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Abstract

This article reviews the past 15 years of developments in regional ocean data
assimilation. A variety of scientific, management, and safety-related objec-
tives motivate marine scientists to characterize many ocean environments,
including coastal regions. As in weather prediction, the accurate representa-
tion of physical, chemical, and/or biological properties in the ocean is chal-
lenging. Models and observations alone provide imperfect representations
of the ocean state, but together they can offer improved estimates. Varia-
tional and sequential methods are among the most widely used in regional
ocean systems, and there have been exciting recent advances in ensemble and
four-dimensional variational approaches. These techniques are increasingly
being tested and adapted for biogeochemical applications.
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1. INTRODUCTION

In marine science, data assimilation (DA) refers to any process by which a model representing the
ocean state (i.e., the time evolution of physical, chemical, and/or biological fields) is constrained
rigorously by observations to reduce discrepancies between model output and data. Realistically
configured but unconstrained numerical models are often statistically realistic, with broad mea-
sures of field means and variances loosely consistent with observational estimates, but there is also
substantial disagreement when modeled and observed variables are compared directly at specific
times and locations. Such discrepancies are fundamental and unavoidable. By definition, ocean
models are imperfect representations of the natural system, involving both simplifying mathemat-
ical parameterizations for complex processes and errors associated with a variety of factors, such as
finite model grid resolution. Even with a perfect model, errors result from uncertainties in model
initial conditions and forcing, and inherent nonlinearities in underlying dynamics cause initially
small discrepancies to grow. Of course, observations also offer an imperfect realization of the true
ocean state owing to measurement error and the use of point measurements to represent broader
ocean conditions. DA methods mathematically estimate changes to a control vector consisting of
adjustable variables or parameters that control model predictions, so that the resulting model-data
misfit is more consistent with model and observation uncertainties than an unconstrained model
solution.

Alternatively, DA can be viewed as a dynamical approach to interpolating and extrapolating
sparse oceanic data. Various functions can be used to interpolate observations separated in time or
space. Linear interpolation, for example, is straightforward but not generally sensible for the ocean,
as it does not account for correlations in fields across space and time resulting from geophysically
relevant phenomena such as mesoscale eddies. By embodying ocean dynamics, an ocean model
accounts for such correlations and should be a better interpolant, producing a more reliable ocean
state estimate in places for which no data exist.

The basic DA problem resembles the well-known problem of fitting a line to data. Although
many lines can be drawn through a cluster of points, a reasonable choice for a best solution is
the pair of values representing the slope and intercept that minimizes the overall discrepancy
between model values and data. Minimization can be defined in various ways (e.g., reduction of
the mean absolute deviation between model predictions and data) but is most often performed
in a least-squares sense, minimizing the sum of the squares of model-data differences. The ocean
DA problem is similar in that it also seeks to minimize residuals between model predictions and
observations, but different challenges result from a considerably larger control vector dimension
and limited sampling, yielding a woefully underdetermined system, and from correlations between
elements of the control vector. For example, when using a control vector consisting only of initial
conditions, a model that has 500 x 500 horizontal grid points with 50 vertical levels and five
state variables (two horizontal velocities, temperature, salinity, and sea surface height) yields a
dimension of more than 5 x 107. If surface forcing or the model state at other times is to be
adjusted as well, the state-vector dimension increases further. Although remotely sensed estimates
of some surface variables are plentiful, subsurface information is extremely scarce, resulting in
a vector of observations that is typically orders of magnitude smaller. Different approaches to
handling these challenges have led to a variety of techniques that differ in methodology but share
a similar goal.

The first DA efforts occurred in meteorology, carried out by Lewis Fry Richardson during
World War I (Shuman 1989). However, the operations proved challenging, not only because fi-
nite difference calculations were computed by hand but also because of the then-unknown effects
of numerical instabilities. It was not until the mid-twentieth century, following World War II, that
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numerical weather prediction was born as its own discipline and major advances began. Devel-
opments in oceanography emerged in earnest in the 1980s, with influential papers documenting
early forecast and DA attempts (Robinson et al. 1984, 1986; Robinson & Leslie 1985; De Mey
& Robinson 1987). Multiple books and book chapters have described important methodological
approaches and major contributions (Ghil & Malanotte-Rizzoli 1991, Bennett 1992, Malanotte-
Rizzoli 1996, Wunsch 1996, Robinson et al. 1998). The present article is intended not to review
the early history again but rather to focus on major developments over the past 15 years, a period
marked by substantial observational, methodological, and computational advances that have re-
sulted in the now-routine practice of ocean DA on both global and regional scales. To limit the
scope of the article, we address primarily regional models.

Why perform regional DA in the ocean? Similar methods are used at global and regional scales,
but, as in unconstrained ocean modeling, global and regional efforts are directed at different scales
of motion and scientific problems. Today, global ocean models span ocean basins at resolutions
of roughly 1/12° to 1° (e.g., Carton & Giese 2008, Chassignet et al. 2009, Cummings et al. 2009,
Wansch etal. 2009, Enomoto et al. 2013), with similarly coarse atmospheric forcing; among other
goals, global ocean state estimates identify large-scale transport pathways, constrain upper-ocean
heat content, and quantify meridional oceanic heat flux. By contrast, regional ocean models resolve
1-10-km features, usually driven by similarly resolved atmospheric models. Such high resolution
is required for coastal applications, in which continental slopes and shelves vary on distances of
kilometers and internal scales of motion in both the atmosphere and the ocean decrease rapidly
as the distance to the coastal boundary diminishes. Although regional models can contribute
to global efforts, they are generally motivated by more local issues of along- and cross-shelf
transport for pollutant dispersal or search and rescue operations and by interdisciplinary problems
such as hypoxia, coastal fishery management, harmful algal bloom development and dispersal,
and sediment transport. Present-day computational limitations prohibit calculating basin-scale
dynamics at resolutions required for regional applications.

