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of dead plate sponges occurred from May 2011 (0.24  %) 
through June 2012 (0.60  %). Among the 28 megafaunal 
taxa occurring in association with the patches, the distribu-
tions of three taxa [two sponge taxa (Porifera) and brittle 
stars (Ophiuroidea)] suggested selectivity for the sponge 
spicule patches. The community structure of visible mega-
fauna within sponge spicule patches was different when 
compared with that outside the patches suggesting that the 
sponges, after death, provide preferred habitat patches for 
certain benthic megafauna. These findings indicate that 
sponge spicule patches contribute to habitat heterogeneity 
in space and time.

Introduction

Characterizing deep-sea systems has become more impor-
tant under changing climate and rising exploitation of 
deep-sea resources (Glover and Smith 2003; Thiel 2003; 
Ramirez-Llodra et al. 2011). Fine sediments dominate most 
deep seafloor habitats where sessile organisms often pro-
vide the only hard substrate available to other fauna and 
have the potential to create habitats (Beaulieu 2001b; Buhl-
Mortensen et al. 2010). Such organisms are called ecosys-
tem engineers (Jones et al. 1994; Wright and Jones 2006). 
Biological structures of ecosystem engineers increase habi-
tat heterogeneity and complexity, thereby modifying spe-
cies abundance and diversity (Levin and Dayton 2009) as 
exemplified by deep-sea coral reefs in canyons and conti-
nental margins (Buhl-Mortensen and Mortensen 2004). In 
sedimentary abyssal areas, however, such features are less 
obvious. Pennatulacea (sea pens), Xenophyophorea and 
Porifera (sponges) have been affirmed to be providers of 
habitats (Buhl-Mortensen et al. 2010). Some hexactinellid 
sponges (Porifera: Hexactinellida) also leave behind dense 

Abstract  Changes in habitat-forming organisms can have 
complex consequences for associated species. Sessile epi-
benthic glass “plate” sponges (Porifera: Hexactinellida) 
are conspicuous inhabitants of soft-sediment abyssal areas 
and their siliceous spicules create persistent spicule patches 
on the seafloor. Sponge spicule patch density, spatial dis-
persion, and percent cover were examined over a seven-
year period (2006–2013) using remotely operated vehicle 
videos from Station M in the abyssal northeast Pacific 
(50˚00N, 123˚00W, ~4,000 m depth). There was an appar-
ent large increase in newly dead plate sponges in Febru-
ary 2007 compared with December 2006, with this trend 
continuing through June 2007 (mean 0.03 % cover increas-
ing to 0.33  %). A second increase in mean percent cover 
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siliceous spicule patches, which themselves form persistent 
structures on the seafloor. To better understand processes 
shaping abyssal communities in space and time, we ana-
lyzed plate sponge spicule patch (SSP) density and size as 
well as megafaunal associations in a northeast Pacific abys-
sal area from 2006 to 2013.

One of the most studied abyssal areas is Station M 
(Sta. M) in the northeast Pacific, where long-term time 
series studies have been conducted since 1989. At Sta. M, 
changes in surface ocean conditions are translated to the 
deep ocean as particulate organic carbon (POC) flux vari-
ations (Smith et al. 2013), which have been correlated with 
megafauna community dynamics (Ruhl and Smith 2004; 
Kuhnz et al. 2014). In particular, large food influxes have 
been suggested as major community disturbances, increas-
ing the density of a few species, while often decreasing 
the overall diversity (Kuhnz et  al. 2014). Between 2006 
and 2012, two major inputs of organic carbon occurred, 
followed by a community shift from a sessile, suspen-
sion feeding, sponge-dominated community to a mobile, 
detritus-feeding, holothurian-dominated community. By 
late 2011, the densities of mobile organisms had increased 
by nearly an order of magnitude, while diversity was well 
below 2006 levels (Kuhnz et al. 2014). Less is known about 
the temporal dynamics of sessile megafauna that build bio-
genic hard structures.

