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Abstract: Retrievals of ocean surface chlorophyll-a concentration (Chla) by multiple 

ocean color satellite sensors (SeaWiFS, MODIS-Terra, MODIS-Aqua, MERIS, VIIRS) 

using standard algorithms were evaluated in the California Current using a large archive of 

in situ measurements. Over the full range of in situ Chla, all sensors produced a coefficient 

of determination (R2) between 0.79 and 0.88 and a median absolute percent error (MdAPE) 

between 21% and 27%. However, at in situ Chla > 1 mg m−3, only products from 

MERIS (both the ESA produced algal_1 and NASA produced chlor_a) maintained 

reasonable accuracy (R2 from 0.74 to 0.52 and MdAPE from 23% to 31%, respectively), 

while the other sensors had R2 below 0.5 and MdAPE higher than 36%. We show that 

the low accuracy at medium and high Chla is caused by the poor retrieval of remote 

sensing reflectance.  
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1. Introduction 

The California Current (CC) has been a test bed for ocean color algorithm development for decades 

(e.g., [1–5]), and standard NASA empirical ocean color algorithms [6,7] were originally parameterized 

with datasets with approximately a third of all in situ measurements of radiometry and chlorophyll-a 

concentration (Chla, mg m−3) from the CC [8]. While the proportion of CC data is smaller in the 

current NOMAD (NASA bio-Optical Marine Algorithm Dataset) version 2 dataset that is used to 

derive the coefficients of standard ocean color (OC) Chla algorithms (version 6) 

(http://oceancolor.gsfc.nasa.gov/REPROCESSING/R2009/ocv6/), it is still significant, accounting for 

11.7% of all observations and 10.7% of Chla values > 1 mg m−3. There is therefore an assumption that 

standard ocean color algorithms work well in the CC and have no significant bias. Yet, despite 

progress with data reprocessing and vicarious calibration of satellite ocean color radiometry,  

match-ups of Chla with in situ data in the CC consistently show significant systematic error at medium 

and high Chla [5]. Here, we evaluate how well Chla is retrieved by standard algorithms of all major 

ocean color satellite sensors (SeaWiFS, MODIS-Terra, MODIS-Aqua, MERIS and VIIRS) in 

comparison to a large archive of in situ Chla measurements from the CC region. We also compare 

some algorithms that are specifically designed for high Chla waters. The response of the California 

Current ecosystems to global and regional forcings is an area of active study, and trends of increasing 

phytoplankton biomass have been detected based on both in situ [9,10] and satellite [5,11] data. However, 

satellite detection of trends may be impacted if the estimates are biased, potentially not detecting real 

trends or falsely identifying trends due to biased satellite retrievals. 

2. Data and Methods 

2.1. In Situ Chla Data 

The sources of in situ Chla data are listed in Table 1. Over half of the in situ Chla data were 

collected by the California Cooperative Oceanic Fisheries Investigations (CalCOFI). Quarterly cruises 

have been conducted on a regular grid of stations as far as 600 km offshore by CalCOFI [12]. A related 

California Coastal Ecosystem-Long Term Ecological Research (CCE-LTER) program that carries out 

cruises with flexible ground coverage was the second largest data contributor. The total number of 

near-surface Chla samples that were used to validate satellite data from 1997–2013 was about 7500 

(Table 1), i.e., about 440 stations per year. 

For each station, the sample nearest to the surface (typically 1–10 m) was used. This included only 

the high-quality datasets that were far enough from the coast to provide at least five valid satellite 

pixels in the 3 × 3-pixel window centered at the in situ sample location. Datasets acquired too near the 

coast were excluded, since they are typically affected by coastal runoff and river plumes, as well as by 

land adjacency effects. The excluded data include the optically complex (Case 2) waters in the Plumes 

and Blooms study in the Santa Barbara Channel [4] and several projects in the Monterey Bay  

(e.g. [13,14]). A few other datasets were excluded due to questionable calibration accuracy and sample 

collection procedures. Most of the in situ Chla (mg m−3) samples were processed with the standard 

fluorometric method [15]. Fluorometric Chla values were replaced with total Chla when measurements 

with the more accurate HPLC method were available. A comparison of the Chla measurements made 
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with the fluorometric and HPLC methods showed very high correlation, with a slope close to one and 

an intercept not distinguishable from zero (e.g., Figure 5 in [8]). A typical spatial pattern for Chla in 

the CC region and the station locations for match-ups with MODIS-Aqua satellite measurements are 

shown in Figure 1. 