One major development of the past decade was the advancement of operational oceanography
and, specifically, the implementation of ocean observing systems that encompass observations,
models, and analysis to yield societally relevant oceanographic information in near real time.
The Global Ocean Observing System is a collaborative, international effort that includes both
global and coastal foci. Regional ocean observing systems have emerged throughout the world,
including in Europe, many Asian countries, Australia, and the Americas. Complex collaborations
between universities, government agencies, and private organizations contribute complementary
functionality to their success. Ocean observing systems include a vast array of in situ and remotely
sensed measurements of ocean properties; the present platforms that distinguish coastal from
global operations are glider lines that collect subsurface hydrography (Rudnick et al. 2004) and
high-frequency radar estimates of surface currents (Paduan & Washburn 2013). Regional DA is
central to the goal of providing accurate marine information in near real time by synthesizing
sparse observations and model estimates to yield best estimates of the ocean state.

Regional DA has one unavoidable challenge relative to its global counterpart: open bound-
ary conditions. By definition, a regional ocean model includes open boundaries over at least a
portion of its perimeter, which formally results in a mathematically ill-posed problem (Oliger &
Sundstrém 1978). Various approaches have been developed over the decades to address this issue
for both barotropic (Flather 1976, Orlanski 1976, Chapman 1985, Mason etal. 2010) and baroclinic
(Marchesiello et al. 2001) dynamics by approximating boundary values through a combination of
prescribed fields from a larger-domain model (or climatology) and specified or diagnosed wave
motion within the model domain. Near boundaries, regions of enhanced viscosity and diffusivity
(sponges) are widely used to damp energetic features that develop over model integrations, and
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An example result from a near-real-time, four-dimensional variational system operating over the California Current System,
assimilating data such as sea surface height (SSH), sea surface temperature (SST), tide gauge sea level, and in situ hydrography from a
coastal glider (Moore et al. 2013). (#,b) Posterior SSH (panel #) and SSH increments (panel 4) from May 20, 2013, resulting from
assimilation. Corrections are predominantly mesoscale, with small amplitudes relative to the mean structure. (¢) SST root-mean-square
(rms) errors for an unconstrained model (top), posterior estimate (bottonz), and forecast (center) from a series of 14-day assimilation cycles
in a six-year reanalysis using a methodology similar to that used in panels # and /. Assimilation reduces the rms error to approximately
half that of the free run, and skill is sustained for at least two weeks beyond the assimilation window. Panel ¢ adapted from Broquet et al.
(2009) with permission from Elsevier.
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fields are sometimes relaxed to climatological conditions. Although these procedures are com-
monplace, offline nesting is imperfect. Experience has shown that boundary artifacts are reduced
when two-way nesting is implemented and boundary gradients are determined dynamically on
the model time step (Debreu et al. 2012). DA has the potential to alter the boundary informa-
tion substantially if the control vector includes boundary values (Moore et al. 2011a). However,
at present, such systems are designed to improve low-frequency boundary estimates, and their
impact on wave reflection is not well established.

Figure 1 presents an example result from a DA experiment using a four-dimensional variational
(4D-Var) approach over the California Current System, showing an estimate of sea surface height
following assimilation (Figure 1) along with adjustments to the initial guess that were calculated
to obtain the estimate (Figure 1b). Various measures of goodness of fit are possible. Formally,
for Gaussian distributed data, the cost function is a chi-squared variable with known degrees of
freedom (Wunsch 1996, Bennett 2002), and hypothesis testing can determine whether the esti-
mate is consistent with observations and assumed errors. Although the normalized cost function
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is presented in some cases (e.g., Broquet et al. 2009), more often a straightforward calculation of
the root-mean-square (rms) difference between the model and observations is determined. Useful
information can be drawn when this calculation uses observations that were assimilated, but eval-
uation against unassimilated observations provides a more independent performance evaluation.
Figure 1c shows the rms error in sea surface temperature from a six-year reanalysis by Broquet
etal. (2009); overall, assimilation reduces the rms error to approximately half that of the free run,
and the forecast error (calculated with independent data) reveals that skill is sustained for at least
two weeks beyond the assimilation window.

This review is organized as follows. Section 2 describes the development and implementation
of common methods for assimilating physical oceanographic data. This section is divided into two
subsections that focus respectively on variational and sequential methods; although other methods
exist, we address only 3D- and 4D-Var approaches in Section 2.1 and optimum interpolation (OI)
and Kalman filter (KF) methods in Section 2.2. The past decade has also seen a dramatic rise in
biological DA efforts, which we review in Section 3.

2. METHODS AND REGIONAL APPLICATIONS ASSIMILATING
PHYSICAL DATA

The foundations of DA are encapsulated by Bayes’ theorem (Wikle & Berliner 2007), although
other independent approaches lead to the same general result. If we denote the ocean state vector
by x and the vector of observations by y, then Bayes’ theorem states that

Py 1%)px)
()

where p(x|y) denotes the posterior conditional probability distribution for x given the observa-

pixly) = ; Q)

tions and represents an update of the prior distribution p(x) for x, p(y|x) is referred to as the
data distribution (or likelihood) and is the distribution of the observation errors given the prior
estimate of x, and p(y) is the so-called marginal distribution and represents a normalizing constant
to ensure the necessary condition that the integral of p(x|y) is unity. Assuming a normal distri-
bution for the prior and observation errors, p(y |x) = exp{—[y — H(x)]” R™![y — H(x)]}, where
H is the observation operator that maps the prior into the observation space and R is the obser-
vation error covariance matrix. Similarly, p(x) = exp[—(x —x;)7 B~!(x — x;)], where x; represents
the prior estimate for x (also called the background) and B is the prior error covariance matrix
(also called the background error covariance matrix). From Equation 1, the posterior distribution
p(x]y) o< exp(—J), where J = (x —x,) T B~ (x —x;) + [y — H®)]T R~ [y — H(x)]. In this context,
DA becomes a problem of identifying the state vector x, that maximizes p(x|y), which of course
is equivalent to minimizing J. As outlined below, both variational and sequential methods share
this foundation in approaching the DA problem, with important differences in their methods of
solutions and their characterization of the prior error covariance.

