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ABSTRACT

The authors analyze the 3D propagation of wind-forced near-inertial motions in a fully turbulent meso-
scale eddy field with a primitive equation numerical model. Although the wind stress is uniform, the
near-inertial motion field quickly becomes spatially heterogeneous, involving horizontal scales much
smaller than the eddy scales. Analysis confirms that refraction by the eddy relative vorticity is the main
mechanism responsible for the horizontal distortion of the near-inertial motions, which subsequently trig-
gers their vertical propagation. An important result is the appearance of two maxima of near-inertial
vertical velocity (both with rms values reaching 40 m day�1): one at a depth of 100 m and another
unexpected one much below the main thermocline around 1700 m. The shallow maximum, captured by the
highest vertical normal modes, involves near-inertial motions with a spatial heterogeneity close to the eddy
vorticity gradient field. These characteristics match analytical results obtained with Young and Ben Jelloul’s
approach. The deep maximum, captured by the lowest vertical normal modes, involves superinertial mo-
tions with a frequency of twice the inertial frequency and much smaller horizontal scales. Because of these
characteristics, not anticipated by previous analytical studies, these superinertial motions may represent an
energy source for small-scale mixing through a mechanism not taken into account in the present study: the
parametric subharmonic instability (PSI). This reveals a pathway by which wind energy may have a signif-
icant impact on small-scale mixing in the deep interior. Further studies that explicitly take into account PSI
are needed to estimate this potential impact.

1. Introduction

Contribution of wind energy to the deep ocean mix-
ing is discussed by Wunsch and Ferrari (2004). Using
Alford’s (2003) results, these authors (see also Munk
and Wunsch 1998) suggest that wind-driven near-
inertial energy (with frequency close to the Coriolis
frequency) could sustain the small-scale mixing in the
deep interior, needed to resupply the available poten-
tial energy removed by the overturning and mesoscale
eddy generation. But how this energy penetrates into
the ocean interior is still a puzzle. In this paper, we
demonstrate that the presence of mesoscale oceanic ed-
dies favors rapid penetration of wind-forced near-

inertial oscillations (NIOs) into the ocean interior with
characteristics propitious to mixing.

One important effect of mesoscale oceanic eddies on
wind-forced NIOs is to reduce their horizontal scales
(initially large because of the wind scales), which is a
preliminary condition for their vertical propagation
(Gill 1984). Kunze (1985) argues that the eddy relative
vorticity polarizes NIOs, expelling them from cyclonic
structures and trapping them within anticyclonic ones
within a few inertial periods. The � effect also reduces
the NIOs’ length scale (D’Asaro 1989; Garrett 2001)
but is not as efficient as relative vorticity in fully tur-
bulent eddy fields: in such fields, vorticity gradients
have rms values as large as 10�10 � 10�9 m�1 s�1, that is,
one to two orders of magnitude larger than the � value
(�1.6 � 10�11 m�1 s�1 at midlatitudes). Other studies
(Plougonven and Snyder 2005; Straub 2003) point out
the effects of the eddy deformation field (instead of the
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eddy relative vorticity field) as an efficient mechanism
for the dispersion of NIOs. However, experimental and
analytical studies by D’Asaro (1995), Young and Ben
Jelloul (1997, hereafter YBJ), and Klein et al. (2004)
confirm Kunze’s results. A further quantification of the
vertical propagation of NIOs has been attempted in
some numerical studies such as those by Klein and
Tréguier (1995), Van Meurs (1998), Lee and Niiler
(1998), Balmforth et al. (1998), and Zhai et al. (2005).
But these studies consider idealized jets or a few eddies
with specific length scales. Consequently, a better un-
derstanding of NIOs vertical propagation within a fully
turbulent mesoscale eddy field (i.e., characterized by a
continuous wavenumber spectrum) is still needed. Rel-
evance of such a study comes from the coincidence of
regions with strong mesoscale variability in both the
atmosphere and the ocean at midlatitudes (Zhai et al.
2005).

In the present paper, we use numerical simulations
with a primitive equation model to analyze and char-
acterize the 3D propagation of wind-forced NIOs em-
bedded in a fully turbulent eddy field. Our analysis
makes use of the normal-mode framework (Gill 1984)
and the analytical approach of Young and Ben Jelloul
(1997) as a guideline to rationalize the numerical re-
sults. The advantage of the YBJ approach compared
with Wentzel–Kramers–Brillouin (WKB) theory is that
it does not assume a priori any scale separation be-
tween NIOs and the background mesoscale flow. As
such, it is more appropriate when both fields, as in our
study, are characterized by a continuous wavenumber
spectrum. Moreover, the resemblance and departure of
our numerical results with/from analytical solutions ob-
tained with the YBJ approach will allow better identi-
fication of the mechanisms that drive vertical propaga-
tion of NIOs in the ocean. The next section presents a
review of the YBJ approach, and section 3 describes the
numerical simulations performed. Sections 4 and 5 dis-
cuss the results in both physical and spectral spaces.
Section 4 more specifically concerns the 3D propaga-
tion of near-inertial horizontal kinetic energy, whereas
section 5 describes the 3D propagation of near-inertial
vertical kinetic energy. A discussion and conclusions
are proposed in section 6.

2. A review of Young and Ben Jelloul’s approach

The penetration of NIOs into the ocean interior can
be understood within the framework of the normal-
mode analysis detailed in Gill (1984). Expansion of u, �,
and w, the horizontal and vertical near-inertial velocity
components, in terms of the vertical normal modes
leads to

�u, �� � 	
n�0

�

�un, �n��x, y, t�Fn�z�, �1�

w � 	
n�1

� ��un

�x



��n

�y ��x, y, t�Hn�z�, �2�

with t being the time and x, y, and z the horizontal
(zonal and meridional) and vertical coordinates. The Fn

are the eigenfunctions of the classical Sturm–Liouville
problem (Flierl 1978):

LFn � �
1

rn
2 Fn. �3�

Here, L is the differential operator defined as L(•)��/
�z[ f2/N2�/�z(•)], with N the Brunt–Väisälä frequency.
Here rn is the Rossby radius of deformation of mode n,
and Hn(z) is given by Hn(z)�0

z Fn(z�)dz�. The func-
tions Hn constitute an orthogonal basis for the scalar
product (HnHm)�0

�H N2HnHm dz. Equation (2) uses
the continuity equation.