Table 1. Sources of in situ surface Chla data and the corresponding number of stations. 

Data Source 1997–2013 

CalCOFI, California Cooperative Oceanic Fisheries Investigations (1997–2013) 4602 

CCE-LTER, California Current Ecosystem Long-Term Ecological Research (2006–2013) 818 

Oregon, California, Washington Line-transect and Ecosystem (ORCAWALE) Survey, NOAA 

Southwest Fisheries Science Center, 2008 
405 

Line 60, CalCOFI Line 60 by the Monterey Bay Aquarium Research Institute, 1997–2008 123 

Line 67, CalCOFI Line 67 by the Monterey Bay Aquarium Research Institute, 1997–2009 556 

Delphinus, NOAA SWFSC survey of the Delphinus species, 2009 465 

CIMT, NOAA Center for Integrated Marine Technology, 2002–2006 385 

PaCOOS, Pacific Coastal Ocean Observing System, 2005–2007 119 

TOTAL 7473 

Figure 1. Locations of the MODIS-Aqua Chla match-ups (black dots with white circles) 

within 3 h time difference overlaid on the April 2012, Chla composite. The black line 

shows the location of the 5 km-wide strip from the coast to offshore along which  

satellite-to-satellite match-ups were assembled. 
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2.2. Match-Ups between Satellite and In Situ Data 

We used data from five different satellite sensors: SeaWiFS, MODIS-Terra (MODIST), MERIS, 

MODIS-Aqua (MODISA) and VIIRS. For MERIS, we used two different estimates of Chla from the 

same reduced resolution (RR) data: the standard ESA processed algal_1 product (designated here as 

MERISRR) and the NASA processed chlor_a product (MERISNASARR). All satellite data were 

acquired at Level 2 (i.e., processed to surface quantities, but unmapped) with approximately 1-km 

ground resolution. 

SeaWiFS (1997–2010, version 2010.0), MODIST (2000–2014, version 2010.0) MODISA  

(2002–2014, version 2013.0), MERISNASARR (2002–2012, version 2012.1.1) and VIIRS processed 

by NASA (2012–2014, version 2013.1.1) were obtained from NASA’s Ocean Color web 

(http://oceancolor.gsfc.nasa.gov/). Level-2 MERIS RR data processed by ESA (2002–2012, third 

reprocessing) were downloaded from ESA’s MERIS Catalogue and Inventory (http://merci-

srv.eo.esa.int/merci/welcome.do). 

The validation of satellite products using quasi-simultaneous and spatially-collocated measurements 

(match-ups) of satellite and in situ data followed the general procedures of previous studies  

(e.g. [2,5,16,17]). For each Level-2 pixel, we used the corresponding Level-2 flags. For NASA processed 

data, the following flags made a pixel invalid: ATMFAIL, LAND, HISATZEN, CLDICE, CHLFAIL, 

SEAICE, NAVFAIL and HIPOL (see http://oceancolor.gsfc.nasa.gov/VALIDATION/flags.html for an 

explanation of the flags). In contrast with our previous study [5], the flag PRODFAIL, which indicated 

failure of any of the derived products, was not used, because it removes many valid chlorophyll 

retrievals due to failure of other products not relevant to the analysis, such as fluorescence line height 

(FLH). For MERISRR, the following flags made a pixel invalid: LOW_SUN, HIGH_GLINT, 