2.1. Variational Methods

In optimal control theory, J is referred to as the cost function, and methods based on the calculus
of variations naturally lend themselves to identifying the cost function minimum. Variational
approaches in geophysical contexts are divided into 3D and 4D problems.

Generally, the role of the observation operator H is to interpolate x in space and time to the
observation locations. If the observations are grouped closely in time, then as a first approximation,
time interpolation can be ignored, and H is a map from the state space to the observation space.
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If the observations take the form of direct measurements of the state variables (e.g., temperature,
salinity, and velocity), then H takes the form of a space-interpolation operator. By contrast, if
the observations are complicated nonlinear functions of the state variables, such as sound speed,
then H may have a complicated functional form. In either case, the minimization of J involves the
solution of a 3D-Var problem. In 3D-Var, the ocean is considered static, and only data spanning
a sufficiently short time window are sensibly selected to contribute to the analysis.

As the observations become more widely separated in time, or if one considers a time window
over which the ocean is not static, it becomes necessary to interpolate x in both space and time.
This is typically best done using prior knowledge of the dynamics that govern the ocean circulation
(e.g., advection and wave dynamics), which is provided by an ocean model. In this case, H takes
the form of an ocean model appropriately sampled at the space-time locations of the observations.
As before, H may include simple space interpolation as well as more complicated functional forms
for mapping the state variable into the appropriate observation space at the observation time. The
minimization of J in this case involves the solution of a 4D-Var problem. In 4D-Var, the analysis is
influenced by data collected both in advance of and following the analysis time through explicitly
modeled ocean dynamics.

Because H is generally nonlinear, the topology of J can be quite complicated and may, in
fact, possess multiple minima. In practice, it is common to linearize the problem about the prior
and identify the increments (Courtier et al. 1994). In this case, H is replaced by a linearized
observation operator H, and the resulting cost functionJ = §x” B~!$x+(Héx—d)” R~ (Héx—d)—
where §x = x — x;, is the state-vector increment and d = y — H(x;) is a vector of innovations
(differences between the background and observations)—is quadratic with a unique minimum.
Direct minimization of the cost function for the linearized problem (identified by finding the
stationary point J/38x = 0) yields the well-known solution for the posterior solution, called the
analysis (Daley 1991):

x, =%, +BH" (HBH' +R)'[y — H(x;)]. ®)

The posterior incrementis given by 8x, = x, —x;, = Bg, where g = H' (HBH'+R)"'[y— H(x;)],
which shows that the posterior increment lies completely within the space spanned by the prior
error covariance matrix, B (Weaver 2013). Because of the critical role played by B, one of the
greatest challenges of both the 3D- and 4D-Var approaches is the specification of the prior error
and observation error covariance matrices.

The posterior circulation in Equation 2 can also be written in terms of the Kalman gain
matrix, K:

x, =% + K[y — H(x)], )

K=BH' HBH +R)"' =B '+H R 'H)"'H'R". “)

Although K involves a sequence of matrix products, matrices are generally not used in practice
(except for R). Instead, H, H”, and B represent models for the tangent linear dynamical operators,
adjoint dynamical operators, and prior error covariance matrix, respectively. The cost function J
is minimized iteratively, which amounts to an iterative solution of the inverse matrices in Equation
4. When the first equality in Equation 4 is used, the resulting variational problem is referred to as
the dual formulation and involves an iterative search for x in the space spanned by the observations;
when the second equality is used, the resulting problem is referred to as the primal formulation
and involves an iterative search for x in the space spanned by the state vector. Given that the
number of observations is generally orders of magnitude smaller than the ocean state vector,
the dual formulation offers a potential computational advantage over the primal formulation.
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Schematic diagram of data assimilation procedures. (#) During the forecast step, three-dimensional
variational (3D-Var), optimum interpolation, and Kalman filter methods integrate the nonlinear model
forward until a datum or set of data becomes available, at which time an analysis is determined. Seven cycles
are shown. (/) The four-dimensional variational (4D-Var) method uses all data available within an
assimilation window to determine the analysis, which extends over the full cycle. One 4D-Var cycle is shown
over a time window similar to that of the multiple 3D-Var cycles in panel 4.

Regardless of the formulation, cost function minimization requires the repeated use of H and H,
which for 4D-Var is more computationally intensive than the nonlinear model itself. Thus, the
computational cost of 4D-Var is considerably larger than that of 3D-Var (in practice between 10
and 100 times more costly, depending on the number of iterations). For the same computational
capacity, 3D-Var applications can be practical at a higher resolution than 4D-Var applications.

It is common to run 3D-Var and 4D-Var sequentially, where x;(#) is the solution of the
forecast model initialized from the posterior from an earlier 3D- or 4D-Var calculation. Thus,
Xy (1) = M [tes1, f, X,(t)], where #; is the current time, #; is a future time, and M represents
the forecast ocean model. Figure 2 schematically presents both 3D- and 4D-Var procedures. As
shown, 3D-Var applications update the state vector as each datum (or data set collected in a narrow
time window) becomes available. In practical regional applications, this update occurs on 12-h or
daily timescales. 4D-Var, by contrast, exploits data collected over an extended time window [e.g.,
weekly or biweekly in Regional Ocean Modeling System (ROMS) applications and annually or
on longer timescales in MI'T General Circulation Model (MITgcem) applications].

