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[1] Given the importance of nitrate in sustaining high primary production and fishery yields
in eastern boundary current ecosystems, it is desirable to know the amounts of this nutrient
reaching the euphotic zone through the upwelling process. Because such measurements are
not routinely available, we developed predictive models of water-column (0–200 m) nitrate
based on temperature for a region of the California Current System (30–47�N) within 50 km
from the coast. Prediction was done using generalized additive models based on a
compilation of 37,607 observations collected over the period 1959–2004 and validated with
a separate set of 6430 observations for the period 2005–2011. A temperature-only model
had relatively high explanatory power (explained deviance, D2¼ 71.6%) but contained
important depth, latitudinal, and seasonal biases. A model incorporating salinity in addition
to temperature (D2¼ 91.2%) corrected for the latitudinal and depth biases but not the
seasonal bias. The best model included oxygen, temperature, and salinity (D2¼ 96.6%) and
adequately predicted nitrate temporal behavior at two widely separated locations (44�39.10N
and 32�54.60N) with slight or no bias [root-mean-square error (RMSE)¼ 2.39 and 0.40 mM,
respectively). For situations when only temperature is available, a model including depth,
month, and latitude as proxy covariates corrects some of the biases, but it had lower
predictive skill (RMSE¼ 2.50 and 5.22 lM, respectively). The results of this study have
applications for the proxy derivation of nitrate availability for primary producers
(phytoplankton, macroalgae) in upwelling regions and for biogeochemical and ecosystem
modeling studies.
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1. Introduction

[2] Injection of nutrients into the upper layer of the ocean
through the process of wind-induced coastal upwelling
results in elevated primary production in eastern boundary
currents. Although direct measurement of the upwelling pro-
cess remains elusive, the coastal upwelling index (UI;
defined as the magnitude of the offshore component of the
Ekman transport, in meter cube per second per 100 m of

coastline) was devised in the 1970s as a large-scale estimate
of the amount of water upwelled from the base of the Ekman
layer [Bakun, 1973; Schwing et al., 1996]. However, UI is
derived exclusively from geostrophic estimates of wind
stress over the ocean and does not contain information on
the properties of the water being upwelled. In order to obtain
a more direct indication of the potential for upwelled waters
to sustain high biological production, it is desirable to know
the amounts of the major nutrients such as nitrate reaching
the euphotic zone through the upwelling process.

[3] Routine, direct measurements of nitrate, however, are
scarce for large regions of the world oceans, and therefore
statistical prediction is by necessity undertaken by exploiting
the relationship between nitrate and other more widely avail-
able measurements such as temperature [e.g., Kamykowski
and Zentara, 1986; Garside and Garside, 1995; Louanchi
and Najjar, 2000]. The advent of satellite remote sensing in
the 1980s and 1990s enabled the production of large-scale
maps of surface nutrient concentrations estimated from
satellite-derived sea-surface temperature measurements
[Traganza et al., 1983; Dugdale et al., 1989, 1997; Sathyen-
dranath et al., 1991; Morin et al., 1993; Goes et al., 1999;
Kamykowski et al., 2002; Henson et al., 2003], an area of
research still active today [Sili�o-Calzada et al., 2008; Steinh-
off et al., 2010; Sarangi, 2011].
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[4] A typical temperature-nitrate (T-N) scatterplot shows
a strong inverse relationship, such that even a simple linear
fit can be statistically significant and have a high coefficient
of determination (R2). Upon closer inspection, however,
the shape of the relationship may not necessarily be linear,
and it may display a broad scatter. A widely used approach
for nitrate prediction has been to fit polynomial expansions
of temperature, typically quadratic [Chavez et al., 1996;
Louanchi and Najjar, 2000] or cubic [Kamykowski and
Zentara, 1986; Switzer et al., 2003], to account for poten-
tial curvature in the relationship within a linear regression
framework. Curve fitting with a sigmoid function has also
been used as a form of nonlinear regression [Sarangi,
2011]. The inclusion of covariates such as salinity, chloro-
phyll concentration, or wind speed in the models tends to
further increase the amount of nitrate variance explained
[e.g., Roy, 1991; Garside and Garside, 1995; Goes et al.,
2000; Sarangi, 2011].

[5] In contrast to least-squares based methods, more
recently developed approaches based on local fitting of
nonparametric smooth functions of the predictors, such as
generalized additive models (GAMs) [Hastie and Tibshir-
ani, 1990; Wood, 2006], provide responses that more
closely follow the shape of nonlinear relationships, and
therefore have the potential to capture more complex
aspects of the T-N relationship. While GAMs do not pro-
vide the familiar empirical algorithms estimated by para-
metric models (i.e., a regression equation), for many
applications this is not a requirement since GAMs can be
reconstructed from the smoothing function and basis
dimension used to fit the model.

[6] Our focus here is on the prediction of water-column
(0–200 m) nitrate in the California Current System (CCS)
within the �50 km region off the coast that is most directly
affected by the upwelling process. For this purpose, we
build a series of GAMs using a historical data set spanning
the period 1959–2004. The resulting models are assessed
though residual diagnostics, and their predictive power are
evaluated relative to a set of independent observations for
the period 2005–2011. As an application, nitrate time series
are predicted and evaluated at two sites in the CCS to
examine the ability of the models to represent their tempo-
ral behavior. To conclude, the strengths and limitations of
each model are discussed.