Using the framework of the normal-mode analysis,
Young and Ben Jelloul (1997) studied the 3D disper-
sion of NIOs in a fully turbulent eddy field. Their pro-
cedure filters out the inertial period and studies the
slower subinertial evolution of the complex amplitude
A of the NIOs defined as

u 
 i� � Ae�ift, �4�

where i2 � �1 and f is the Coriolis frequency. This
approach does not assume any horizontal scale separa-
tion between NIOs and the background mesoscale
flow, which allows obtaining analytical solutions when
both fields are characterized by continuous horizontal
wavenumber spectra. However, in its simplest form, it
assumes a vertical scale separation between NIOs and
eddy fields. Furthermore, only the eddy relative vortic-
ity is supposed to play a role in the dispersion of the
NIOs, that is, the effects of the eddy strain (�u/�x �
�� /�y) and shear (�u/�y 
 �� /�x) deformation fields are
not considered. Finally, wave–wave nonlinear interac-
tions are assumed to be weak.

The simplest equation for A derived by YBJ is (see
also Klein et al. 2004)

�LA

�t

 i

�

2
LA0 


i

2
f �2A � 0, �5�

with A 0 being the initial value of A (assumed uniform,
i.e., independent of x and y), � is the eddy relative vor-
ticity, and �2 is the horizontal Laplacian operator. The
second term on the left-hand side is related to the re-
fraction of NIOs by eddy relative vorticity: it shifts the
phase of NIOs but does not affect their amplitude. The
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third term is related to the horizontal dispersion of
NIOs. NIOs’ vertical propagation is implicitly taken
into account by the operator L, which affects only the
first and second terms. Better physical insight of (5) is
obtained when this equation is further simplified, using

A�x, y, z, t� � 	
n�0

�

An�x, y, t�Fn�z�

and (3). Equation (5) then becomes an equation that
drives the time evolution of An. Subsequent analysis
using

An � R nei�n, �6�

with R n being the amplitude and �n the phase of the nth
mode; defining R �n and ��n as small departures of R n and
�n from the initially uniform values R 0n and �0n (i.e.,
R �n � R n � R 0n and ��n � �n � �0n) leads to the resulting
linearized coupled equations:

���n
�t

� �
�

2



Dn

2
�2R �n
R 0n

and �7�

�R �n
�t

� �R 0n

Dn

2
�2��n, �8�

where Dn � r2
nf can be interpreted as a “dispersivity

parameter” and is analogous to the diffusivity associ-
ated with passive scalar diffusion processes (Metzger
1999). The first term on the right-hand side of (7) rep-
resents the shift of the phase of NIOs by eddy relative
vorticity. The right-hand side of (8) is related to the
horizontal dispersion of the phase of NIOs, whereas the
second term on the right-hand side of (7) is related to
the horizontal dispersion of the amplitude of NIOs.
Equation (7) shows that at earlier times, � first affects
the phase of NIOs such that ��n � ��t/2. Then disper-
sion (8) can work and the amplitude R �n approaches the
Laplacian of the eddy vorticity (i.e., R �n � Dnt2R 0n�2�/
8) with its amplitude positive (negative) in anticyclonic
(cyclonic) structures. These solutions at earlier times
are close to those obtained by Kunze (1985) and Klein
and Tréguier (1995).

Because the eddy field is usually characterized by a
continuous wavenumber spectrum, an exact solution of
(7)–(8) in physical space at a later time is difficult to
obtain directly. Using classical spectral properties of
the oceanic mesoscale eddy field, Klein et al. (2004)
derived an estimate of the solution of (7)–(8) in physi-
cal space at any time t (see the appendix). Their solu-
tion for R �n concerns scales larger than a critical length
scale lcn given by

lcn � �2�Dnt. �9�

The critical wavenumber associated with this length
scale is

kcn �� 2�

Dnt
. �10�

Here, lcn corresponds to the most energetic scale of the
nth mode of NIOs.1 Their solution in physical space is

R �n
R 0n

� max�Dnt2

8
�2�cn, � 1�, �11�

with �2�cn being the horizontal Laplacian of the eddy
vorticity field truncated so as to retain only horizontal
scales larger than lcn. The analytical solution (11) is
valid only when the horizontal wavenumber spectrum
of the eddy relative vorticity has a slope gentler than
k�4 (see the appendix).

Lowest vertical normal modes (with large rn and Dn)
disperse faster than higher ones because their group
velocity, proportional to rn and therefore to Dn, is
larger [see also the coefficient in front of t2 in Eq. (11)].
These modes involve larger scales than higher ones be-
cause of the larger value of lcn. Consequently, the dif-
ferent vertical modes should quickly decorrelate, mak-
ing NIOs penetrate into the ocean interior.

3. Primitive equation simulations

a. The mesoscale eddy field

The mesoscale eddy field used in our study results
from the nonlinear baroclinic instability of a large-scale
westerly jet in a zonal �-plane channel centered at
45°N. The parameter setting resembles that used by
Karsten et al. (2002) and Rivière et al. (2004). Charac-
teristics of the numerical simulation are close to those
in Lapeyre and Klein (2006). The domain size is 1000
km � 2000 km, and its depth is 4000 m. The numerical
resolution is 6 km on the horizontal and involves 33
levels on the vertical with a vertical grid spacing ranging
from 5 m near the surface to 500 m near the bottom. A
biharmonic operator is used for the horizontal viscosity
and diffusion with an appropriate coefficient of �0.5 �
109 m4 s�1. Vertical diffusion is parameterized using
Mellor and Yamada’s (1982) 2.5 model. The Brunt–
Väisälä frequency (Fig. 1a) involves a main thermocline
around 600 m deep. The Fn eigenfunctions (the baro-
tropic mode is not shown), defined by (3), display
maxima located in the upper layers (Fig. 1b), whereas

1 Because the dispersivity parameter Dn is analogous to a dif-
fusivity, a physical interpretation is that lcn is the length scale over
which the near-inertial amplitude is dispersed in time t.
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the functions Hn (Fig. 1c) display maxima in the deeper
layers. The first four Rossby radii of deformation are
24, 10, 7, and 5 km, respectively. Because of the vertical
resolution, vertical normal modes for n 	 13 are not
well resolved. The mesoscale eddy field is forced using
a relaxation of the zonally averaged velocity and den-
sity fields to the initial state. While adjusting the mean
zonal flow, such forcing does not damp the eddy field.