ICE_HAZE, SUSPECT, COASTLINE, PCD_19, PCD_18, PCD_17, PCD_16, PCD_15, PCD_14, 

PCD_1_13, CLOUD and LAND (https://earth.esa.int/instruments/meris/data-app/level2.html). All 

variables in Level-2 files were extracted from a 3 × 3-pixel window centered at the pixel nearest to the 

in situ sample. For statistical analysis, we accepted only those match-ups (at least five valid pixels (out 

of nine)). The maximum temporal difference between satellite and in situ measurements was set at 

three hours, but was relaxed to six hours for some tests with VIIRS in order to increase the number of 

match-ups. Satellite match-ups with a high range of variability within the 3 × 3-pixel window were 

excluded if (Max − Min)/Min > 1 for the standard Chla variable (chlor_a for NASA products or 

algal_1 for ESA products). These match-ups were typically located near cloud edges and were deemed 

unreliable. The arithmetic mean Chla value of all valid pixels within the 3 × 3-pixel window was used 

as the satellite retrieval. The spatial distribution of MODISA match-ups with in situ measurements of 

Chla is shown in Figure 1.  

2.3. Sensor Comparison 

In order to evaluate the errors of the satellite remote sensing reflectance, Rrs (λ), we compared Rrs 

data from spatially and temporally overlapping satellite sensors. We created daily satellite datasets for 

each sensor by mapping Level-2 Rrs to a standard map in Albers conic equal area projection, with each 

pixel being approximately 1 km2. We then found match-ups between these mapped datasets for the 
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same pixel and the same day. Differences of a few hours in the timing between different satellite 

sensors are unavoidable, as the SeaWiFS overpass time nominally occurred at local noon, but drifted 

later towards the afternoon, while the MERIS overpass was approximately 10 AM, the MODIS-Terra 

overpass time approximately 10:30 AM, and the MODIS-Aqua and VIIRS overpasses at 

approximately 1:30 PM. As satellite sensors generate large amounts of overlapping data, we picked a  

5 km-wide transect from the coast to offshore (Figure 1) that covered a range of environments from the 

high Chla coastal upwelling band to the oligotrophic low Chla offshore waters. Satellite-to-satellite 

match-ups were then picked along that transect. We chose the first 99 days of 2012 for a comparison of 

MODIST, MODISA, MERIS and VIIRS data. A comparison with SeaWiFS was performed during the 

first 99 days of 2004, as SeaWiFS data were not available in 2012. A comparison of sensors using a 

full year (not shown) provided similar results. The shorter, 99-day interval was chosen to simplify 

analysis and graphical representation of the results.  

2.4. Statistical Estimates of Model Performance 

We used several statistical measures to assess the performance of satellite products against in situ 

observations (satellite to in situ match-ups) and between different satellite sensors (i.e., inter-sensor 

match-ups). For satellite to in situ match-ups, Oi is the i-th observation of an in situ variable and Pi is 

the corresponding predicted satellite variable. For sensor match-ups, the choice of the observed versus 

predicted variable is arbitrary, but we used MODISA as the common variable when comparing with 

other sensor values. We selected MODISA as the common sensor against which the other sensors were 

compared, as it is the only one to overlap temporally with all of the other sensors considered here, has 

a good calibration history and is currently operational. The coefficient of determination (R2) on log10 

transformed variables was used as a measure of covariance that captures the proportion of variance in 

one variable that can be predicted from another. As an estimate of scatter, we used the median absolute 

percentage error (MdAPE), which was calculated as MdAPE = 100 × median (|(Pi − Oi)/Oi |). For 

compatibility with some earlier studies, we also used the root mean square (RMS) error of log10 

transformed variables. Log-transformation was needed, as the distribution of Chla is close to 

lognormal (e.g., Figure 2). As an estimate of general bias (e.g., too high or too low), we used the 

median relative percentage error (MRPE), which was calculated as MRPE = 100 × median  

((Pi − Oi)/Oi). Both MdAPE and MRPE were calculated for Pi and Oi in natural (i.e., not log10 

transformed) units. We also include the slope of the reduced major axis (RMA) regression, calculated 

for log10 transformed variables. 