2. Data Sources

[7] The CCS is one of the world’s most intensely
sampled ocean ecosystems. Multiple field programs and
process studies have been conducted in the CCS by both
academic and government institutions [e.g., Bograd et al.,
2003; Huyer et al. 2007; Pe~na and Bograd, 2007; Check-
ley and Barth, 2009]. We obtained hydrographic data for
the CCS covering the region 30–47�N, 126–116�W from
four of these programs: (1) the California Cooperative
Oceanic Fisheries Investigations program (CalCOFI; 7 Jan-
uary 1969 to 29 January 2011; available at http://www.
calcofi.org/), (2) the U.S. GLOBEC Northeast Pacific
Long-Term Observation Program (LTOP; 19 September
1997 to 1 September 2004; available at http://globec.whoi.
edu/jg/dir/globec/nep/ccs/ltop/), (3) the Coastal Ocean
Processes/Wind Events and Shelf Transport program

(CoOP/WEST; 1 June 2000 to 20 January 2003; http://
ccs.ucsd.edu/coop/west/), and (4) NOAA’s Newport Hy-
drographic Line program (NH-Line; May 1996 to present;
http://www.nwfsc.noaa.gov/oceanconditions).

[8] In addition, we queried historical records from other
programs in the World Ocean Database 2009 (WOD09;
available at http://www.nodc.noaa.gov/) [Boyer et al.,
2009] for this same region, yielding observations for the
period 8 July 1959 to 25 July 1985. The WOD09 extract
contained data collected in the Monterey Bay area by Hop-
kins Marine Station (HMS) of Stanford University (14 Oc-
tober 1969 to 22 April 1974) and by Moss Landing Marine
Laboratories (MLML) of California State University under
the auspices of California Sea Grant (two time periods: 13
April 1970 to 17 December 1971 and 3 January 1975 to 7
December 1976). It also contained observations from the
Coastal Transition Zone experiment (CTZ; 30 April to 19
May 1987) off northern California. Observations in the
WOD09 for which the accompanying metadata was insuffi-
cient to determine the specific program under which they
were collected were grouped together under ‘‘other.’’ Cal-
COFI data contained in the WOD09 were excluded to
avoid duplication.

[9] Because the focus of our effort was on the waters
directly influenced by coastal upwelling, we limited the
extracts to observations in the upper 0–200 m in the water
column occurring within a strip 50 km from the coastline.
For this purpose the great-circle distance between each ob-
servation and the nearest coastline was computed using the
high-resolution level of the Global Self-consistent, Hier-
archical, High-resolution Shoreline Database (available at
http://www.ngdc.noaa.gov/mgg/shorelines/gshhs.html)
[Wessel and Smith, 1996]. For each source, we retained
observations that contained at least three variables: temper-
ature, salinity, and nitrate (in addition to date, depth, and
geographic location). If other variables, such as oxygen,
phosphate, or silicate were available, these were also
retained. The nitrate-to-phosphate (N:P) and the silicate-
to-nitrate (Si:N) ratios were computed for observations
containing these measurements. These variables were used
at the different stages of data screening as filtering criteria.
Tabular and graphical summaries of the temporal and spa-
tial coverage of the observations used in this study are
given in Table 1 and Figure 1.

3. Data Preparation

[10] Considering the wide variation in data sources, time
periods, and sampling protocols in the initial data compila-
tion, quality control was conducted to identify and deal
with potentially problematic observations, as is commonly
performed on hydrographic databases prior to analysis
[e.g., Louanchi and Najjar, 2000]. We implemented the
following steps for data screening, outlier identification,
and potential transformation.

3.1. Data Screening

[11] The initial data compilation contained 54,487 obser-
vations in the upper 200 m and within 50 km from the
coast. It consisted of 12 columns for date, latitude, longi-
tude, observation depth, temperature, nitrate, salinity, oxy-
gen, phosphate, silicate, N:P ratio, and Si:N ratio (the
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abbreviated names for these variables, as used in the mod-
els, are defined in Table 2). The first step in data screening
consisted of removing duplicate entries (n¼ 84). The sec-
ond step involved removing observations with measured

values of nitrate, phosphate, or silicate equal to zero
(n¼ 3814). The rationale for this being that once a nutrient
becomes depleted any temperature-nutrient relationship
breaks down and for these observations the temperature at

Table 1. Sources of Hydrographic Data, Number of Stations, Number of Observations, and Dates in the Cleaned Data Set (See Section
3 for Details on Data Preparation)

Programa Number of Stations Number of Observations Start Date End Date

CalCOFI 2731 27,544 7 Jan 1969 29 Jan 2011
HMS 321 1755 14 Oct 1969 22 Apr 1974
MLML 432 1826 13 Apr 1970 7 Dec 1976
CTZ 11 118 30 Apr 1987 18 May 1987
LTOP 362 3370 15 Nov 1997 1 Sep 2004
WEST 637 4424 1 Jun 2000 20 Jan 2003
NH-Line 102 102 16 Nov 1997 8 Jun 2011
Other 970 4898 8 Jul 1959 25 Jul 1985
Total 5566 44,037 8 Jul 1959 8 Jun 2011

aSee section 2 for details of the programs.