After a spinup of 300 days, the total eddy kinetic
energy (integrated over the whole domain) equili-
brates, not varying much during the subsequent 300
days. The rms Rossby number associated with the
equilibrated eddy field is Ro����2�/f0 � 0.10, where
�•� is a horizontal average, � is the eddy relative vor-
ticity, and f0 is the Coriolis frequency at the center of
the domain. Relative vorticity reaches values as strong
as 0.4 f0 near the surface. As depth increases, the rms
Rossby number slowly decreases to 0.02 at 800 m. Us-
ing W/H���(�H • uH)2�, the omega equation, and the

thermal wind balance, one shows that W/H � V2f0 /
H2N2 � f0Ro2Bu�1, so that the Burger number Bu �
Ro2f0/��(�H • uH)2� � 2.4. The mesoscale eddy field is
therefore close to quasigeostrophic assumptions—in
particular, it has time scales much larger than the Co-
riolis period. A 60-m-thick surface mixed layer is then
created as the result of strong solar radiation first acting
alone, then compensated for by a surface cooling of the
same amplitude (such that the net surface heat forcing
is zero) for 15 days. This accounts for the peak of the
Brunt–Väisälä frequency near 100 m as shown in
Fig. 1a.

Figure 2a shows a snapshot of the surface density
field at the end of the spinup period. This field is char-
acterized by large-scale meridional gradients. The sur-
face streamfunction � (not shown) at the same time
displays a large-scale meridional structure correspond-
ing to the large-scale zonal jet in thermal wind balance
with the density field, and mesoscale eddies with a di-

FIG. 2. Snapshots of the (a) surface density anomaly (g cm�3) and of the (b) surface relative vorticity (s�1) of
the equilibrated mesoscale eddy field.

FIG. 1. (a) Vertical profiles of N2, (b) the first six eigenfunctions Fn given by Eq. (3), and (c) the first six functions Hn. Units in (a)
are s�2.
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ameter between 150 and 300 km. Its horizontal wave-
number spectrum (Fig. 3) is characterized by a slope
close to k�5 within the wavenumber range 10–100 (in
nondimensional units k � 10 represents a wavelength
of 390 km). This means that the surface relative vortic-
ity field has a k�1 spectrum slope within this spectral
range. In physical space, the relative vorticity (Figs. 2b)
exhibits smaller-scale structures than the streamfunc-
tion and the density, including small-scale vortices and
wavy, thin filaments. Decomposition of the eddy mo-
tions onto vertical normal modes using (2) leads to the
vertical-mode spectrum displayed in Fig. 4. The meso-
scale eddy field is mainly captured by the barotropic
mode (mode 0) and the first baroclinic mode (mode 1),
with the barotropic mode dominating.

b. The atmospheric forcing

We study the response of the ocean to a resonant
wind forcing in the presence of mesoscale eddies. The
chosen forcing consists of a wind of constant amplitude
rotating clockwise at the inertial frequency during one
inertial period, then stopped:


�t� � 
0 � �exp��ift� for 0 � t �
2�

f0
,

0 for t 
2�

f0
,

�12�

with � � �x 
 i�y being the surface wind stress. The
magnitude �0 (equal to 5 � 10�4 m2 s�2) corresponds to
a wind speed of 16 m s�1. This forcing is uniform over
the whole domain.

This resonant wind is similar to the passage of an
occluding midlatitude atmospheric cyclone. Further-
more, it provides a maximum wind energy input to the
ocean in a short time and ensures that the Ekman trans-
port is zero. Wind-driven NIOs are confined to the
mixed layer at the end of the wind pulse. Because this
forcing is uniform, NIOs’ amplitude is uniform after the
wind pulse.

c. The near-inertial motion field

A wind-forced numerical simulation has been per-
formed for 10 inertial periods using the wind pulse de-
scribed in the preceding section. The initial state is the
equilibrated mesoscale eddy field described in section
3a. For comparison, a second simulation, identical to
the previous one but without wind forcing, has been
run. Figure 5 shows the average horizontal and vertical
kinetic energy profiles with and without wind forcing.

Analysis of the near-inertial motion requires separat-
ing the high-frequency motions (here, NIOs) from the
low-frequency ones associated with the mesoscale ed-
dies because the numerical model calculates the total
field. To that purpose, we used two methods. The first
makes use of a low-pass filter to get the low-frequency
field X of any variable X:

X�t� �
1
Tf
�

t�
Tf

2

t

Tf

2 X dt, �13�

with Tf � 2�/f0 being the Coriolis period. The high-
frequency motion field in this case is the difference
between the total and low-frequency fields. This
method implicitly assumes that the time variation of the

FIG. 3. Horizontal wavenumber spectrum of the surface stream-
function � � ��2� at equilibrium. Wavenumbers are nondimen-
sionalized, and k � 10 represents a wavelength of 390 km. Units
for |� |2 are m4 s�2.

FIG. 4. Vertical-mode spectrum of the mesoscale eddy velocity
at equilibrium. Mode 0 corresponds to the barotropic mode.
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low-frequency flow is small over an inertial period,
which appears reasonable because the Rossby number
of this flow is small (Ro � 0.1). The second method
takes advantage of the absence of an Ekman transport
for the wind forcing used and consists of subtracting the
instantaneous 3D field obtained with wind forcing from
the one obtained without wind forcing. It implicitly as-
sumes that NIOs have no effect on the eddy flow and
have no other sources than the wind. As shown in Fig.
6, near-inertial fields obtained with the two methods
are very similar. Last, the comparison (detailed in the
next section) of the extracted near-inertial field with
the analytical solutions of Klein et al. (2004) confirms a
posteriori the efficacy of these separation methods for
the wind forcing used.

The difference between the profiles with and without
wind forcing (Figs. 5a,b) is a good approximation of the
kinetic energy associated with the near-inertial mo-
tions. At t � 1 inertial period (IP), the near-inertial
horizontal kinetic energy is trapped within the mixed
layer (Fig. 5a). During the next three inertial periods,
this energy slowly propagates downward as deep as 500
m. On the other hand, the differences between the ver-
tical kinetic energy with and without wind forcing (Fig.
5b) display an unexpected time increase and a large
depth penetration of near-inertial vertical kinetic en-
ergy. The magnitude of the rms of the near-inertial
vertical velocity increases by a factor more than 5
within three inertial periods (cf. the dashed and solid

profiles in Fig. 5b). In addition to a maximum at 100 m,
its vertical propagation is characterized by the rapid
emergence of a maximum near 1700 m, attaining a
depth as large as 3000 m at t � 4 IP. At that time, the

FIG. 5. (a) Vertical profiles of the horizontal kinetic energy averaged over the whole horizontal domain and (b)
rms of the vertical velocity (defined as ��w2�, where �•� is the horizontal average operator). Dotted–dashed curves
are the profiles without wind forcing, and dashed and solid curves are the profiles with wind forcing at t � 1 and
4 IP, respectively. Note: t � 1 IP represents the time just after the wind pulse. Units are m2 s�2 in (a) and m s�1

in (b).