3. Results  

In order to find the distribution characteristics of both in situ and satellite Chla in the match-up 

datasets before eliminating any of the datasets, we constructed histograms of the match-up within five 

days. Because of the approximately lognormal distribution of Chla, both axes are logarithmic (Figure 2). 

To a first approximation, the histograms of in situ and satellite data in over 4500 match-ups for 

MODIS-Aqua are quite similar. While some satellite retrievals were below the minimum measured 

in situ Chla (0.02 mg m−3), their numbers were very low (note the logarithmic scale of Figure 2). A 
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more significant difference is present at the high Chla end. In situ match-up values peak at 47 mg m−3, 

but MODIS-Aqua match-up values reach 249 mg m−3 (the mean of the valid pixels). 

Satellite to in situ match-ups of Chla over the full range of in situ Chla (Figure 3) within a 3-h time 

difference show the highest coefficient of determination for the two MERIS products (R2 = 0.88 for 

MERISRR and 0.82 for MERISNASARR) and the lowest for MODIST (R2 = 0.79), VIIRS (R2 = 0.80) 

and SeaWiFS (R2 = 0.81) (Table 2 and Figure 4A).  

Figure 2. Histograms of in situ Chla and MODISA-derived Chla in match-ups with up to a 

five-day time difference. The full range is 0.02–47 mg m−3 for in situ and 0.01–249 mg m−3 

for the satellite retrievals (the mean of the valid pixels). The cumulative histograms are 

very close and practically overlap with each other. 

 

Table 2. Statistics for all match-ups with up to a 3-h time difference (also 6 h for VIIRS) 

and at least five valid pixels. N = number of match-ups, R2 = coefficient of determination, 

MdAPE = median absolute percent error, Bias = median relative percent error,  

RMS = Root Mean Square error, RmaSlope = slope of the reduced major axis linear 

regression. MERISRR, standard ESA processed algal_1 product; MERISNASARR, the 

NASA processed chlor_a product. 

Sensor N R2 MdAPE Bias (MRPE) RMS RmaSlope 

SeaWiFS 292 0.81 27.1 −4.9 0.21 0.81 

MODIST 502 0.79 26.5 −11.9 0.24 0.83 

MODISA 388 0.86 21.1 −1.7 0.18 0.86 

MERISRR 167 0.88 24.2 8.9 0.15 0.93 

MERISNASARR 205 0.82 22.7 −10.6 0.18 0.91 

VIIRS 38 0.80 27.1 −4.8 0.23 0.70 

VIIRS 6 h 81 0.81 29.0 −12.7 0.21 0.78 
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Figure 3. Chlorophyll-a match-ups with individual sensors/products using standard 

algorithms. The maximum allowed time difference is 3 h, and at least five pixels out of 

nine are required to be valid. The red line is the one-to-one line, and the blue line is the 

reduced major axis linear regression. 

 

Table 3. Statistics for match-ups with in situ Chla ≥ 1 mg m−3 with up to a 3-h time 

difference (6 h for VIIRS) and at least five valid pixels. Column names are as in Table 2. 

The shaded rows are for nonstandard algorithms: RGCI, red-green chlorophyll index;  

NIR, using near-infrared bands. OC, ocean color. 

Sensor N R2 MdAPE Bias (MRPE) RMS RmaSlope 

SeaWiFS 73 0.42 40.0 −32.3 0.32 0.98 

MODIST 128 0.33 47.6 −40.9 0.38 1.14 

MODISA OC3 86 0.35 36.3 −27.6 0.29 0.96 

MODISA RGCI 82 0.34 36.0 −14.3 0.24 0.66 

MERISRR 39 0.74 23.2 −15.6 0.19 1.34 

MERISRR NIR 33 0.08 118 118 0.62 2.2 

MERISNASARR 58 0.52 31.5 −22.4 0.52 1.08 

MERISNASARR NIR 47 0.11 271 271 0.72 2.4 

VIIRS 6 h 14 0.34 46.2 −46.2 0.40 0.86 
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Figure 4. Statistics of chlorophyll-a retrievals by multiple satellite sensors for the full 

range of in situ Chla (blue) and for in situ Chla ≥ 1 mg m−3 (red): (A) coefficient of 

determination, R2; (B) median absolute percent error (MdAPE, %); (C) bias or median 

relative percent error (MRPE, %).  