If the model is assumed to be error free, then the posterior circulation estimate x,, is an exact
solution of the model equations, and the resulting variational problem is said to be subject to the
strong constraint (Sasaki 1970). Alternatively, if the inevitable errors in the model are accounted
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for, then the resulting circulation estimate is said to be subject to the weak constraint, and x, is no
longer an exact solution of the model.

In the context of coastal oceanography, Li et al. (2008) have applied incremental, strong-
constraint 3D-Var using the ROMS in the California Current System and in Prince William
Sound in the Gulf of Alaska. The prior error covariance matrix in this system is approximated
using the properties of the Kronecker product as described by Li et al. (2008). To address the
differences in the scales resolved by satellite observations and in situ observations (such as those
made by gliders and Argo profiling floats), Farrara et al. (2013) described a multiscale 3D-Var
method involving a two-stage DA procedure that first minimizes the cost function to identify the
large-scale circulation and then performs a second minimization to resolve smaller scales. Pan et al.
(2011) have applied 3D-Var in the Navy Coastal Ocean Model to assimilate hydrographic data
from the Monterey Bay. The authors used a hybrid approach to model the prior error covariance
matrix B, where B is composed of a flow-dependent component derived from an ensemble and a
static component based on a Laplacian smoother (Weaver & Courtier 2001). Dobricic & Pinardi
(2008) described a 3D-Var scheme using the OPA (Océan Parallélisé) model (Madec et al. 1998)
that is applied in the Mediterranean Sea as part of the Mediterranean Forecasting System. In this
scheme, the vertical covariance component of B is modeled using empirical orthogonal functions
(EOFs), whereas the horizontal covariance is modeled using a recursive filter (Lorenc 1992) and is
allowed to vary in the presence of coastlines. More recently, Dobricic et al. (2014) have employed
a Bayesian hierarchical modeling technique as a means of estimating flow-dependent vertical error
covariance components of B.

4D-Var has also been applied in ROMS to estimate the circulation along the west coast of the
United States. Kurapov etal. (2009, 2011) and Yu et al. (2012) have used the Advanced Variational
Regional Ocean Representer Analyzer (AVRORA)—an incremental, strong-constraint, indirect
representer formulation of dual 4D-Var (Egbert et al. 1994)—to recover the ocean circulation
along the Oregon and Washington coasts. In a larger domain extending from near Vancouver
Island in the north to midway down the Baja California peninsula in the south, Broquet et al.
(2009, 2011) have applied an incremental, strong-constraint, primal 4D-Var formulation in the
Rutgers University community ROMS code, and this approach is presently applied in near real
time (Moore et al. 2013). More recent efforts include Moore et al.’s (2011b) application of the
dual formulation to the California Current System and the computation of a sequence of historical
analyses spanning the period 1980-2010 (Moore etal. 2013; E. Neveu, A.M. Moore, C.A. Edwards,
J. Fiechter, P. Drake, et al., manuscript in preparation). Both AVRORA and the Rutgers ROMS
model the prior error covariance using a pseudo-heat-diffusion equation, following the approach
developed by Weaver & Courtier (2001). A dual 4D-Var system has also been developed for the
Navy Coastal Ocean Model, and Ngodock & Carrier (2013) have used this system in the vicinity
of Monterey to assimilate data from multiple platforms, including ocean gliders. This system also
models B as the solution of a diffusion equation.

The community ROMS 4D-Var system described by Moore et al. (2011a) has been widely
applied in other coastal and shelf-sea regions, including the Caribbean and the Gulf of Mexico
(Powell et al. 2008, 2009), the New York Bight (Zhang et al. 2010a,b), the Mid-Atlantic Bight off
the east coast of the United States (Wilkin & Hunter 2013, Chen et al. 2014, Zavala-Garay et al.
2014), the East Australia Current (Zavala-Garay et al. 2012), the Philippine Sea (Arango et al.
2010), the coastal Gulf of Alaska (Fiechter et al. 2011, Fiechter & Moore 2012), and the Hawaiian
Islands (Matthews et al. 2012).

The MITgem 4D-Var system employs a nonincremental, primal approach (i.e., in which the
nonlinear cost function is minimized directly) (Stammer etal. 2003). It has been applied regionally
in many locations, including the Azores Current region (Gebbie et al. 2006), the tropical Pacific
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(Hoteit et al. 2010), and coastal environments such as the Southern California Bight (Hoteit et al.
2009), the California Current System (Todd et al. 2011), and the Gulf of Mexico (Gopalakrishnan
etal. 2013).

2.2. Sequential Methods

Sequential DA methods assimilate data as they become available. As a result, state estimates are
not constrained by future observations, as they are in 4D-Var. These methods originate from
recursive Bayesian estimation theory but could also be viewed as time-recursive solutions of the
variational DA methods, following linear estimation theory under the general conditions of linear
dynamics and Gaussian-distributed errors (as discussed in Section 2.1).

2.2.1. Optimal interpolation. Ol refers to 3D sequential DA methods that originate from linear
statistical estimation theory and use a background covariance that does not change over time. The
solution of this problem is equivalent to the 3D-Var problem, with the weights of the data and prior
terms in the cost function being the inverse of the error covariance matrices for the observations
and background state. OI was first described by Gandin (1965) and became the operational analysis
scheme of choice during the 1980s and 1990s. It is still widely used in many research centers.