FIG. 6. Scatterplot between near-inertial horizontal kinetic en-
ergy (in m2 s�2) obtained with the first method (KEI) and with the
second method (KEII) at the surface at t � 4 IP. Each point
represents the average over each grid point on the abscissa (which
has a total of 500 grid points), and vertical lines show std dev
around the averages.
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magnitude of the deep maximum is as large as that of
the upper maximum (at 100 m) and is almost 10 times
larger than that associated with the mesoscale eddy
field. Note that near-inertial horizontal velocities are
not strictly homogeneous at the end of the wind pulse.
Although their amplitude is still uniform, their phase is
already affected by the eddy vorticity, which explains
the existence of near-inertial vertical velocities close to
the mixed layer base at t � 1 IP. Near-inertial vertical
kinetic energy stops increasing after 8 IP.

Near inertial horizontal kinetic energy slowly de-
creases after the wind pulse: the ratio of near-inertial
horizontal kinetic energy to mesoscale kinetic energy
decreases from 0.36 just after the wind pulse down to
0.24 after 10 inertial periods. A detailed kinetic energy
budget shows that this decrease is due to the numerical
horizontal viscosity. This mixing is small for mesoscale
eddies, but it becomes significant for the near-inertial
horizontal motions because their spatial heterogeneity
involves energetic small scales (see section 4). While
near-inertial vertical kinetic energy strongly increases
after the wind pulse, its magnitude is still three orders
smaller than near-inertial horizontal kinetic energy.

4. Near-inertial horizontal kinetic energy

Although almost uniform and trapped within the 60-
m-thick mixed layer just after the wind pulse, near-
inertial horizontal motions quickly become spatially
heterogeneous, involving horizontal scales much
smaller than the eddy scales (Fig. 7a) and significant
vertical propagation into the ocean interior (Fig. 7b)
down to 1000 m. The vertical penetration (Fig. 8),
deeper in negative vorticity regions (Fig. 8b) than in
positive ones (Fig. 8c), highlights the eddy vorticity ef-
fects. There is a remarkable similarity between Fig. 8b
herein and Figs. 5b–d in Lee and Niiler (1998), which
emphasizes the chimney effect of the eddies. A more
detailed diagnosis of the complex distribution of the
near-inertial motion field is difficult to undertake with-
out using some analytical guidelines. Consequently,
YBJ’s approach (described in section 2) is used here-
after to analyze our results.

When near-inertial horizontal motions are decom-
posed onto vertical normal modes following (1), the
vertical-mode spectrum (Figs. 9) reveals a clear time
evolution of their organization linked to the eddy rela-

FIG. 8. Vertical profiles at t � 9 IP of the near-inertial horizontal energy in m2 s�2 (a) averaged over the whole domain, (b)
averaged over areas where the surface relative vorticity � � �2 � 10�5 s�1, and (c) averaged over areas where � � �2 � 10�5 s�1.

FIG. 7. Snapshots at t � 9 IP of the near-inertial horizontal kinetic energy (m2 s�2) (a) at the surface and (b)
along a meridional vertical section.
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tive vorticity. At t � 1 IP (i.e., just after the wind pulse),
NIOs have the same vertical normal-mode spectrum in
all regions, whatever the eddy vorticity sign (Fig. 9a).
This mode spectrum is dominated by the first and fifth
baroclinic modes. The barotropic mode (mode 0) is
negligible. Such results indicate that interaction be-
tween the mesoscale eddy field and NIOs principally
involves the barotropic mode of the eddy field (which is
the dominant mode) and the baroclinic modes of the
NIOs. The first baroclinic mode of the eddy field should
have a much weaker influence on the NIOs. The main
reason (see Flierl 1978) is that our stratification varies
with depth, and, consequently, triple interaction coeffi-
cients between vertical normal modes are less than 0.02
when the barotropic mode is not involved.

Numerical results reveal the following evolution. At
t � 2 IP, the vertical-mode spectrum (not shown) re-

veals that the first baroclinic mode has larger (smaller)
amplitude in negative (positive) vorticity regions,
higher baroclinic modes almost being not affected. This
indicates that the first mode has been expelled from
cyclonic structures and trapped within anticyclonic
ones. At that time, all the vertical modes (including the
first one) have their phase correlated with the eddy
vorticity field (not shown). At t � 4 IP, Fig. 9b reveals
that the spectral amplitude of the intermediate modes
(modes 2 to 7) is smaller in cyclonic regions and larger
in anticyclonic ones, indicating that these modes have
been expelled in turn from cyclonic structures and
trapped within anticyclonic ones. Higher-mode ampli-
tudes are not affected yet. The phase of the intermedi-
ate and higher modes at t � 4 IP (see modes 5 and 10
in Fig. 10) is significantly correlated with the eddy vor-
ticity field as anticipated by Klein et al. (2004) using the

FIG. 10. Scatterplot at t � 4 IP of the phase � of modes 1, 5, and 10 of the NIOs with the relative vorticity of the eddy field. Solid
line correspond to the analytical solution at earlier times � � ��t/2.

FIG. 9. Vertical-mode spectrum of the near-inertial horizontal velocity field (�u2 
 �2) at (a) t � 1 IP and (b)
t � 4 IP in regions where � � �2 � 10�5 s�1 (solid lines), � � 2 � 10�5 s�1 (dashed lines), and �2 � 10�5 s�1 �
� � 2 � 10�5 s�1 (dotted–dashed lines). Units on the vertical axis are m2 s�2.
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YBJ approach (see section 2 and the appendix). On the
other hand, the lowest-mode (mode 1) amplitude does
not reveal a dependence on the eddy vorticity sign any-
more (Fig. 9b). Its phase (see mode 1 in Fig. 10) has
become scrambled and is no longer correlated to the
eddy vorticity field.

To further understand whether eddy relative vortic-
ity drives the time evolution of the vertical normal
modes of NIOs as predicted by analytical results ob-
tained with the YBJ approach, we have compared the
amplitude of the vertical normal modes given by (11)
with the one observed in our simulations. As discussed
in section 2, (11) indicates that for a given vertical nor-

mal mode n, near-inertial energy should resemble the
Laplacian of the vorticity field truncated so as to retain
only scales larger than the critical length scale lcn �
�2�Dnt.