 

The median absolute percent error (MdAPE) over the full range of in situ Chla ranges from the 

lowest value of 21.1% for MODISA to the highest of 27.1% error for both SeaWiFS and VIIRS  

(Table 2 and Figure 4B). Bias (Figure 4C) shows that all sensors processed with NASA algorithms 

have a small negative bias or median underestimation (MRPE ranges from −1.7% for MODISA to 

−11.9% for MODIST), while the MERIS product processed with ESA algorithms has a small positive 

bias (MRPE = 8.9%). 

The scatter and median errors increase drastically when evaluated for the range of medium and high 

Chla (Chla ≥ 1 mg m−3, Table 3). In this Chla range, only MERISRR has relatively high R2 (0.74) and 

relatively low absolute error (MdAPE = 23.2%) followed by MERISNASARR (R2 = 0.52,  

MdAPE = 31.5%), while the other sensors have R2 below 0.5 and MdAPE higher than 35%. VIIRS has 

the lowest R2 and highest MdAPE for standard Chla products, but the number of match-ups is still 

small for definitive conclusions. To increase the number of VIIRS match-ups, we relaxed the timing 

criterion and used a 6-h time difference as the limit. At the medium and high Chla levels, all sensors 

underestimate pigment concentration compared to in situ Chla with a bias from −15.6% for MERISRR 

to about −40% for MODIST (Figure 4C). To determine if satellite retrievals of high Chla could be 

improved by implementing some alternative Chla algorithms that are designed to be suitable for high 
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Chla conditions, we also evaluated the Red-Green-Chlorophyll Index (RGCI, [18]) and the MERIS 

Rrs_709/Rrs_665 algorithms [19]. While the RGCI algorithm can be applied to most ocean color 

sensors, the near-infrared algorithm using Rrs_709 is applicable only to MERIS, as other major ocean 

color sensors do not have the 709-nm band. We compare the standard and high-Chla algorithms as 

applied to a subset of match-ups with in situ Chla > 1 mg m−3 (Figure 5). Regional tuning of these 

algorithms would potentially reduce the observed bias, but is not likely to reduce the scatter. No 

regional tuning was applied in Figure 5. 

Figure 5. Chlorophyll-a match-ups with in situ Chla ≥ 1 mg m−3 using standard algorithms 

(top) and specialized (high-Chla) algorithms (bottom). (A) MODISA OC3;  

(B) ESA MERIS algal_1; (C) NASA MERIS; (D) MODISA Red-Green-Chlorophyll Index 

(RGCI); (E) MERIS Rrs_709/Rrs_665 applied to ESA MERIS Level-2 data; and  

(F) MERIS Rrs_709/Rrs_665 applied to NASA processed Level-2 data. 

 

The empirical OC algorithms [6] use the maximum band ratio where the numerator band switches 

from a shorter wavelength (440 nm, the blue band) at low Chla to a progressively longer wavelength at 

higher Chla. For example, at high Chla, the numerator band is around 490 nm for MODISA, MODIST 

and VIIRS, whereas it is the 510-nm band for MERIS and SeaWiFS. We can therefore expect that the 

performance of a band ratio algorithm at medium and high Chla depends on the accuracy of Rrs 

retrievals of these bands. While we have no extensive and reliable ground truth to perform Rrs  

match-ups and to determine the accuracy of satellite-derived Rrs in the CC, we can compare the Rrs 
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measured by different satellite sensors with each other. We selected Rrs measured by MODISA as the 

common variable against which the other sensors are compared, as it overlaps temporally with all other 

sensors considered here and has a good calibration history. The band centers are slightly different for the 

different sensors, but for the purposes of this analysis, the differences are relatively minor. The scatter plots 

of satellite-derived Rrs at approximately 490 nm against Rrs_488 of MODISA (Figure 6) show that 

MERIS has the least scatter (MdAPE = 7.3%), followed by VIIRS (MdAPE = 9.5%) and SeaWiFS 

(MdAPE = 9.7%). A comparison with MODIST showed considerably more scatter (MdAPE = 40.7%).  