Although the solutions are identical to 3D-Var when the same assumptions are used and no
approximations are made, OI methods involve direct matrix inversion for the solution of the
problem (Daley 1991) and can also provide estimates of uncertainty. In the linear case, the OI
solution is given by Equation 2, and the analysis error covariance matrix can be expressed as
P, = B—KHB. When the observational operator is nonlinear, it is linearized about the prior
solution x;,.

OI methods are therefore dual formulations, inverting the stabilized representer matrix
(HBH” + R) in the observation space as in the first equality of Equation 4. When the number of
observations to be assimilated is large, this inversion is computationally expensive, and approxi-
mations are employed. Two common approximations are the localization of the observation error
covariance matrix and the use of low-rank forms of the background covariance.

Data selection is commonly used for efficient OI inversion. Limiting the number of obser-
vations that influence a given analysis point reduces the dimension of the stabilized representer
matrix. Generally, background error correlations decrease with separation distance, reaching near-
zero values within a finite distance. A cutoff radius beyond which observations are discarded is
thus applied. However, this approach prevents the exact satisfaction of global constraints applied
through the background B, because each analysis point is updated by different observations. In
addition, the smoothness of the analysis is not guaranteed even when making geostrophic and
hydrostatic assumptions, and the analysis must be filtered to prevent initial state imbalances from
exciting spurious gravity wave activity that negatively impacts the forecast.

Several OI schemes have been introduced that differ only in the parameterization of B and
its numerical representation. One of the most popular methods is the multivariate OI scheme
(Daley 1991), which expresses B as the product of a correlation matrix and a diagonal-variance
matrix. Multivariate OI forms the base of the DA component in the Navy Coupled Ocean
Data Assimilation system (Smedstad et al. 2003). Other forms of multivariate OI have been
also implemented, including in the Mediterranean Forecasting System (Pinardi et al. 2003),
the Canada-Newfoundland Operational Ocean Forecasting System in the Northwestern Atlantic
(http://www.c-noofs.gc.ca), and the global Forecasting Ocean Assimilation Model in the United
Kingdom (Bell et al. 2000). The reduced-order information filter (Chin et al. 1999) uses a Markov
random field to model the background B and has been applied for DA in the North Atlantic (Chin
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etal. 2001). In the ensemble OI scheme (Oke et al. 2008a), B is calculated as the sample covariance
matrix from a time-independent ensemble of anomalies. Lima et al. (2013) described an ensemble
OlI system off the Brazilian coast that used the Hybrid Coordinate Ocean Model and was based
on OI experiments performed by Tanajura et al. (2013), and Halliwell et al. (2014) applied this
method within an observing system simulation experiment in the Gulf of Mexico. Ensemble OI
is very similar to the fixed-basis variant of the singular evolutive extended Kalman (SEEK) filter
(Hoteit et al. 2002), which determines B through an EOF analysis of a stationary ensemble of
anomalies. Ensemble OI and the SEEK filter have been applied in forecasting the North Atlantic
and the Mediterranean as part of the MERCATOR operational assimilation system (Brasseur et al.
2005), in forecasting the Loop Current in the Gulf of Mexico (Counillon & Bertino 2009), and as
part of the Bluelink Ocean Data Assimilation System in Australia (Oke et al. 2008b). Srinivasan
etal. (2001) recently compared these particular OI schemes within the Gulf of Mexico and found
that, given sufficient tuning, they performed similarly.

2.2.2. Kalman filter. The celebrated KF (Kalman 1960) is a sequential, 4D development of OI
in which both the background and its error covariance matrix are updated at each assimilation
time. Assuming an additive, unbiased model and uncorrelated, Gaussian-distributed observation
errors, the KF provides the optimal way (in the least-squares sense) to sequentially assimilate linear
observations into a linear dynamical system. When implemented using the same observations and
background, and assuming linearity and no model error, the KF solution is equivalent to the 4D-
Var solution at the end of the 4D-Var assimilation window (i.e., when only observations collected
prior to the analysis time exist) (Li & Navon 2001). Thus, the KF solves the least-squares problem
through a sequence of sequential 3D update steps, whereas 4D-Var solves the 4D assimilation
problem over a broader time window generally equivalent to multiple KF update steps (Figure 2).

Applying the KF is a two-stage process consisting of a forecast and analysis. As in 4D-Var,
during the first stage a forecast is made by integrating the dynamical model M forward in time to
compute a prior solution x;(#). However, an advantage of the KF over 4D-Var is that, during the
second stage, the prior error covariance matrix is explicitly evolved forward in time. Specifically,
B(ti1) = M(tig1, )P, ()M (11, ) + Q(3r), where Q(#) and P, (1) = B(t) — K()H(5)B(#)
are the model error and expected analysis error covariance matrices at time 7, respectively. B is
therefore flow dependent in the KF. In 4D-Var, the prior error covariance matrix is implicitly
evolved in time, with the result that B(#4) is not available for use in future assimilation cycles. The
KF posterior circulation estimate x, is again computed using Equation 3, with B and H evaluated
at the appropriate times. In this case, the observation operator H represents a single observation
time, unlike in 4D-Var, where H includes the model M.