Let us focus on the third vertical normal mode. Fig-
ures 11a,b reveal that as time goes on, the near-inertial
horizontal kinetic energy of mode 3 remains well cor-
related to the Laplacian of the eddy vorticity field for
horizontal wavenumbers lower than kc3 � 2�/lc3, with
kc3 decreasing with time [as given by (10)]. For higher
wavenumbers the correlation quickly drops to zero.
Moreover, the kinetic energy spectrum of mode 3 (Fig.
12b) reveals an energy maximum for a wavenumber

FIG. 12. Horizontal wavenumber spectra at t � 2 (blue) and 5 (red) IP of the amplitudes of modes (a) 1 and (b)
3. For clarity, the spectrum at t � 5 IP is shifted by a decade. The theoretical wavenumber kc � �2�/(Dnt) is
represented by blue (for t � 2 IP) and red (for t � 5 IP) dashed vertical lines. The black dashed vertical line
appearing in (a) corresponds to the wavenumber �3/r1, with r1 being the Rossby radius of deformation of mode
1. Wavenumbers are in nondimensional units, and k � 10 represents a wavelength of 390 km.

FIG. 11. Correlation between spectral coefficients (averaged along circular rings in horizontal wavenumber
space) of the near-inertial horizontal energy of mode 3 and the Laplacian of the (a) surface relative vorticity �2�
at t � 2 and (b) 5 IP. The critical horizontal wavenumber kc � �2�/D3t is represented by a dashed line.
Wavenumbers are in nondimensional units and k � 10 represents a wavelength of 390 km.
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close to the critical wavenumber kc3 (dashed vertical
line). Figure 13 further confirms this agreement with
the analytical solution (11). From Fig. 13a, the near-
inertial energy associated with mode 3 at t � 5 IP does
not seem to be correlated to the total Laplacian of the
vorticity field �2�. However, when �2� is truncated so as
to retain only scales larger than lc3 � �2�D3t, it ap-
pears well correlated to the near-inertial energy (Fig.
13b). Results for higher modes display an even better
agreement with the analytical solution (11), the critical
length scale being smaller for these modes because of
their smaller Rossby radius of deformation.

On the contrary, results for the lower modes (modes
1 and 2—mode 0 is not energetic) depart from the ana-
lytical solution (11). Although the kinetic energy spec-
trum of the first baroclinic mode (Fig. 12a) displays a
peak at a wavenumber close to the critical wavenumber
kc1 at t � 2 and t � 5 IP, a second peak located at a
higher wavenumber k � �3/r1, with r1 being the first
Rossby radius of deformation, appears and increases
with time. This second peak, almost as energetic as the
first one at t � 5 IP, is not anticipated by the analytical
solution (11). The near-inertial kinetic energy spectrum
associated with the second baroclinic mode (not shown)
also displays a second peak but at the wavenumber k �
�3/r2, with r2 being the second Rossby radius of de-
formation.

Thus, the time evolution of NIOs embedded in a fully
turbulent eddy field is partly understandable when
these motions are decomposed onto vertical normal
modes and analyzed using the YBJ approach. The dy-
namics of the higher modes (n 	 3) at any time, and of
the lowest modes (modes 1 and 2) at an earlier time,
follow the analytical solutions described in section 2

(which a posteriori corroborates the choice of the meth-
ods used to extract the near-inertial signal, described in
section 3c). This confirms that these modes are princi-
pally distorted by eddy relative vorticity, not by the
eddy deformation field. Their horizontal dispersion,
characterized by the length scale lcn, is much larger for
the lower vertical normal modes than for the higher
ones because of their larger Rossby radius of deforma-
tion. However, the behavior of the lowest modes, which
are the fastest to disperse, significantly differs at later
times from the analytical solution (11). We suspect that
for these modes, nonlinear interactions between NIOs
become significant (see section 5a and Danioux and
Klein 2008). Because of the different dispersion and
time evolution of the vertical normal modes, near-
inertial motions propagate from the upper layers into
the ocean interior.

5. Near-inertial vertical kinetic energy

Characteristics of the near-inertial vertical kinetic en-
ergy (highlighted by the difference between the profiles
with and without wind in Fig. 5b) differ from those of
the near-inertial horizontal kinetic energy. Just after
the wind pulse, near-inertial vertical kinetic energy ex-
hibits a maximum around 100 m, characterized by a
strong spatial heterogeneity with small horizontal
scales, but its rms magnitude is still weak. The horizon-
tal wavenumber spectrum (not shown) at that time dis-
plays a plateau that extends down to scales as small as
40 km. At later times, the vertical kinetic energy pen-
etrates into the ocean interior more quickly and deeply
than the horizontal kinetic energy, with its magnitude
increasing with time. As mentioned in section 3c, at t �

FIG. 13. Scatterplot at t � 5 IP (a) of the near-inertial horizontal energy (in m2 s�2) of mode 3 with the Laplacian
of the surface vorticity �2� (in m�2 s�1) and (b) of the near-inertial horizontal energy of mode 3 with the Laplacian
of the surface vorticity truncated �2�c3 so as to retain scales larger than lc3 � �2�D3t.
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4 IP, it displays two maxima, one around 100 m and
another around 1700 m, with similar rms values on the
order of 40 m day�1 and extrema of 100 m day�1 (Fig.
5b).

a. Characteristics of the two w maxima of the
near-inertial motions

The w field at 100 m at t � 4 IP (Fig. 14a) contains
small-scale, elongated structures, with a width on the
order of 50 km. Its horizontal wavenumber spectrum
(Fig. 15a) has a shape resembling that observed just
after the wind pulse with a plateau extending down to
scales as small as 40 km. The w field at 1700 m (Fig.
14b) is dominated by patchy structures with smaller
scales than at 100 m. Its horizontal wavenumber spec-
trum (Fig. 15b) displays a narrow peak that corre-
sponds to a wavelength of 90 km and a secondary peak
at 36 km.

The normal-mode analysis [using (2)] of the near-
inertial vertical velocity field reveals that the maximum
at 100 m is mainly captured by the higher vertical
modes (modes 4 to 12) (cf. Figs. 16c,a), while the maxi-
mum at 1700 m is captured by the three lowest vertical
modes (cf. Figs. 16b,d). These specific vertical-mode
contributions, together with the results of section 4, ex-
plain the characteristics of these two maxima.

