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The North Pacific eastern 
boundary upwelling system is 
one of the most ecologically 
productive, economically relevant, 
and well-studied systems in the 
world. Over the last 60 years, 
a wide range of observations 
have documented the significant 
impacts of the El Niño Southern 
Oscillation (ENSO) on marine 
ecosystems along the US West 
Coast. Yet no systematic attempt 
exists to use this knowledge 
to explicitly forecast local 
marine ecosystem responses to 
individual ENSO events. 

A recent workshop, Forecasting 
ENSO impacts on marine 
ecosystems of the US West 
Coast, attempted to develop 
a framework for using ENSO 
forecasts from climate and 
statistical models in order 
to predict changes in key 
components of the marine 
ecosystem in the California 
Current System.

This edition of Variations 
features participants from the 
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The US West Coast eastern boundary upwelling system supports one of the 
most productive marine ecosystems in the world and is a primary source of 

ecosystem services for the US (e.g., fishing, shipping, and recreation). Long-term 
historical observations of physical and biological variables in this region have been 
collected since the 1950s (e.g., the CalCOFI program and now including the coastal 
ocean observing systems), leading to an excellent foundation for understanding the 
ecosystem impacts of dominant climate fluctuations such as the El Niño-Southern 
Oscillation (ENSO). In the northeast Pacific, ENSO impacts a wide range of physical 
and biotic processes, including temperature, stratification, winds, upwelling, and 
primary and secondary production. The El Niño phase of ENSO, in particular, can 
result in extensive geographic habitat range displacements and altered catches of 
fishes and invertebrates, and impact vertical and lateral export fluxes of carbon 
and other elements (Jacox et al., this issue; Anderson et al., this issue; Ohman et al., 
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workshop, including biologists 
and physical climate scientists, 
who were involved in advancing 
the discussion and outcomes. 
After describing a strategy to 
understand and quantify the 
predictable components of the 
ecosystem response to ENSO 
along the US West Coast (Di 
Lorenzo and Miller), this issue 
discusses the needs to identify 
target ecosystem indicators or 
populations that respond to 
ENSO and are societally relevant, 
such as exploitable species 
that are regulated by federal 
and state agencies (Ohman 
et al.). A major challenge for 
understanding the predictability 
of targeted ecosystem indicators 
is identification of the dominant 
regional physical, biogeochemical, 
and lower trophic processes 
that carry the ENSO predictable 
response in the marine 
ecosystem (Jacox et al.; Anderson 
et al.). These processes are 
sensitive to the different flavors 
of ENSO teleconnections 
originating in the tropical Pacific 
(Capotondi et al.). Exploiting 
ENSO predictability dynamics 
can add skill to current seasonal 
forecasts of large marine 
ecosystem in the California 
Current (Tommasi et al.) and 
improve existing modeling tools 
for managing top predators 
(Hazen et al.).   
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this issue). However, despite empirical observations and increased understanding 
of the coupling between climate and marine ecosystems along the US West Coast, 
there has been no systematic attempt to use this knowledge to forecast marine 
ecosystem responses to individual ENSO events. ENSO forecasting has become 
routine in the climate community. However, little has been done to forecast 
the impacts of ENSO on ecosystems and their services. This becomes especially 
important considering the occurrence of recent strong El Niño events (such as 
2015-16) and climate model projections that suggest that ENSO extremes may 
become more frequent (Cai et al. 2015).

The joint US CLIVAR/OCB/NOAA/PICES/ICES workshop on Forecasting ENSO 
impacts on marine ecosystems of the US West Coast (Di Lorenzo et al. 2017) 
held in La Jolla, California, in August 2016 outlined a three-step strategy to better 
understand and quantify the ENSO-related predictability of marine ecosystem 
drivers along the US West Coast (Figure 1). The first step is to use a high-resolution 
ocean reanalysis to determine the association between local ecosystem drivers 
and regional forcing patterns (RFPs). The identification of ecosystem drivers will 
depend on the ecosystem indicators or target species selected for prediction 
(Ohman et al., this issue). The second step is to objectively identify the tropical 
sea surface temperature (SST) patterns that optimally force the RFPs along the 
US West Coast region using available long-term large-scale reanalysis products. 
While the goal of the first two steps is to understand the dynamical basis for 
predictability (Figure 1, blue path), the final third step (Figure 1, orange path) aims 
at quantifying the predictability of the RFPs and estimating their prediction skill 
at seasonal timescales. This third step can be implemented using the output of 
multi-model ensemble forecasts such as the North America Multi-Model Ensemble 
(NMME) or by building efficient statistical prediction models such as Linear Inverse 
Models (LIMs; Newman et al. 2003). 