The KF cannot be used directly for DA into realistic ocean models because ocean dynamics (and
some observations) are nonlinear and the state dimension can be very large, often making the calcu-
lation required to compute the KF error covariance matrices computationally intractable. As with
other methods, model dynamics and the nonlinear observation operators can be linearized, which
is implied in the above development. This linearization leads to the so-called extended Kalman fil-
ter (EKF) (Jazwinski 1970). To avoid the prohibitive computational requirements resulting from
large state vectors, different forms of reduced-order state and low-rank error covariance matrix
approximations have been proposed (e.g., Fukumori & Malanotte-Rizzoli 1995, Cane et al. 1996,
Cohn & Todling 1996, Verlaan & Heemink 1997, Pham et al. 1998, Lermusiaux & Robinson
1999, Farrell & Ioannou 2001, Hoteit et al. 2002). A common feature of these simplified EKFs is
that they exploitinformation from a representative subspace of the full ocean state space and ignore
information from the less influential complement subspace. This simplification is supported by
the dissipative and driven nature of the ocean dynamics, which concentrates energy at large scales,
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meaning a red spectrum of variability (Daley 1991, Pham et al. 1998, Lermusiaux & Robinson
1999). Consequently, computations using these filters are conducted on the retained subspace,
dramatically reducing the EKF computational cost.

Simplified EKFs have been applied for DA in the global ocean as part of the Estimating the
Circulation and Climate of the Ocean—Global Ocean Data Assimilation Experiment (ECCO-
GODAE) system (Kim et al. 2006), in the Pacific Ocean (Cane et al. 1996, Verron et al. 1999,
Hoteit et al. 2002), and regionally in a nested implementation of the Ligurian Sea (Barth et al.
2007). They are also used operationally in the Greek national POSEIDON-II system for the
Mediterranean (Korres et al. 2010) and in Monterey Bay (Haley et al. 2009). These methods have
lost popularity in the past decade owing to the advances in ensemble Kalman filters (EnKFs).

2.2.3. Ensemble Kalman filters. Because the EKF provides only a first-order approximation of
the KF (often computed numerically using finite differences to avoid the need for the tangent linear
models and their adjoints), this algorithm may produce instabilities or not converge to a solution
when applied to strongly nonlinear systems (Evensen 1992, Gauthier et al. 1993). The EnKF is
another form of nonlinear Kalman filtering that was specifically introduced to overcome the KF
limitations with realistic ocean models. The EnKF uses a Monte Carlo approach. At the analysis

Ix2 .. ], is

step of an EnKF, an ensemble of system states called the analysis ensemble, X, = [x}
generated with a sample mean and covariance equal to the KF analysis state and error covariance
matrix, respectively. For typical oceanic applications, the ensemble size 7 is much smaller than
the state dimension #z,. Propagating the analysis ensemble forward through the dynamical model

determines a forecast ensemble for the next DA cycle (Figure 3): xi;(tk+1) = M(tp11, t)x, (). The

Forecast
ensemble

Analysis
ensemble Kalman

filter update

Kalman
filter update

Assimilation cycles

Figure 3

Schematic diagram of the ensemble Kalman filter procedure. During the forecast step, an ensemble of
simulations (black) is integrated by the nonlinear ocean model until data are available. The forecast ensemble
provides an estimate of the model error covariance, which is used in a Kalman filter update step to provide an
analysis and a new analysis ensemble. Two assimilation cycles are shown.
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forecast ensemble is used to estimate the background covariance matrix for this step: B(#y1) =
[1/(n—1)X f(tkH)X’]Tp (tr41), where X' ¢(#;.41) consists of ensemble members xj((tkﬂ) with the mean
removed.

In this respect, the EnKF is similar to the reduced-rank nonlinear KF, but it is computationally
more efficientin thatit does not need to conduct (covariance) matrix factorization in the state space.
For example, the computational cost of the prediction step is O(#27) in a linear system, typically
much lower than the order O(23) calculation of the original KF (Evensen 2006). Moreover, the
EnKF does not require linearizing the models, making its implementation less intrusive. When a
new observation becomes available, the KF update step is used to compute the analysis ensemble
from its forecast counterpart based on the sample covariance matrix of the forecast ensemble.
This forecast-analysis process is repeated as new observations are made available. EnKF methods
may further benefit from the ensemble formulation to account for modeling uncertainties through
perturbations of the parameters and inputs during the forecasting step of the ensemble members
(Houtekamer et al. 2009). This allows the relaxation of the assumption of additive model error
and the efficient treatment of some model uncertainties, which are otherwise difficult to include
in the reduced-order EKFs (Pham et al. 1998).

Because of their ease of implementation, remarkable efficiency and robustness, and reasonable
computational burden, sequential EnKF methods have become popular in many geophysical ap-
plications. Different EnKF variants have been developed in recent years. Based on whether the
observations are perturbed before assimilation, these EnKF variants are customarily classified as
one of two types (Tippett et al. 2003): stochastic EnKFs (Burgers et al. 1998, Houtekamer &
Mitchell 2005) and deterministic EnKFs (Anderson 2001, Bishop et al. 2001, Whitaker & Hamill
2002, Hoteit et al. 2002). A stochastic EnKF essentially updates each forecast ensemble member
with perturbed observations during the KF correction step. By contrast, a deterministic EnKF
updates the ensemble mean and a specific square-root form of the sample error covariance matrix
without perturbing the observations. An analysis ensemble is then produced as the sample mean
plus the transformed background perturbations prior to the forecast step. The most popular de-
terministic EnKFs with publicly available codes are the singular evolutive interpolated KF (Pham
2001, Hoteit et al. 2002), ensemble transform KF (Bishop et al. 2001, Wang et al. 2004), and
ensemble adjustment KF (Anderson 2001, Anderson et al. 2009), the last of which was devel-
oped under the umbrella of the Data Assimilation Research Testbed at the National Center for
Atmospheric Research.

Implementing an EnKF for DA in realistic models is feasible only with relatively small ensem-
bles. This limitation leads to some undesired effects, such as rank deficiency and underestimation
of the sample error variances of the system state as well as overestimation of the corresponding
cross-covariances (Whitaker & Hamill 2002, Hamill et al. 2009). It is customary to introduce
covariance inflation and localization to mitigate these effects.