So far, the most studied deep-sea sponge group is the 
Hexactinellida (glass) plate sponges (Kahn et  al. 2012): 
Bathydorus laniger (Hexactinellida: Rossellidae, Fig.  1a) 
and Docosaccus maculatus (Hexactinellida: Euplectelli-
dae). Both sponges have very similar gross morphology: a 
plate-like form with basalia, which stilt the body a few cen-
timeters above the seafloor (Kahn et al. 2013). Using towed 
camera-sled images, Kahn et al. (2012) found that both of 
these plate sponge species displayed inter-annual variations 
in density and average body size between 1989 and 2005. 
Density changes were correlated with POC flux 13 months 
earlier and with the North Oscillation Index (NOI, an 
ENSO indicator) 15  months earlier prior to the changes 
in sponge density. Although not yet well quantified, living 
plate sponges have the potential to create habitats, suggest-
ing that if plate sponge density varies over time, it might 

impact other organisms (Wulff 2006; Buhl-Mortensen et al. 
2010).

Videos acquired by remotely operated vehicles (ROVs) 
since 2006 and sediment push cores from Sta. M have 
shown that the remains of these dead plate sponges form 
sponge spicule patches (SSPs) on the seafloor (Fig.  1b). 
Sponge spicules are resistant to dissolution (Kama-
tani 1971; Maldonado et  al. 2005). Bett and Rice (1992) 
reported SSPs from Pheronema carpenteri (Hexactinellida: 
Pheronematidae) covering up to one-third of the sediment 
surface in the Porcupine Seabight in the northeast Atlan-
tic. Here, the faunal community within the patches was 
substantially modified and occurred in greater densities 
compared with the background macrobenthos. At Sta. M, 
Beaulieu (2001a) analyzed another hexactinellid sponge, 
Hyalonema bianchoratum, characterized by a long stalk 
holding not only the sponge body several centimeters above 
the seafloor, but also an assemblage of suspension feeders. 
Overall, 144 taxa were associated with H. bianchoratum 
stalks, with an average of 4.1 taxa per stalk, which were 
dominated by Foraminifera, polychaete worms, peracarid 
shrimp and mollusks (Beaulieu 2001a).

Given the potential importance of deep-sea sponges as 
habitats and their links to environmental forcing, some key 
questions arise. This study examines temporal variations in 
SSP density, percent cover and size at Sta. M from 2006 to 
2013. Using ROV videos recorded over 7 years, two main 
questions were addressed: (1) Did SSP change in terms of 
density and percent cover over time? (2) Were any mega-
fauna associated obligatorily or preferentially with SSPs 
and if so, did the association change over time?

Materials and methods

Video acquisition

From December 2006 to June 2013, ten research cruises 
were conducted at Sta. M (50˚00 N, 123˚00 W, ~4,000 m 
depth, Table 1, Kuhnz et al. 2014) in the northeast Pacific. 
Overall, silty clay particles dominated sediments and little 
topographic relief was found over large areas (<60 m relief 

Fig. 1   Monterey Bay Aquarium Research Institute (MBARI) video annotation and reference system high-definition framegrabs a living plate 
sponge Bathydorus laniger b sponge spicule patch c sponge spicule patch with tissue remains
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over 770 km2, Smith et al. 1993). Seabed video footage was 
acquired using the Monterey Bay Aquarium Research Insti-
tute (MBARI) ROV Tiburon (December 2006–September 
2007) and ROV Doc Ricketts (February 2009–June 2013). 
A total of 16 transects (>16,500 m2) were recorded using 
Ikegama high-definition cameras fitted with HA10Xt.2 
Fujinon lenses and lasers spaced 29 cm apart to assess the 
field of view. Transect lengths varied from 80 to 4,500 m, 
while the transect width was kept close to 1  m using the 
ROV lasers as a guide.

Videos were analyzed using MBARI video annotation 
and reference system (VARS) software (Schlining and 
Stout 2006), which allowed us to manually annotate vid-
eos and store notes directly in a database. Each SSP was 
noted along with its geographic location, position within 
the transect and depth. Biogenic structures such as mounds 
or plate sponge remains with tissue (Fig.  1c) were also 
noted. Only SSPs and organisms that passed the lasers and 
visible in the lower 75 % of video were taken into account 
to ensure a consistent meter-wide strip in the oblique view 
(Kuhnz et  al. 2014). Patch annotations were conservative 
in that only obvious patches with a clear aggregation of 
sponge spicules were used for data analysis. The density of 
spicules within each patch could not be objectively counted 
from the video.