Because the w field at 100 m is mainly captured by
the higher modes (modes 4–12), which have been found
in the preceding section to follow the analytical solu-
tions of the YBJ approach, the w field at 100 m should
follow the analytical solution (A5) detailed in the ap-
pendix and should be close to the horizontal gradient of
the eddy relative vorticity field. These characteristics
have been checked in our numerical simulations. The
spectral correlation displayed in Fig. 17b clearly indi-
cates that the spatial heterogeneity of the contribution
of mode 8 (i.e., w8) resembles the vorticity gradient

FIG. 15. Horizontal wavenumber spectrum at t � 6 IP of w at (a) z � �100 m and (b) z � �1700 m. Values of
k1 � �3/r1 and k2 � �3/r2 are indicated. Wavenumbers are in nondimensional units, and k � 10 represents a
wavelength of 390 km. Units on the vertical axis are m2 s�2.

FIG. 14. Snapshots at t � 6 IP of the temporal rms value of the vertical velocity (in m s�1), i.e., wrms � �w2

(where the overbar represents the temporal mean over one inertial period), at (a) z � �100 m and (b) z �
�1700 m.
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field. The same result is obtained for the other high
modes (modes 4–12) and for the total w field at 100 m
(not shown). The similarities between the horizontal
wavenumber spectrum of w at 100 m (Fig. 15a) and the

higher-mode wavenumber spectra (see mode 6 in Fig.
19b) confirm these characteristics. The frequency spec-
trum shows that the w field at 100 m (dashed line on
Fig. 18) mostly oscillates at the inertial frequency.

FIG. 17. Correlation coefficient between spectral coefficients (averaged along circular rings in horizontal wave-
number space) of the amplitude averaged over one inertial period of w2 (dashed line) or w8 (solid line) with the
eddy vorticity gradient, at (a) t � 1 IP and (b) t � 4 IP. Wavenumbers are in nondimensional units, and k � 10
represents a wavelength of 390 km.

FIG. 16. Scatterplots at t � 6 IP of the total near-inertial vertical velocity (wtot) with the (a), (b) low vertical
normal modes’ contribution (modes 1 to 3) and with the (c), (d) higher vertical normal modes’ contribution (modes
4 to 12) at (a), (c) z � �100 m and (b), (d) z � �1700 m. Velocities are in m s�1.
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The w field at 1700 m (Fig. 14b) is captured by the
lowest vertical modes (modes 1–3) that have been
found in section 4 (in particular, modes 1 and 2) to
depart from the analytical solutions of the YBJ ap-
proach. Such departure is confirmed by Fig. 17b: at t �
4 IP, if the second baroclinic mode of the near-inertial
vertical velocity w2 followed the analytical solution
(26), it should be correlated with the vorticity gradient
field for wavenumbers k � kc2, with kc2 � 31 in nondi-
mensional units [multiply by 2�/(3.9 � 106) m�1 to get
the dimensional wavenumbers]. But the correlation,
represented by the dashed curve, falls to zero at k � 17.
The same departure (not shown) from the YBJ ap-
proach has been found for the first mode of the w field.
These differences with the analytical solution explain
the existence of two narrow dominant peaks on the w
spectrum at 1700 m (Fig. 15b). The first peak is also
present on the horizontal spectrum of the first baro-
clinic mode (Fig. 19a) and is located at the wavenumber
k1 � �3/r1, with r1 being the Rossby radius of defor-
mation of the first baroclinic mode. This peak does not
appear on the spectra of the other vertical normal
modes. The secondary peak clearly emerges in the
spectrum of mode 2 (not shown) but is not present in
other spectra. It corresponds to the wavenumber
k2 � �3/r2, with r2 being the Rossby radius of defor-
mation of mode 2. These two specific wavenumbers (k1

and k2) have already been identified in section 4. An-
other feature of the w field at 1700 m, not anticipated
by the analytical results, concerns its frequency spec-
trum. This spectrum (solid line on Fig. 18) reveals that
the dominant frequency is twice the inertial frequency.
Secondary peaks are present at f and 3f. Frequency
spectra of modes 1 and 2 of the near-inertial vertical

velocity (not shown) also display a dominant peak at 2f.
In a companion note (Danioux and Klein 2008), it is
shown that the departure of these lowest modes from
the analytical solution (26) is due to a resonance
mechanism specific to each mode, which does not need
to involve other modes. In this mechanism, for a given
baroclinic mode, eddy relative vorticity excites, through
the nonlinear terms ignored in the YBJ approach, in-
ertia-gravity waves of frequency 2f and wavenumber
k � �3/r, with r being the Rossby radius of deforma-
tion of the mode considered. Because of the properties
of the vorticity spectrum, this resonance appears essen-
tially for modes 1 and 2.

These characteristics, in particular the kinetic energy
peaks at frequencies equal to or larger than twice the
inertial frequency, may have important consequences,
which are discussed in section 6.

b. Explanation of the appearance of the deep
maximum

The preceding results for the vertical velocity field, in
terms of vertical normal-mode decomposition, and the
results of section 4 lead to proposing a simple explana-
tion for the emergence of the deep maximum. From (2),
the vertical velocity variance can be written as

�w2� � ��	
n�1

�

wnHn�2�
� 	

n
�wn

2�Hn
2 
 	

n�m
�wnwm�HnHm, �14�

where

wn �
�un

�x



��n

�y
�15�

and �•� is the average operator over the whole horizon-
tal domain. The wn directly depends on the time evo-
lution of un and �n, as described in section 4.

Just after the wind pulse, near-inertial horizontal ve-
locities are trapped within the mixed layer. At that
time, dispersion has not worked yet, so the amplitude of
the near-inertial velocities is still homogeneous. But
their phase is affected by the eddy relative vorticity.
The solution at this short time for each mode n can be
written as

�un, �n��t�� � un0�cos�f 

�

2�t�, � sin�f 

�

2�t�	Fn�z�,

�16�

and

wn � �
t�|�H� |

2
un0 sin��f 


�

2�t� 
 �	, �17�

FIG. 18. Frequency spectrum at t � 6 IP of w at z � �100 m
(dashed line) and z � �1700 m (solid line).
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with un0 being the initially homogeneous amplitude of
mode n. Here, t� � 0 represents the time just after the
wind pulse. The horizontal vorticity gradient is written
as (��/�x, ��/�y) � |�H� | (cos�, sin�). The subinertial
part of (17) is similar to (A5). The expression for the
total near-inertial vertical velocity variance is

�w2� � �
t�|�H� |
2

sin��f 

�

2�t� 
 �	�2��	
n�1

�

un0Hn�2

.