Covariance inflation is used to address variance underestimation (Anderson 2001), on the basis
that relatively small ensembles and neglected model errors tend to cause underestimates of the
sample error variances of the system state. In many situations, proper covariance inflation not only
improves the estimation accuracy of the filter but also enhances its robustness from the point of
view of robust filtering theory (Luo & Hoteit 2011). Various inflation methods have been proposed
and studied (Anderson 2003, Hamill & Whitaker 2011, Miyoshi 2011, Whitaker & Hamill 2012).

Localization is applied to address rank deficiency and spuriously large cross-covariances be-
tween different state variables. Two popular localization methods are covariance localization
(Hamill et al. 2001) and local analysis (Cohn et al. 1998). In covariance localization, a modi-
fied covariance matrix is obtained from the Schur product of the original covariance matrix and a
tapering matrix based on the distances between the grid points of a physical model. In local analysis,
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the whole state space is divided into a set of disjoint local analysis domains, and the system state in
each is updated using only observations within a preset distance. Greybush etal. (2011), Janji¢ etal.
(2011), and Sakov & Bertino (2011) have examined the relationship between these two techniques.

Important research is still being conducted to enhance the EnKF methods, understand their
behavior and sensitivity to the assumption of Gaussian statistics, and determine the practical im-
pact of limited ensemble size. Most EnKF-based regional DA systems are still in the development
phase, with several of them moving toward using deterministic EnKFs to avoid the issue of obser-
vation error undersampling in the (stochastic) EnKF (Nerger et al. 2005). Keppenne & Rienecker
(2002) presented one of the first applications of an EnKF in a general circulation ocean model,
implementing a multivariate massively parallel EnKF for DA of temperature, salinity, and velocity
measurements into a Pacific Ocean model. A comparison of different KF-based applications by
Brusdal et al. (2003) demonstrated the efficiency of the EnKF. EnKF methods have also been
successful in the Gulf of Mexico and with various circulation models: Counillon et al. (2009) im-
plemented the stochastic EnKF with the Hybrid Coordinate Ocean Model, Hoteit et al. (2012)
applied the Data Assimilation Research Testbed ensemble assimilation system with the MITgem
based on the ensemble adjustment KF, and Xu et al. (2013) investigated the ensemble transform
EnKF using the Princeton Ocean Model. The EnKF is used operationally in the North Atlantic
and Arctic Oceans (including ice) as part of the TOPAZ ocean forecasting project (Bertino &
Lister 2008).

3. BIOLOGICAL DATA ASSIMILATION

Regional oceanographic interests extend well beyond physical fields. Oceanographers also seek to
better understand and quantify biogeochemical distributions and processes by estimating ecosys-
tem variables (e.g., phytoplankton biomass, community composition, pH, and oxygen content)
and the fluxes governing their changes (e.g., primary production, grazing, respiration, air-sea car-
bon exchange, and organic matter export from surface waters). A wide variety of models have been
developed over several decades for various research and management purposes. Marine ecosys-
tem models usually include inorganic nutrients, primary producers, consumers, and nonliving
organic matter; differences between models generally reside in the number of overall components
and the parameterization of processes (e.g., linear as opposed to quadratic zooplankton mortality).
Biological state variables are coupled to circulation models through tracer advection and diffusion.

Relative to DA for physical systems, biogeochemical data assimilation (BDA) must address
various additional challenges. The number of tracers ranges from three to O(100), making the
computational cost substantial. In optimal conditions, biological processes such as phytoplankton
growth are rapid [with doubling times of O(1 day)] compared with adjustments in mesoscale
physical fields. As a result, linearity approximations embedded in some DA approaches are rapidly
violated. Also, biogeochemical state variables represent concentrations that must be nonnegative
(unlike velocity, for example). Biological variables often range over orders of magnitude, with near-
zero means and large positive skew; thus, the statistics of their errors are distinctly non-Gaussian.
Despite these issues, BDA has advanced dramatically over the past 20 years with the development
of multiple approaches. Gregg (2008) presented a detailed review of early BDA efforts, and the
remainder of this section emphasizes advancements primarily since that review.

Because biogeochemical models are based on simple parameterizations of complex processes
measured in the field and laboratory (often with considerable scatter) rather than on fundamental
laws (as in physical systems), these models include many poorly known parameters; it has long been
recognized that DA may help to constrain such parameters (Matear 1995). From one perspective,
parameter estimation should be less challenging than state estimation because the number of
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parameters is orders of magnitude smaller than the dimension of biological variables. However,
DA effortsin 1D systems have shown that even the simplest ecosystem models are underdetermined
by presently available data and that improved model performance results from constraining only
a small number of carefully chosen, uncorrelated parameters (Matear 1995, Friedrichs et al. 2006,
Ward et al. 2010).

Variational methods have been popular for parameter estimation, but emulators now offer
a computationally efficient alternative. An ensemble of forward simulations is calculated for a
range of each parameter of interest, and a distance function that quantifies model-data misfit is
calculated for each ensemble member. The optimal parameters correspond to the distance function
minimum, which may occur at parameter values that are not included in the original ensemble
but rather are represented through an expansion in the parameter space of model evolution by
a limited number of basis functions. Computational efficiency results from the finite number of
model runs that effectively span continuous parameter space through the interpolating functions.
Once the emulator is created, it can be rapidly executed and applied repeatedly to data sets that span
different spatial regions or temporal periods. Emulators have been demonstrated to be efficient
alternatives for parameter optimization studies in the northern Gulf of Alaska (Hooten et al. 2011,
Leeds et al. 2013) and Mid-Atlantic Bight (Mattern et al. 2012).