Density data and spatial dispersion

SSP density was defined as the mean number of patches 
m−2. To obtain the patch mean density and associated 
standard error (SE) for each time period, each transect was 
divided into contiguous 20-m2 bins (pseudoreplicates of 
20  m of transect length by 1  m transect width). The bins 
were chosen in accordance with the ROV navigation data 
resolution as used in a recent megafauna study (Kuhnz 

et al. 2014). Abundances within bins were analyzed as rep-
licate sample units to calculate mean densities. Temporal 
differences in density were assessed using a Kruskal–Wal-
lis test (H, P, SigmaPlot version 12.5, Sokal and Rohlf 
1995) as the data did not meet normality criteria. Correla-
tions between SSP densities were also tested with living 
plate sponge densities during the same time period (rs, N, 
P, Spearman correlation, SigmaPlot version 12.5, Sokal 
and Rohlf 1995). The coefficient of dispersion (CD, vari-
ance/mean ratio) of individual patches was determined for 
each sampling period. By comparing the coefficient of dis-
persion of patches to a random distribution (Poisson distri-
bution, CD = 1), the evenness of patch spatial distribution 
was assessed (Elliott 1971).

Percent cover data

Patch sizes were measured from framegrabs taken with 
VARS. For each SSP, a framegrab was taken with the ROV 
lasers centered at mid-length of the patch. Patch shape was 
approximated as a rectangular area and estimated based 
on the distance of the lasers in the image (Online resource 
1). With this method, overall repeatability and horizontal 
measurements were near 100  % accuracy, while vertical 
measurements could be less accurate (1–5  %) due to the 
oblique view of ROV video (Wakefield and Genin 1987). 
To ensure less distortion for large patches or for patches 
larger than the camera frame, several video frames were 
stitched together to obtain total patch area.

SSP mean percent cover over time was calculated as 
the percentage of area covered by all patches for a transect 
area. Temporal changes were assessed using a Kruskal–
Wallis test. The relationship between patch density and 
patch size was investigated. The influence of biogenic fea-
tures (mounds and sponge tissue remains) on patch size 
was investigated using a Mann–Whitney U test (U, N1, 
N2, P, SigmaPlot version 12.5, Sokal and Rohlf 1995). The 
size distributions of SSPs were computed and compared 
over time by computing the distance between the curves 
(DOMDIS routine, Primer version 6, Clarke 1990; Clarke 
and Gorley 2006) and conducting a multivariate analysis of 
similarity (ANOSIM, R, P, Primer version 6, Clarke 1993; 
999 permutations employed).

Megafaunal associations

Living megafaunal organisms observed within and outside 
each patch were identified to the lowest possible taxon. To 
ensure the best and most consistent detection over sampling 
periods, only high-definition videos were used, thereby 
excluding the February 2007 transect for which only stand-
ard definition video was available. To determine which 
organisms might show habitat selection within spicule 

Table 1   Sampling details for quantitative ROV transects at Sta. M: 
year, month, ROV dive number with T for ROV Tiburon and D ROV 
Doc Ricketts, transect area and #Bins as number of 20 m2 subsamples

Year Month Dive number Combined  
transect area (m2)

#Bins

2006 December T1067 1,120 56

2007 February T1077, T1080 220 11

June T1094 80 4

September T1141, T1143 420 21

2009 February D008 1,560 1

2011 May D230, D232 4,500 225

November D321, D323, D324 2,640 132

2012 June D403 400 20

November D442, D443 2,640 130

2013 June D486 3,000 150
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patches, the densities of the specific organisms living within 
and outside the patches were tested for differences (Mann–
Whitney U test). Data outside patches were only available 
until November 2012. The densities of specimens outside 
the patch were deduced from the total density of organisms 
recorded for each transect (density corrected for the transect 
area minus total patch area). Taxa with a significantly lower 
open space density were considered as significant associates.

The structures of communities inside and outside of 
patches were analyzed using multivariate ordination tech-
niques (Primer version 6). Compositions as Bray–Cur-
tis similarity of the square root-transformed density data 
inside and outside patches were computed over time. A 
group average cluster analysis was then applied to each 
similarity matrix. The correlation between the two com-
munity structures over time was assessed using a Mantel 
test (Relate routine, ρ, P, Primer version 6). We also inves-
tigated whether SSPs with mounds or sponge remains had a 
different density of significant associates than SSPs without 
biogenic features (Mann–Whitney U test).