�18�

The left part of the right-hand side of (18) is the de-
pendence with time and horizontal coordinates of �w2�,
whereas the right part represents its vertical structure.
Equation (18) reveals that a short time after the wind

pulse, the amplitude of the vertical velocity is related to
the horizontal vorticity gradient and increases linearly
with time. The vertical structure of �w2� is represented
by the dotted–dashed curve in Fig. 20a, where (t�|�H�| /
2) sin[(f 
 �/2)t� 
 �] has been replaced by a constant
a for simplicity. This structure presents a maximum
near the base of the mixed layer, which is understand-
able because near-inertial horizontal velocities are
trapped within the mixed layer at this time.

Later, vertical motions associated with the first baro-
clinic mode (i.e., w1) disperse and are no longer corre-
lated with the eddy vorticity gradient, whereas higher
modes, not yet dispersed, are still close to the eddy
vorticity gradient field [see solution (A5)]. Moreover,
because of the resonance mechanism described in sec-

FIG. 20. (a) Vertical profile of �w2� when all vertical modes are correlated [dotted–dashed profile, which corre-
sponds to (18)], when mode 1 is decorrelated from the other modes [dashed profile, which corresponds to (19)],
and when both modes 1 and 2 are decorrelated from the other modes [solid profile, which corresponds to (20)]. (b)
Specific contributions to the solid profile in (a) of modes 1 and 2, i.e., �w2

1�H
2
1 
 �w2

2�H
2
2 (solid curve), and of the

higher modes, i.e., �(	n	3wnHn)2� (dashed curve). These profiles are obtained using wn � aun0 in (18), (19), and (20)
with a being a constant and un0 the projection on mode n of the initial near-inertial horizontal velocity.

FIG. 19. Horizontal wavenumber spectrum at t � 4 IP of vertical modes (a) w1 and (b) w6. The value k1 � �3/r1

is indicated. Wavenumbers are in nondimensional units, and k � 10 represents a wavelength of 390 km. Units on
the vertical axis are m2 s�2.
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tion 5a, w1 quickly develops energy at the specific wave-
number k1 � �3/r1. This means that w1 differs from wn

at that time, and therefore that �w1wn� � 0 for n 	 2.
In this case, �w2� can be written as

�w2� � �w1
2�H1

2 
 ��	
n	2

wnHn�2�. �19�

If we use again wn � aun0 for simplicity (with a being a
constant) in (19), we get the vertical profile for �w2�
represented by the dashed line in Fig. 20a. This profile
exhibits two maxima: one at 100 m and another around
1200 m.

Later still, the second baroclinic mode becomes
decorrelated from the eddy relative vorticity gradient
(as illustrated in Fig. 17b) and therefore from the higher
modes. The resulting additional decorrelation �w2wn� �
0 with n 	 3 leads to the expression

�w2� � �w1
2�H1

2 
 �w2
2�H2

2 
 ��	
n	3

wnHn�2�.

�20�

This expression produces a deeper maximum in the in-
terior, as shown in Fig. 20a by the solid profile. Its depth
is now closer to that exhibited by the solid profile in Fig.
5b. This simple explanation indicates that the decorre-
lation between low and high vertical normal modes is
responsible for the appearance of a strong maximum of
near-inertial vertical velocities in the deep interior. This
decorrelation is due to effects of the eddy relative vor-
ticity on the lowest vertical modes that differ from
those on higher modes because of their different
Rossby radius of deformation. When the respective
mode contributions to these new profiles are plotted
(Fig. 20b), it immediately appears that the shallower
maximum is explained by higher modes and the deeper
one by lower modes, which explains the scatterplots
displayed in Fig. 16.

6. Discussion and conclusions

The 3D propagation of wind-forced NIOs, embedded
in a fully turbulent mesoscale eddy field, has been ana-
lyzed within a vertical normal-mode framework and us-
ing YBJ’s approach as a guideline. This choice has al-
lowed us to explain the physics involved, in particular
the rapid time evolution and dispersion of the NIOs
field as well as its characteristic length scales. Although
the near-inertial motion field is initially uniform, it
quickly becomes spatially heterogeneous with horizon-
tal scales much smaller than the eddy scales and expe-
riences a significant vertical propagation into the ocean
interior. Analysis indicates that the effect of the relative

vorticity associated with the eddy field is the main
mechanism that drives this propagation. The eddy
strain and shear deformation field does not appear to
have any influence. The additional assumptions on
which the YBJ linear approach is based have been suc-
cessfully verified, at least for the higher vertical normal
modes (n 	 3) of near-inertial motions: for these
modes, wave–wave interactions are negligible during
the simulation duration. The lowest modes (modes 1
and 2) that disperse more rapidly appear to saturate
after a few inertial periods because of wave–wave in-
teractions.

The faster evolution of the lowest vertical modes and
their different characteristics make them decorrelate
quickly from higher ones. As a result, two maxima of
near-inertial vertical velocities appear after the wind
pulse, one around 100 m and another one much below
the main thermocline around 1700 m. The shallower
maximum principally involves higher vertical modes,
whereas the deeper one involves the lowest vertical
modes (Fig. 16). The characteristics of the shallower
maximum are close to those anticipated by the YBJ
analytical approach. At this level, the vertical velocity
field has a frequency close to the inertial frequency, and
its spatial heterogeneity resembles that of the eddy vor-
ticity–gradient field. The deeper maximum departs
from the characteristics anticipated by the YBJ ap-
proach. The dominant frequency at this level is twice
the inertial frequency. The vertical velocity field asso-
ciated with these superinertial waves is characterized by
much smaller horizontal scales than at 100 m.

The existence of superinertial waves at 1700 m is
important because they can potentially play a role in
supplying energy to the universal internal wave field in
the deep ocean and induce diapycnal mixing. Indeed
the energy supplied by the lowest vertical normal
modes with frequencies � 	 2f may subsequently be
transferred to higher vertical modes and ultimately to
small-scale mixing through parametric subharmonic in-
stability (PSI; not taken into account in the present
study) (MacKinnon and Winters 2005; Staquet and
Sommeria 2002).

The emergence of double-inertial frequency waves in
the deep interior at midlatitudes has already been re-
ported (Niwa and Hibiya 1997; Price 1983) but in a very
different physical context that concerns the ocean re-
sponse to moving hurricanes. Niwa and Hibiya (1997)
identified the generation mechanism of these waves as
nonlinear interactions between higher vertical normal
modes with frequency f producing lower modes with
frequency 2f. The efficiency of these interactions is
strongly dependent on the hurricane size and propaga-
tion. In our study, the vertical-mode spectrum of near-
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inertial waves, initially set up by the mixed layer depth,
involves energy in both the lower and the higher
modes, and these modes weakly interact at a later time
(as anticipated by the YBJ approach for NIOs embed-
ded in a mesoscale eddy field). Consequently, the gen-
eration mechanism of superinertial waves characteriz-
ing the lowest modes does not need to involve the
higher modes and is therefore different from that of
Niwa and Hibiya (1997). A plausible mechanism could
be the nonlinear dynamics of the lowest vertical normal
modes themselves. This generation mechanism is re-
ported in a companion note (Danioux and Klein 2008).