In biological state estimation problems, the large-dimensionality of the background error co-
variance matrix compared with that in physical assimilation problems leads to high computational
costs and generally prohibits direct application of the full KF. The simplified SEEK filter (Pham
et al. 1998), which develops a reduced-rank and spatially compact approximation of the full er-
ror covariance, has mitigated this issue in some biological applications. This method or variants
have found wide use in 3D circulation models, including in the Pagasitikos Gulf of the Aegean
Sea (Korres et al. 2012), the Sea of Crete (Hoteit et al. 2005), the eastern Mediterranean Sea
(Triantafyllou et al. 2007), the French Mediterranean coast (Fontana et al. 2009, 2010), and the
broader North Atlantic (Berline et al. 2007, Ourmieres et al. 2009). Shulman et al. (2013) recently
demonstrated the successful assimilation of bio-optical properties using an alternate EOF-based
representation of the error covariance matrix in a sequential OI application within Monterey Bay.

Whereas the SEEK filter includes linearity assumptions from the original KF, this restriction
is relaxed in the EnKF (as discussed above). In biological applications, ensembles can be generated
through either state-vector or parameter adjustments. Successful implementations of biological
localized EnKFs have been developed for a 1D application using Bermuda Atlantic Time-Series
Study data (Mattern et al. 2010) and for 3D state estimation within the western English Channel
(Ciavatta et al. 2011) and Mid-Atlantic Bight (Hu et al. 2012).

One specific challenge for BDA using 4D-Var is the requirement for tangent linear and adjoint
models (H and H7, respectively). Although automated methods for model construction exist
(Giering & Kaminski 1998), their use is nontrivial, and regional models such as ROMS code these
models by hand. This labor-intensive process has no doubt limited the development of 4D-Var
BDA systems, although biogeochemical systems that apply 4D-Var only to physical variables have
been investigated (Fiechter etal. 2011). One remedy, proposed by Vermeulen & Heemink (2006),
is a reduced 4D-Var implementation in which cost function minimization occurs in a model sub-
space determined by the leading EOFs from an ensemble of nonlinear model calculations. Adjoint
and tangent linear models are written once and do not require recoding for different nonlinear
models. Although the overall computational burden of the approach is not necessarily small, its ad-
vantage lies in the ease with which alternative models can be considered. Pelc etal. (2012) and Pelc
(2013) demonstrated the viability of this EOF-based 4D-Var technique for marine ecosystems.

In the past decade, considerable attention has focused on the non-Gaussian error statistics char-
acterizing BDA. Observationally, Campbell (1995) demonstrated that several bio-optical oceanic
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variables (e.g., chlorophyll #) are well represented by lognormal distributions. A logarithm trans-
formation of biogeochemical variables is a common approach in BDA and has the added benefit
of ensuring nonnegative concentrations. One example came from Song et al. (2012), who imple-
mented an incremental form of variational DA in a 1D model twin configuration, including a
logarithm transformation developed for meteorological models by Fletcher & Zupanski (2006).
Incremental logarithmic 4D-Var has been incorporated into ROMS, and this approach has been
tested more fully in a realistic California Current System configuration that simultaneously as-
similates both physical and biological data (H. Song, C.A. Edwards, A.M. Moore & J. Fiechter,
manuscripts in preparation).

Although the logarithm transformation is analytically convenient, the methods applying this
step remain arguably suboptimal because biogeochemical variables are not truly lognormal. An
alternative approach applies a transformation, empirically determined from nonlinear model re-
sults, that renders variables Gaussian. This so-called Gaussian anamorphosis is performed for each
non-Gaussian variable at each point in the model domain prior to a KF update step, with a reverse
transformation applied to the analysis. This approach has been tested in conjunction with EnKF
methods in model twin and realistic North Atlantic experiments (Simon & Bertino 2009, Béal
etal. 2010, Doron et al. 2013) and holds promise for future regional modeling.

Finally, so-called particle filter and related methods also eliminate the Gaussian assumption.
As in the EnKF, an ensemble of simulations (each called a particle) is integrated through the
nonlinear model, but here this is done for the purpose of representing the posterior probability
density function without any assumption of its distribution. The analysis is determined from a
new ensemble, generated by resampling the existing members using probabilities based on an
estimated likelihood function. Simple 0D and 1D investigations have demonstrated the potential
utility of these approaches for ecosystem assimilation (Losa et al. 2003; Dowd 2006, 2011; Mattern
etal. 2010), and Mattern et al. (2013) presented an implementation in a 3D configuration of the
Mid-Atlantic Bight. Improving the robustness and applicability of particle filters for DA into large-
dimensional geophysical systems is currently an active area of research (Ades & van Leeuwen 2013).

4. SUMMARY

Driven by the twenty-first-century emergence of operational oceanography and a desire to max-
imally synthesize historical data sets, regional oceanographic DA has exhibited extraordinary
growth over the past 15 years. Early methods based on OI, 3D-Var, and suboptimal KF-based
methods have been in routine use in various coastal environments for years. More complex en-
semble and 4D-Var approaches are increasingly mature, and advances in computational speed and
capacity are enabling their application in near real time. Historical, regional reanalyses have been
created and should offer much-needed insights into multidecadal changes in coastal environments.
Although initially developed in oceanography for physical circulation models, DA methods are
being successfully adapted to characterize biogeochemical properties or improve biogeochemi-
cal models through parameter estimation. New methods are also being developed that relax the
fundamental linearity and statistical assumptions of existing DA procedures. The developments
in biological DA have important implications for the future because additional coupled systems,
such as synchronously nested ocean and ocean-atmosphere models, are on the horizon.
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