Results

Patch observations

SSPs appeared like islands projecting one or more centim-
eters above the surrounding sediment. It was not possible 
to identify which species of plate sponge created individual 
spicule patches. The density of the glassy spicules appeared 
to vary but could not be quantified from video. Overall, 
we observed 101 SSPs during the time series (Fig.  1b). 
No clustering of patches was found (patches were gener-
ally several meter or more apart), as indicated by the coeffi-
cient of dispersion (0.38–0.90). The average patch area was 
0.27  m2 (0.19–0.48  m2) and did not change significantly 
over time. Two main biogenic structures were frequently 
seen within patches. Mounds created by other organisms 
occurred beneath 18 % of the patches with the highest fre-
quency observed in June 2007 when 50 % of patches had 
mounds. The remains of plate sponge tissues were vis-
ible in 30 % of patches over the time series (Fig. 1c) with 
a maximum of 63 % in December 2006. No sponge tissue 
remains were observed within patches in February 2007.

Density and percent cover

SSP density differed significantly among sampling peri-
ods (Fig.  2a). The highest density was found in February 
2007 with 27 ± 14 × 10−3 patches m−2, N = 11 and the 
lowest in June 2012 with 2.5  ±  2  ×  10−3 patches m−2, 
N = 20. The decrease in patch density over time was sta-
tistically significant (H =  17.606, P =  0.024). There was 

no significant correlation between SSPs and living plate 
sponge densities (rs < 0.1, N = 9, P > 0.05).

The amount of seafloor covered in SSPs changed over 
time (Fig. 2b). The lowest percent cover was in December 
2006 when patches covered a mean of 0.02 ± 0.009 % of 
the transect area, N =  56 bins. The highest percent cover 
was observed in June 2011 at 0.59 ± 0.39 %, N = 225 bins. 
The temporal variations in patch spatial coverage were sig-
nificant (H = 36.185, P < 0.001) and the differences were 
driven by the 2007 observations.

SSP density and mean size were not significantly corre-
lated (rs = −0.259, N = 9, P = 0.462). The patch size fre-
quency distributions for each time period were not found to 
be significantly different (R = 0.173, P = 0.319). The most 
even size distribution was in September 2007, whereas in 
June 2007, 2012, 2013 and November 2012, the distribu-
tions tended to be dominated by one size class. Except 
in June 2012, the dominant size classes were the small-
est: 0–0.17 and 0.18–0.35  m2. No difference was found 
between the mean size of a patch when mounds were pre-
sent (U =  544, N1 =  18, N2 =  81, P =  0.094). Patches 
with plate sponge tissue remains were significantly larger 
than those without tissue (U =  684, N1 =  29, N2 =  70, 
P = 0.011) with a median of 0.229 versus 0.154 m2.

Fig. 2   Sponge spicule patch features in time. a mean density as 10−3 
number of patch m−2 with SE in black squares compared with liv-
ing plate sponge density in open squares, b mean percent cover of 
sponge spicule patches within transects with SE. Horizontal axis with 
6-month major interval tick and 2-month minor interval ticks. At 
each date, n = #Bins of date, see Table 1. No living plate sponge data 
available for June 2013
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Megafaunal associations