Figure 6. Inter-sensor comparison of log10-transformed remote sensing reflectance (Rrs) 

at approximately 490 nm (488 nm for MODISA and MODIST, 490 nm for MERIS,  

486 nm for VIIRS). This band is typically used for high Chla in the OC3 algorithm. Dots 

show same-day match-ups between the sensor along the same transect (Figure 1) during 

the first 99 days in 2012 (2004 for SeaWiFS). Bracket points are the median values of the 

points’ corresponding medians of small brackets along the horizontal axis. 

 

 

In order to explain the performance of the standard OC algorithms at medium and high Chla, we 

plotted subsets of these Rrs match-ups that correspond to medium and high Chla. According to the 

standard MODISA OC3 algorithm, pixels with Rrs_488/Rrs_547 < 0.8 correspond to Chla ≥ 3.3 mg m−3. 
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Again, we see the best correspondence with MERIS (MdAPE = 22%), followed by VIIRS  

(MdAPE = 28%), SeaWiFS (MdAPE = 41) and MODIST (MdAPE = 140%) (Figure 7). Standard OCx 

algorithms use Rrs band ratios instead of the individual Rrs band values. This technique can reduce the 

error of the product if the Rrs errors are spectrally correlated. It appears that taking a ratio does not 

significantly reduce the errors for pixels with predicted at high Chla (Figure 8). The best correlation 

with MODISA band ratios is again observed for MERIS, followed by SeaWiFS. MODIST and VIIRS 

Rrs band ratios have practically no correlation with those of MODISA.  

Figure 7. Inter-sensor comparison of log10-transformed remote sensing reflectance (Rrs) at 

approximately 490 nm as in Figure 6, but only for the subset of MODISA pixels with 

Rrs_488/Rrs_547 < 0.8. According to the standard MODISA OC3 algorithm, these pixels 

correspond to Chla ≥ 3.3 mg m−3. 
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Figure 8. Inter-sensor comparison of Rrs ratios that are being used to detect high Chla by 

standard algorithms. The subset of MODISA pixels with Rrs_488/Rrs_547 < 0.8 (as in 

Figure 7) are used, corresponding to Chla ≥ 3.3 mg m−3, according to the standard 

MODISA OC3 algorithm. 

 

4. Discussion 

We have shown that over the full range of in situ Chla, all satellite sensors estimate Chla reasonably 

well with median absolute percent errors below 30% and R2 of about 0.8 or higher, which is consistent 

with other studies (e.g., [20]) and meets the original goal of 35% accuracy [21] set for SeaWiFS for 

retrieving ocean Chla in Case 1 waters. However, at medium and high Chla, the accuracy drops 

dramatically and in different ways for the different sensors. This is highly relevant to coastal 

management and the detection of phytoplankton blooms, particularly high biomass events, such as 

harmful algal blooms (HABs) [22,23]. Therefore, accurate satellite detection of Chla is required for 

those waters with Chla > 1 mg m−3.  

While MODISA has the lowest errors over the full range of Chla, there are very few valid Chla 

match-ups at higher concentrations. This is in contrast to the higher numbers of very high Chla values 

in the “raw” matchups (Figure 2). It is evident that MODISA retrievals of Chla at high levels become 
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highly variable from pixel to pixel, and those retrievals that are being filtered out by the match-up 

procedure are unreliable. This is in contrast to MERIS match-ups, which provide more reliable  

match-ups at medium and high Chla. For Chla > 1 mg m−3, the ESA processed algal_1 from 

MERISRR data has the highest accuracy (i.e., lowest percent error) followed by the NASA processed 

chlor_a (also from MERISRR data). The disadvantage of MERIS data is that due to its orbit and swath 

width, there is less coverage compared to MODISA and SeaWiFS and, therefore, fewer match-ups. All 

of the other sensors have errors between 35% and 55%. Since VIIRS data have been available for a 

shorter period compared to other sensors (i.e., since 2012), the number of high Chla match-ups with 

