed within well-studied groups, such as diatoms or cyanobacteria, while providing a 

breadth of new information with regards to cryptic groups that could not be identified through 

traditional means. Within the Southern California Current (SCC) region, cross-shore gradients in 

nutrient supply to the surface ocean appear to be one of the strongest structuring forces of the 

marine microbiome, affecting the spatial and temporal structure of microbial community 

composition and function.  

Chapter 2 presented an examination of how combined spatial and temporal meta-omics 

sampling can reveal system wide relationships between regional environmental conditions and 

ecological structure and diversity. Through small subunit ribosomal RNA gene sequencing on 

the V4-V5 region of the 16S rRNA gene and V9 region of the 18S rRNA gene, known generally 

as metabarcoding, data described in Chapter 2 captured the majority of prokaryotic and 

eukaryotic protist diversity within the region. The community structure and diversity of both 

broad and narrow microbial taxonomic groups within the region was largely driven by the supply 

of nutrients to the surface ocean, captured by nitracline depth measurements. Nitracline depth, 

defined as the depth at which the concentration of nitrate exceeds 1 µM, is the result of both 

abiotic (upwelling) and biotic (biological drawdown) factors and in many cases was a better 

predictor of community structure and diversity than actual concentrations of nutrients or globally 

important variables like temperature (Sunagawa et al. 2015). Overall regional nutrient supply, as 

the result of the relative magnitude and duration of spring upwelling conditions, led to shifts in 
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the relative dominance of nearshore versus offshore community types seasonally and 

interannually. While these patterns have been previously observed via bulk measures such as 

chlorophyll-α or within select groups (Kahru and Mitchell 2001; Venrick 2009; Taylor et al. 

2015), this study found that these gradients drive large changes in community structure within 

taxonomic groups as well, leading to divergent communities even within taxonomically related 

species. 

The relative effects of selection and dispersal on microbial community composition has 

been a primary subject of microbial ecology for nearly a century (Becking 1934; Fenchel and 

Finlay 2004; Martiny et al. 2006; Gibbons et al. 2013; Ward et al. 2021). Within terrestrial 

systems, endemic soil microbes, found only in particular locations or regions, represent a 

majority of the observed taxonomic diversity (Talbot et al. 2014). Within the marine 

environment dispersal via currents is thought to lead to more cosmopolitan distributions. 

However, many previous studies that have measured rates of endemism and cosmopolitanism of 

marine microbes have done so without considering the dynamic nature of marine habitats 

(Malviya et al. 2016; Gimmler et al. 2016; Canals et al. 2020). Water masses, with conserved 

physical and chemical properties serve as the foundation for marine microbial habitats and shift 

across both space and time (D’Ovidio et al. 2010). Following the identification of regional water 

masses within the SCC, Chapter 3 aimed to identify the role of selection on marine microbes and 

asked the following questions 1) are marine microbes found in preferred habitats and 2) where 

do most marine microbial distributions fall along a spectrum from endemism to 

cosmopolitanism. Utilizing a subset of 445 metabarcoding surface samples within the SCC, 

~60% of microbial taxa fell somewhere in between endemism and cosmopolitanism, occurring in 

some but not all available habitats within the SCC. In general, these species were rare and had no 
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affinity towards a particular habitat. Approximately 10% of prokaryotic and eukaryotic taxa were 

endemic to individual habitats within the region, far lower than rates of microbial endemism in 

terrestrial systems. Surprisingly, of the ~30% of species that were cosmopolitan, occurring in 

every regional habitat, the majority were over abundant in only one habitat—highlighting the 

importance of both selection, and spatial and temporal mass effects (dispersal), which drove 

regional cosmopolitan distributions (Shmida and Wilson 1985). Thus, in general it appears there 

are two major modes of marine microbial distributions: 1) rare, evenly distributed taxa that make 

up the majority of microbial diversity and 2) marine microbes that have habitat preferences and 

vary in abundance from rare, endemic taxa, to abundant, cosmopolitan taxa that become 

regionally dispersed into all habitats likely as a result of ecological mass effects. 

Chapter 4 explored the metatranscriptome of the marine microbial community in the SCC 

and identified the abiotic and biotic processes that shape microbial activity and function across 

the region. In this chapter the following questions were addressed: 1) which environmental 

gradients lead to the greatest niche partitioning amongst active microbial members within the 

region and 2) how does the functional composition of the microbial community change as a 

result of environmental conditions and community structure? Across all taxonomic groups, both 

nitracline depth and temperature showed intermediate levels of variability in niche optimums 

coupled with strong habitat selectivity (abundances decline rapidly away from niche optimums), 

indicative of niche partitioning both across and within taxonomic groups. Across all taxa, salinity 

gradients aligned with shifts in community-wide functional composition. This pattern was 

largely driven by the relative abundance of genes associated with energy production and 

conversion and occurred across all taxa relatively evenly. In general, most functional shifts were 

not the result of individual taxa dominating the ecosystem but rather community-wide functional 
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responses to changing environmental conditions. One exception was within eukaryotic 

phytoplankton where most functional shifts aligned with decreases in community evenness. In 

general, this chapter presents a framework for tackling ecological questions, both longstanding 

(niche partitioning) and new (functional partitioning) within the highly complex landscape of 

metatranscriptome data.  

Across the three studies presented in this thesis, an overarching goal was to effectively 

utilize the astonishing breath of ecological data generated from NCOG to tackle ecological 

questions about the marine microbiome. The UN has declared this decade (2021-2030) as the 

Decade of Ocean Science for Sustainable Development with programs like the Ocean 

Biomolecular Observing Network (OBON) aiming to use environmental sequencing as the basis 

for improving our knowledge about ocean ecosystems (Chavez et al. 2021). Meta-omic data 

while comprehensive, can also be complex and difficult to synthesize. The NCOG 

metatranscriptome data used in Chapter 4 represents nearly 2,000 prokaryotic and eukaryotic 

taxa and over 100,000 unique genes. While this increase in available ecological data represents 

an extraordinary leap forward in our ability to uncover ecological patterns and processes it also 

drastically changes how ecologists must conceive of hypotheses, analyze results, synthesize, and 

interpret observed patterns and processes. Far from answering the majority of these ecological 

questions, this thesis only just begins to address how, with meta-omic data we can answer 

longstanding questions in ecology and start to ask new questions at a scale appropriate to the 

resolution provided by environmental genomic sampling. 
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