Overall, 28 taxa were observed within the patches (Online 
resource 2) mainly Porifera, 72  % (44–86  %) and Echi-
nodermata, 24  % (11–55  %). These taxa constitute only 
a subset of the megafauna known to occur at Station M. 
The relative dominance of Porifera decreased over time 
(Fig.  3). Among these invertebrates, three taxa had den-
sities significantly higher within patches than outside 
patches, i.e., they were significant associates (Fig. 4). First, 
the strongest association was found for the group Porifera 
spp. (U =  7.5, N1 =  8, N2 =  8, P =  0.007) with medi-
ans of 10.300  ind.  m−2 in patches versus 0.150  ind.  m−2 
out of patches. This group was composed of small bul-
bous Porifera not readily identifiable to species. The high-
est density of these sponges within patches was found in 
November 2012 with 29 ± 11 × 10−3 ind. m−2, N = 130; 
the lowest density was recorded in September 2007 with 
1 ± 1 × 10−3  ind. m−2, N = 21 (Fig. 4a). These Porifera 
spp. occurred in greater abundance in patches with dead 
sponge tissue remains compared with those without tissue 
remains (U = 655, N1 = 28, N2 = 63, P = 0.044). Sec-
ond, juveniles of the sponge Cladorhiza sp. A were also 
found in higher density within patches than outside of 
patches (U = 9, N1 = 8, N2 = 8, P = 0.015) with medi-
ans of 0.894 ind. m−2 within patches versus 0.019 ind. m−2 
outside patches (Fig.  4b). Within patches, the highest 
density of Cladorhiza sp. A occurred in June 2007 with 
22 ± 1 × 10−3 ind. m−2, N = 4, whereas the lowest density 

was found in December 2006 with 7 ± 4 × 10−3 ind. m−2, 
N = 56. Lastly, Ophiuroidea densities were higher within 
patches (U = 9, N1 = 8, N2 = 8, P = 0.015) with a median 
0.609  ind. m−2 inside patches versus 0.012  ind. m−2 out-
side of patches (Fig.  4c). Ophiuroidea density within 
patches varied from 0  ind.  m−2 (N  =  20, June 2012) to 
33 ± 33 ind. m−2 (N = 4, June 2007). 

None of the significantly associated taxa had different 
densities in patches with and without mounds (P > 0.05). 
Overall, the community structures of the associates inside 
and outside patches were different over time (Relate test, 
ρ = 0.382, P = 0.062).

Discussion

The density and percent cover of plate sponge spicule 
patches on the seafloor at Station M varied significantly 

Fig. 3   Sponge spicule patch assemblage composition by phylum 
over time as percentage. Arthropoda in white, Bryozoa in black and 
white squares, Chordata in tilted black lines, Cnidaria in black chev-
rons, Echinodermata in gray, Porifera in black, Protista in black hori-
zontal lines

Fig. 4   Statistically significant megafauna associates of sponge spic-
ule patch: mean densities per m−2 of patch (filled square; left axes) 
and m−2 outside of patch (open square; right axes) in time with SE a 
Porifera spp. b Cladorhiza sp. A c Ophiuroidea. Horizontal axis with 
6-month major interval tick and 2-month minor interval ticks. At each 
date, n = #Bins of date, see Table 1
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over the study period, but patch size did not. This reflected 
changes in living plate sponge populations. Both SSP densi-
ties and areas were of the same order of magnitude as the 
live sponges observed by Kahn et al. (2012). Although the 
degradation or dispersal of spicules has not been studied 
in these species, individual SSP size is thought to decrease 
over time from an initial maximum established by the plate 
sponge at time of death. The correlation between SSP den-
sity and mean size was not significant in this study, however, 
it is worth noting that the smallest SSPs occurred in Febru-
ary 2007 when SSP density was the highest and the largest 
in June 2012 when SSP density was the lowest. This pattern 
might relate to the negative correlation between living plate 
sponge density and size reported by Kahn et al. (2012).

As previously reported for living sponges (Kahn et  al. 
2012), this study shows that SSPs are randomly dispersed 
on the seafloor with no obvious living plate sponges within 
them. The random distribution suggests that the soft-sediment 
habitat at Sta. M was homogeneous in terms of the settlement 
and/or the survival of plate sponges. This was also found 
with Hyalonema bianchoratum sponges living there (Beaul-
ieu 2001a). Other factors such as potentially different time-
scales of living sponge settlement and growth versus decay 
might also explain the lack of correlation between living plate 
sponge and SSP densities. Overall, between 1989 and 2005, 
no correlation was found between living plate sponge and 
SSP densities by Kahn et al. (2012) although higher density 
of SSPs occurred in years with higher living sponge density.