VIIRS is still small, and therefore, the error estimates are inconclusive. Preliminary analysis shows that 

VIIRS Chla estimates are similar to those made by SeaWiFS, but less accurate than the top performing 

sensors, MODISA and MERIS. VIIRS appears to be less reliable at medium and high Chla. All 

sensors have significant under-estimation at Chla > 1 mg m−3 (reported earlier in [5]), which is partly 

explained by the loss of high Chla match-ups due to their large pixel-to-pixel variability. These error 

patterns are consistent with the sensor-to-sensor match-ups of Rrs. It is interesting to note that while 

the original goals for SeaWiFS were to detect Chla with 35% accuracy and Rrs with 5% accuracy [21], 

the goal for Chla within the CC is met, but the current errors in Rrs that we estimated with an  

inter-sensor comparison are much higher. For the full range, the differences (MdAPE) with MODISA 

Rrs_488 range from 7% for MERIS to 41% for MODIST, and for the Rrs, the range expected for high 

Chla, the MdAPE ranges from 22% for MERIS to 140% for MODIST. Chla estimates from MODIST 

are usually discarded due to calibration problems, which are shown by the high Rrs differences with 

other sensors. However, on average, MODIST Chla estimates are comparable to Chla estimates with 

SeaWiFS and VIIRS. These relatively good estimates of Chla by MODIST, in spite of the large errors 

in Rrs estimates (cf. Figures 3 and 6) are likely explained by the autocorrelation of the Rrs spectral 

bands, which reduces errors in band ratio algorithms.  

It is difficult to perform a comprehensive validation of satellite Rrs using Rrs measured in situ due 

to the different ground resolution, inherently limited number of sites, variable Sun and weather 

conditions, etc. An indirect measure of the accuracy of satellite Rrs can be derived by comparing 

respective Rrs values derived from various satellites over the same pixel and same day. While some 

temporal delay (in hours) between satellite passes cannot be avoided, the daily Rrs measurements 

should have reasonable consistency, as they are assumed to be representative of the whole day. For the 

CC, the spatial and temporal decorrelation scales for phytoplankton biomass (FLH) derived from the 

MODIS-Aqua fluorescence line height (FLH) standard product also suggest that there is no inherent 

issue comparing data over a few hours’ timespan [24]. We have shown that the differences in the 

distribution patterns of the scatter in Chla match-ups between different sensors can be explained by the 

distribution patterns of the respective sensor-to-sensor Rrs match-ups. When compared against 

MODISA, the Rrs measured by MERIS is clearly more consistent and less biased. At Chla > 1 mg m−3, 

the likely band ratio combination in the OC3 algorithm for MODISA is Rrs_488/Rrs_547. When 

selecting a subset of MODISA pixels with Rrs_488/Rrs_547 < 0.8 that approximately corresponds to 

Chla ≥ 3.3 mg m−3 according to the standard NASA algorithm (OC3M version 6), the correlation 

between Rrs estimated by different sensors drops significantly. The respective R2 is only about 0.2–0.3 

between VIIRS and SeaWiFS and about 0.5 between MODISA and MERISNASARR. We can assume 

that the poor inter-sensor consistency in Rrs at high Chla is indicative of the poor accuracy of Rrs at 
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medium and high Chla. Using Rrs ratios instead of individual Rrs band values can reduce the errors if the 

Rrs errors are spectrally correlated; e.g., [25]. While ratioing improves Chla retrievals over the full range 

of Rrs (or Chla), it does not reduce the errors for pixels with low Rrs_490 (i.e., those that are assumed to 

have high Chla, Figure 8). The best correlation with MODISA band ratios is observed for MERIS.  