Important to the concept of ENSO predictability is the realization that the 
expressions of ENSO are very diverse and cannot be identified with a few indices 
(Capotondi et al. 2015; Capotondi et al., this issue). In fact, different expressions 
of sea surface temperature anomalies (SSTa) in the tropics give rise to oceanic 
and atmospheric teleconnections that generate different coastal impacts in the 
northeast Pacific. For this reason, we will refer to ENSO as the collection of tropical 
Pacific SSTa that lead to deterministic and predictable responses in the regional 
ocean and atmosphere along the US West Coast. 

In the sections below, we articulate in more detail the elements of the framework 
for quantifying the predictability of ENSO-related impacts on coastal ecosystems 
along the US West Coast (Figure 1). Our focus will be on the California Current 
System (CCS), reflecting the regional expertise of the workshop participants. 
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Specifically, we discuss (1) the ecosystem drivers and 
what is identified as such; (2) RFP definitions; and (3) 
the teleconnections from the tropical Pacific and their 
predictability.

Ecosystem drivers in the California Current System
The impacts of oceanic processes on the CCS marine 
ecosystem have been investigated since the 1950s when 
the long-term California Cooperative Oceanic Fisheries 
Investigations (CalCOFI) began routine seasonal sampling 
of coastal ocean waters. The CalCOFI program continues 

today and has been augmented 
with several other sampling 
programs (e.g., the coastal 
ocean observing network), 
leading to an unprecedented 
understanding of how climate 
and physical ocean processes, 
such as upwelling, drive 
ecosystem variability and 
change (e.g., see more recent 
reviews from King et al. 2011; 
Ohman et al. 2013; Di Lorenzo 
et al. 2013). 

The dominant physical 
oceanographic drivers of 
ecosystem variability occur 
on seasonal, interannual, and 
decadal timescales and are 
associated with changes in 
(1) SST; (2) upwelling velocity; 
(3) alongshore transport; (4) 
cross-shore transport; and (5) 
thermocline/nutricline depth 
(see Ohman et al., this issue). 
This set of ecosystem drivers 
emerged from discussions 
among experts at the workshop. 
Ecosystem responses to these 
drivers include multiple trophic 
levels, including phytoplankton, 

zooplankton, small pelagic fish, and top predators, and 
several examples have been identified for the CCS (see 
summary table in Ohman et al., this issue). 

While much research has focused on diagnosing the 
mechanisms by which these physical drivers impact 
marine ecosystems, less is known about the dynamics 
controlling the predictability of these drivers. As 
highlighted in Ohman et al. (this issue), most of the 
regional oceanographic drivers (e.g., changes in local SST, 
upwelling, transport, thermocline depth) are connected to 

Figure 1. Framework for understanding and predicting ENSO impacts on ecosystem drivers. 
Blue path shows the steps that will lead to Understanding of the ecosystem drivers and their 
dependence on tropical Pacific anomalies. Orange path shows the steps that will lead to 
quantifying the Predictability of marine ecosystem drivers along the US West Coast that are 
predictable from large-scale tropical teleconnection dynamics. 
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changes in large-scale forcings (e.g., winds, surface heat 
fluxes, large-scale SST and sea surface height patterns, 
freshwater fluxes, and remotely forced coastally trapped 
waves entering the CCS from the south). In fact, several 
studies have documented how large-scale changes in 
wind patterns associated with the Aleutian Low and 
the North Pacific Oscillation drive oceanic modes of 
variability such as the Pacific Decadal Oscillation and 
the North Pacific Gyre Oscillation (Mantua et al. 1997; 
Di Lorenzo et al. 2008; Chhak et al. 2009; Ohman et al., 
this issue; Jacox et al., this issue; Anderson et al., this 
issue; Capotondi et al., this issue) that influence the CCS. 
However, these large-scale modes only explain a fraction 
of the ecosystem’s atmospheric forcing functions at the 
regional-scale. Thus, it is important to identify other 
key forcings to gain a more complete mechanistic 
understanding of CCS ecosystem drivers (e.g., Jacox et al. 
2014; 2015). 

Atmospheric and oceanic regional forcing patterns
The dominant large-scale quantities that control the CCS 
ecosystem drivers are winds, heat fluxes, and remotely 
forced coastally trapped waves (Hickey 1979). Regional 
expressions or patterns of these large-scale forcings 
have been linked to changes in local stratification and 
thermocline depth (Veneziani et al. 2009a; 2009b; 
Combes et al. 2013), cross-shore transport associated 
with mesoscale eddies (Kurian et al. 2011; Todd et al. 
2012; Song et al. 2012; Davis and Di Lorenzo 2015b), 
and along-shore transport (Davis and Di Lorenzo 2015a; 
Bograd et al. 2015). For this reason, we define the regional 
expressions of the atmospheric and remote wave 
forcing that are optimal in driving SST, ocean transport, 
upwelling, and thermocline depth as the RFPs. To clarify 
this concept, consider the estimation of coastal upwelling 
velocities. While a change in the position and strength in 
the Aleutian Low has been related to coastal upwelling in 
the northern CCS, a more targeted measure of the actual 
upwelling vertical velocity and nutrient fluxes that are 
relevant to primary productivity can only be quantified by 
taking into account a combination of oceanic processes 
that depend on multiple RFPs such as thermocline 

depth (e.g., remote waves), thermal stratification (e.g., 
heat fluxes), mesoscale eddies, and upwelling velocities 
(e.g., local patterns of wind stress curl and alongshore 
winds; see Gruber et al 2011; Jacox et al. 2015; Renault 
et al. 2016). In other words, if we consider the vertical 
coastal upwelling velocity ( ) along the northern CCS, a 
more adequate physical description and quantification 
would be given from a linear combination of the different 
regional forcing functions  r a t h e r 
than 