The characteristics of the deep maximum of near-
inertial vertical velocities, as well as the different
mechanisms that explain it, reveal a pathway (driven by
the eddy relative vorticity field) by which wind energy
at midlatitudes quickly penetrates into the deep ocean
interior. Both the amplitudes and characteristics of the
vertical velocity field at such depths advocate further
studies to fully evaluate the efficiency of the PSI
mechanism (not taken into account in the present
study) for transferring the corresponding energy to
small-scale mixing.

Acknowledgments. This work is supported by the
CNRS and IFREMER (FRANCE). Numerical simula-
tions reported here were done at the IDRIS Orsay,
France. We thank both reviewers for their comments.

APPENDIX

Analytical Solutions for the Vertical Velocity
Using Young and Ben Jelloul’s Approach

In this appendix, we derive an analytical expression
for the inertial vertical velocity, which has never been
done. We first summarize the derivation of the solution
of (7)–(8) as performed in Klein et al. (2004), using
YBJ’s analytical approach. Because the eddy field is
characterized by a continuous wavenumber spectrum,
the integration of (7)–(8) in physical space is too diffi-
cult to treat exactly. An alternative is to work in Fourier
space to obtain a solution for each wavenumber k, and
then to come back to physical space. Using

X�x, y, t� � 	
p��N

p�N

	
q��N

q�N

X̂pq�t�ei� px
qy�,

where X is any variable, X̂pq is the Fourier transform of
X, p and q are the horizontal wavenumbers, and N is
the total number of horizontal Fourier modes, final so-
lutions of (7)–(8) (subscript n related to the vertical
mode number is removed for clarity) in spectral space
are (Klein et al. 2004)

R̂ �k
R 0

� �
Tk�̂k

4� �1 � cos
2� t

Tk
� and �A1�

�̂�k � �
Tk�̂k

4�
sin

2�t

Tk
, �A2�

with k2 � p2 
 q2 and Tk � 4�/(k2D). The D is the
“dispersive” parameter defined as r2f, with r being the
Rossby radius of deformation of the vertical normal
mode considered. The consequence of (A1)–(A2) is
that the amplitude and phase of the NIOs at a given
wavenumber (or scale), that is, R̂ �k and �̂�k, are directly
linked to the eddy vorticity amplitude at the same
wavenumber (or scale), that is, �̂k. So when the eddy
vorticity is characterized by a continuous wavenumber
spectrum, the NIOs’ field should be characterized as
well by a continuous wavenumber spectrum, without
invoking wave–wave interactions between NIOs. This
property cannot be retrieved when the WKB assump-
tion is invoked.

More specific properties of the NIOs’ spectrum can
be deduced from (A1)–(A2). Let us note k0, the spec-
tral peak of the vorticity, and focus on the spectral
region corresponding to k � k0. Assuming that the vor-
ticity spectrum has a slope shallower than k�4, (A1)
indicates that |R �k | is maximum for the wavenumber kc

� �2�/(Dt). The R̂ �k spectrum for k K kc has a posi-
tive slope and resembles the �2�-spectrum. It can be
approximated as | R̂ �k |2 � R 2

0(D2/64) | �̂k |2k4t4. This part
of the spectrum increases with time proportional to t4.
For k k kc, the R� spectrum has a steep negative slope,
is steady, and resembles the streamfunction spectrum
(| R̂ �k |2 � R 2

0 | �̂k |2D�2k�4). Because the total near-
inertial kinetic energy is equal to the integration of the
R� spectrum over the wavenumber range, a simple cal-
culation shows that the first part of the spectrum (k �
kc) is the dominant contribution. Then an estimation of
the solution for R� in physical space can be derived by
taking only the most energetic part of the spectrum,
leading to the solution (11).

A solution for the near-inertial vertical velocity w can
also be found using the YBJ approach. Let us find the
expression of ŵk, the Fourier transform of w � �u/�x 

�� /�y. Using u 
 i� � (R 0 
 R�)ei(�0
��)e�ift and the
solutions (A1)–(A2), we end up with the expression

ŵk � ik
Tk�̂k

2�
R o sin

�t

Tk
sin�ft�1 


k2r2

4 � � �o	.

�A3�

We focus on the subinertial part of ŵk, that is, the slow
variation of its amplitude:
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Ŵk � ik
Tk�̂k

2�
R o sin

�t

Tk
. �A4�

At earlier times after the wind pulse, Eq. (A4) pro-
vides an approximate solution for w. If we assume t K

Tk for each wavenumber k, then Ŵk � ik(�̂k /2)R ot,
which means that the subinertial part W of w in physical
space linearly increases with time and is close to the
gradient of the eddy relative vorticity, that is,

W

R 0
�

t

2
|�� |. �A5�

The dominant frequency of w at these earlier times is
[from (A3)] close to the Coriolis frequency.

At later times, (A4) implies a scale separation involv-
ing kc such that, for k � kc , the solution Ŵk linearly
increases with time and, for k � kc, the solution oscil-
lates around a steady value. Then, it is easy to show
using the same arguments as for R� that the dominant
part of the w spectrum concerns the spectral range k �
kc and resembles the eddy vorticity gradient within this
range, with its amplitude increasing linearly with time.
In other words, the subinertial part of the vertical ve-
locity field in physical space should match the eddy
vorticity gradient field truncated so as to retain hori-
zontal scales larger than lc � �2�Dt. The analytical
expression in physical space is

W

R 0
�

t

2
|��c |, �A6�

with ��c being the horizontal gradient of the vorticity
field truncated so as to retain scales larger than
lc��2�Dt. The dominant frequency of w at these later
times is again close to the Coriolis frequency.

In terms of vertical normal modes, because D is
smaller for the higher modes, the solution for W for
these modes should still resemble (A5) after some in-
ertial periods, that is, the total gradient of the relative
vorticity field because of t K Tk. Another explanation is
that |��c | � |�� | and (A6) resembles (A5), because lc is
very small for these modes and because of the proper-
ties of the vorticity spectrum. On the other hand, the
solution for W at that time for the lowest modes (with
large D) should resemble (A6), that is, the gradient of
the relative vorticity field truncated to retain scales
larger than lc��2�Dt.
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