SSP epibenthic megafaunal assemblages were composed 
of 28 taxa, three of which were classified as significant 
associates. There was no obligate association with patches 
as was seen for living sponge macrofaunal and megafau-
nal assemblages in other systems (Wulff 2006; Buhl-
Mortensen et al. 2010; Gutt et al. 2013). Obligate epibionts 
are generally rare (Wahl and Mark 1999), but video data 
are limited by the difficulties in discerning some taxa in 
photos and assigning a morphotype to taxa with few indi-
viduals. Species that are small, are camouflaged or have a 
burrowing life style are likely underrepresented in the data. 
SSP sampling will be required to confirm the identification 
of the epibenthic megafaunal taxa seen on videos, includ-
ing taxa not readily observable in pictures.

SSPs may benefit this abyssal community by expand-
ing the realized niche of several species otherwise living 
in sub-optimal conditions. Bett and Rice (1992) suggested 
that SSPs in the Porcupine Seabight had three main effects 
on other fauna: providing refuge, higher food supply and 
substrate. Our finding that many ophiuroids were living 
with their central disks protected within the spicules and 
their filter-feeding arms emerging into the water has also 
been reported in shallower systems (Haanes and Gulliksen 
2011). Associated fauna might also avoid predation because 
of the protection offered by the spicule canopy (Wulff 

2006). In addition, Ophiuroidea associate with deep-sea 
hard structures thereby gaining access to higher food flux 
and enhanced filter feeding (Levin 1991; Buhl-Mortensen 
et  al. 2010). The spicule network might also retain more 
phytodetritus than surrounding sediment benefiting surface 
and subsurface deposit feeders (Bett and Rice 1992). In 
Antarctica, Gutt et al. (2013) reported a significant positive 
correlation between the number of epi-macrofauna taxa 
and spicule percent cover, where the epi-macrofauna had 
a higher re-colonization rate in spicule patches than mega-
fauna. This enriched food environment might provide small 
preys for the carnivorous Cladorhiza sp. A (Vacelet 2007).

Differential settling of associated fauna may also occur, 
with SSPs providing an advantageous substrate for other 
sponges to settle (Barthel 1992; Leys et  al. 2004). Some 
sponges, in particular demosponge species (Porifera: Dem-
ospongiae), are unable to colonize open sediments (Barthel 
1992). Cladorhiza sp. A specimens observed within patches 
were mainly small and possibly juveniles. And the Porifera 
spp. group observed in SSPs could be either small individuals 
of other known sponges at the site (such as Bathydorus lae-
vis spinosus, Euplectella spp.) or of new small species (Kuhnz 
et al. 2014). In Antarctica, the abundance of larger Hexactinel-
lida decreased with spicule cover, whereas small sponge den-
sity increased with spicule cover (Gutt et al. 2013). In addition, 
SSPs might locally increase dissolved silicon (Si) although 
hexactinellid spicules can have low dissolution rates (Hurd 
1973; Chu et al. 2011). Many sponges have been reported to 
be strongly limited by Si ambient availability (Maldonado 
et al. 2005, 2012) and high dissolved silicate is an important 
factor for juvenile settlement (Leys et al. 2004, 2007).

Overall, SSPs created small-scale habitats, typi-
cally  <1  m2. The community structures of the complete 
assemblage (28 taxa) and of the significant associates 
changed over time inside and outside spicule patches, 
enhancing spatial heterogeneity. We observed that SSPs 
appeared to be at different stages of decay and coloniza-
tion, providing temporal heterogeneity. Spatiotemporal het-
erogeneity and colonization are known to increase diversity 
as proposed in the patch mosaic theory, which suggests that 
seafloor small-scale disturbances permit high local diver-
sity by creating successional sequences that are tempo-
rally out of phase (Grassle and Sanders 1973; Grassle and 
Morse-Porteous 1987; Rex and Etter 2010).

In conclusion, SSPs at Sta. M varied over the seven-year 
study period in terms of density and percent cover, while 
their size did not. Notably, the number of SSPs decreased 
between December 2006 and June 2013, whereas their per-
cent cover increased over that period. These changes may 
follow climate-driven changes in food supply known to 
have occurred over the same period. SSPs provide micro-
habitats on the abyssal seafloor, locally influencing mega-
faunal density and impacting Sta. M ecology. Further 
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sampling will be needed to fully characterize the megafau-
nal species composition observed within SSPs and to deter-
mine whether sponge spicule density increases patch diver-
sity and the importance of SSPs to smaller fauna.
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