The largest interannual variability in the Pacific that 
impacts the RFPs is ENSO, which also constitutes the 
largest source of seasonal (3-6 months) predictability. 
During El Niño and La Niña, atmospheric and oceanic 
teleconnections from the tropics modify large-scale and 
local surface wind patterns and ocean currents of the 
CCS and force coastally trapped waves. 

ENSO teleconnections and potential seasonal 
predictability of the regional forcing patterns
While ENSO exerts important controls on the RFPs in the 
CCS, it has become evident that ENSO expressions in the 
tropics vary significantly from event to event, leading 
to different responses in the CCS (Capotondi et al., this 
issue). Also, as previously pointed out, the CCS is not 
only sensitive to strong ENSO events but more generally 
responds to a wide range of tropical SSTa variability that 
is driven by ENSO-type dynamics in the tropical and 
sub-tropical Pacific. For this reason, we define an “ENSO 
teleconnection” as any RFP response that is linked to 
ENSO-type variability in the tropics. 

ENSO can influence the upwelling and circulation in the CCS 
region through both oceanic and atmospheric pathways. 
It is well known that equatorial Kelvin waves, an integral 
part of ENSO dynamics, propagate eastward along the 
Equator and continue both northward (and southward) 
along the coasts of the Americas as coastally trapped 
Kelvin waves after reaching the eastern ocean boundary. 
El Niño events are associated with downwelling Kelvin 
waves, leading to a deepening of the thermocline, while 
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La Niña events produce a shoaling of the thermocline in 
the CCS (Simpson 1984; Lynn and Bograd 2002; Huyer et 
al. 2002; Bograd et al. 2009; Hermann et al. 2009; Miller 
et al. 2015). The offshore scale of coastal Kelvin waves 
decreases with latitude, and the waves decay while 
propagating northward along the coast due to dissipation 
and radiation of westward propagating Rossby waves. 
In addition, topography and bathymetry can modify 
the nature of the waves and perhaps partially impede 
their propagation at some location. 
Thus, the efficiency of coastal waves 
of equatorial origin in modifying the 
stratification in the CCS is still a matter of 
debate. To complicate matters, regional 
wind variability south of the CCS also 
excites coastally trapped waves, which 
supplement the tropical source. 

In the tropics, SST anomalies associated 
with ENSO change tropical convection 
and excite mid-troposphere stationary 
atmospheric Rossby waves that 
propagate signals to the extratropics, 
the so-called atmospheric ENSO 
teleconnections (Capotondi et al., this 
issue). Through these atmospheric 
waves, warm ENSO events favor a 
deepening and southward shift of the 
Aleutian Low pressure system that 
is dominant during winter, as well as 
changes in the North Pacific Subtropical 
High that is dominant during spring and 
summer, resulting in a weakening of the 
alongshore winds, reduced upwelling, 
and warmer surface water. These 
changes are similar to those induced by 
coastal Kelvin waves of equatorial origin, 
making it very difficult to distinguish the 
relative importance of the oceanic and 
atmospheric pathways in the CCS. In 
addition, due to internal atmospheric 
noise, the details of the ENSO 

teleconnections can vary significantly from event to event 
and result in important differences along the California 
Coast (Figure 2).  

El Niño events exhibit a large diversity in amplitude, 
duration, and spatial pattern (Capotondi et al. 2015). The 
amplitude and location of the maximum SST anomalies, 
whether in the eastern (EP) or central (CP) Pacific, can 
have a large impact on ENSO teleconnections (Ashok et 

Figure 2. Schematic of ENSO teleconnection associated with different flavors of 
tropical SSTa. (a) Atmospheric teleconnections of the canonical eastern Pacific El Niño 
tend to impact the winter expression of the Aleutian Low, which in turn drives an 
oceanic SSTa anomaly that projects onto the pattern of the Pacific Decadal Oscillation 
(PDO). (b) Atmospheric teleconnections of the central Pacific El Niño tend to impact 
the winter expression of the North Pacific High, which in turn drives an oceanic SSTa 
anomaly that projects onto the pattern of the North Pacific Gyre Oscillation (NPGO). 
The ENSO SSTa maps are obtained by regressing indices of central and eastern Pacific 
ENSO with SSTa. The other maps are obtained by regression of SSTa/SLPa with the 
PDO (a) and NPGO (b) indices. 
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