In order to improve the accuracy of Chla estimates at medium and high Chla, we need to either 

improve the accuracy of Rrs (i.e., improve the atmospheric correction) or use a different algorithm. Of 

the sensors evaluated, MERIS clearly produces the best matchups for high Chla values. While some of 

the differences between sensors are clearly related to the instrumentation, the decrease in R2, the 

increase in MdAPE and the switch from positive to negative bias (Figure 4) between MERISRR and 

MERISNASARR demonstrate that significant differences can be attributed to data processing and, 

presumably, the implementation of the atmospheric correction.  

It appears that alternative algorithms specifically designed for high Chla waters, such as the  

Red-Green-Chlorophyll Index [18] and a band ratio algorithm using near-infrared bands [19], do not 

provide improvements in detecting high Chla in the CC. The algorithms using infrared bands, e.g., the 

MERIS 709 and 665 bands, are known to work well at high Chla with in situ data [26], but when 

applied to satellite Rrs with large errors, particularly at those infrared wavelengths, they have large 

errors and low accuracy compared to in situ data.  

The biases observed in all of the ocean color platforms have potentially significant implications for 

our understanding of the dynamics and trends in the CC system. Multiple authors have reported 

significant increasing trends for in situ chlorophyll spanning multiple decades [9,27,28]. Satellite 

observations have the potential to provide synoptic spatial coverage and sustained temporal coverage; 

these data have also been used to infer trends within the CC [27,29,30], with decadal increases in Chla 

reported from these observations, consistent with the in situ data. However, using Monterey Bay as an 

example, an analysis of different data sets may lead to substantially different conclusions. A decadal 

(1988–2013) in situ time series exhibits a positive trend in Chla of 0.050/y (available from the 

Monterey Bay Aquarium Research Institute, http://www.mbari.org/bog/mb/Trends.htm). Using 4-km 

monthly data from a box bounding Monterey Bay (36.5–37.0°N, 121.75–122.25°W) for SeaWiFS 

(1998–2010) and MODISA (2002–2013), SeaWiFS Chla is increasing at 0.12/y (p = 0.001,  

Mann–Kendall test). In contrast, MODISA shows no significant trend (p = 0.672) and a decreasing 

Chla concentration (−0.04/y). When restricted to the overlapping time period (2002–2010), the 

MODISA results do not change, while the SeaWiFS results exhibit a slightly increased positive trend 

(0.15/y, p = 0.030). While SeaWiFS captures the observed (in situ) trend better than MODISA, 

SeaWiFS still exhibits more bias in matchups (Figure 4), and MODISA consistently exhibits higher 

monthly mean Chla than SeaWiFS for the overlapping period 2002–2010 (p < 0.001, paired t-test). By 

comparison, trends reported from state-space analysis of SeaWiFS data exhibit trends > 0.2 mg m−3 

Chla per decade [31] for central California, exhibiting a consistent trend, but lower rate of change. 

Given the interest in the development of environmental and climate data records [32] using satellite 

observations, these discrepancies in standard products using the most recent versions of the data 

highlight the potential difficulty of interpreting decadal trends. Moreover, advanced data assimilation 

techniques for real-time circulation and ecosystem models in the CC rely heavily on observational 

“truth” from satellite-derived chlorophyll. While we did not evaluate matchups for other coastal 
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regions, it is likely, given that the standard algorithms are derived using a large percentage of data 

from the CC, that similar biases exist (e.g., [33,34]).  

5. Conclusions  

We have shown that chlorophyll-a (Chla) estimates in the CC region by ocean color satellite sensors 

using standard algorithms are within the error limits of 35% over the full range of in situ Chla, but at  

in situ Chla > 1 mg m−3, only products from MERIS (both the ESA produced algal_1 and the NASA 

produced chlor_a) maintained reasonable accuracy. The loss in accuracy at medium and high Chla is 

caused by the poor retrieval of remote sensing reflectance. Accuracy is not improved through 

implementation of alternative algorithms, like the Red-Green-Chlorophyll Index [18] or band ratio 

algorithms using infrared bands. Uncertainties in satellite retrieval of medium to high chlorophyll 

values may affect the estimation of trends and may be biasing our interpretation of biomass and 

productivity in coastal waters of the CC, despite the large number of observations used in the 

development of the standard NASA ocean color algorithms. 
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