Figure 1. (top) Time-latitude plot showing the coverage of the hydrographic data over the 53 year pe-
riod 1959–2011, colored by major program. The number of observations collected by each program is
indicated in parentheses. Vertical lines indicate the breaks used in the subperiods in the bottom. (bottom)
Maps showing the location of hydrographic stations in the cleaned data set for the 53 year period 1959–
2011, colored by major program. Data are split into three subperiods for presentation. The number of
observations in each subperiod is indicated in parentheses.
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which depletion occurred is unknown (cf., the ‘‘nitrate
depletion temperature,’’ defined as the intercept in a T-N
scatterplot at the temperature axis) [see Switzer et al.,
2003]. The third step involved removing out-of-range val-
ues in temperature (5< T< 25�C), salinity (30< S< 35),
nitrate (0<N< 50 mM), phosphate (0<P< 10 mM), sili-
cate (0< Si< 150 mM), N:P ratio (0<N:P< 60), and
Si:N ratio (0< Si:N< 60) for typical oceanic waters in the
upper 200 m of the CCS (n¼ 2279).

3.2. Outlier Analysis

3.2.1. Univariate Outliers
[12] Rather than the traditional boxplot, we used Cleve-

land dotplots as an efficient graphical tool to visualize uni-
variate outliers. In a Cleveland dotplot, the row number of
an observation is plotted against the observation value, and
points that stick out on either side are potential outliers
[Zuur et al. 2009]. We generated Cleveland dotplots for
temperature, nitrate, salinity, and oxygen using latitude and
depth as sort variables for the rows, and regarded as outliers
observations that departed noticeably from the point cloud
(likely caused by measurement or data entry error). The
combined univariate outliers from these plots (n¼ 120)
were excluded from the data set.
3.2.2. Outliers in the Temperature-Salinity
Relationship

[13] Unusual relationships in the temperature-salinity
scatterplot, evident as ‘‘tendrils’’ emanating from the main
point cloud, were explored. In all cases, these observations
(n¼ 194) were isolated to individual profiles and may have
been the result of extreme environmental conditions (such
as strong El Ni~no events in 1970–1971, 1981, 1997–1998)
or instrumental error. These observations were excluded
from the analyses.
3.2.3. Outliers in the Nitrate-Phosphate Relationship

[14] A nitrate-phosphate scatterplot for those observations
containing both measurements (n¼ 43,331) revealed that
most of the data set had a well-behaved linear relationship.
However, a small cluster with a much steeper relationship
(i.e., low nitrate, high phosphate conditions) was readily evi-
dent. Further investigation indicated that these observations
belonged to a unique water mass found off Oregon and
Washington during the period 1961–1970. This anomalous

water mass occupied much of the water column, and it was
generally characterized by relatively cool (T< 10�C), salty
(S> 32), low-nitrate (N< 6.5 mM), high-phosphate (P> 1
mM), and low-oxygen (O< 6 mL/L) conditions. While a full
study of this water mass remains to be conducted, it was
judged that these observations should be removed prior to
analysis because their characteristics were not representative
of the conditions encountered in this area at any other time
in the data set. To accomplish this, a linear regression of
phosphate on nitrate was fitted to the nonanomalous observa-
tions, and the 95% prediction band (simultaneous, protected
against multiple observations with Scheff�e adjustment) for
this regression was applied to the entire data set as the basis
for identifying and excluding outliers (n¼ 1914) in the ni-
trate-phosphate relationship.
3.2.4. Multivariate Outliers

[15] The final step in the outlier analysis took advantage
of concurrent measurements in addition to temperature and
nitrate available for several of the data sources. Multivari-
ate outliers were identified following the technique outlined
in Tabachnik and Fidell [1989, 2001]. Briefly, the Mahala-
nobis distance was computed for each observation from the
centroid of the n-dimensional point cloud, and a �2 test was
used to identify points with distances greater than the criti-
cal value of the distribution [with �¼ 0.001 and degrees of
freedom (df) equal to the number of variables included in
the particular combination of data points being considered].
This procedure was implemented on two subsets of the data,
one containing concurrent observations for the eight varia-
bles temperature, nitrate, salinity, oxygen, phosphate, sili-
cate, N:P ratio, and Si:N ratio (n¼ 35,949), and another
containing observations for which only the three variables
temperature, nitrate, and salinity were available (n¼ 10,138).

[16] To a large extent the multivariate outliers identified
in these two subsets (n¼ 1847 and n¼ 198, respectively)
occurred near the margins of the n-dimensional point cloud
as gleaned from inspection of the respective property-
property plots. Closer examination revealed that they could
be grouped into three types. Type 1 outliers (n¼ 926) were
mostly in the upper 50 m and in the southern half of the lat-
itudinal range (L< 38�N). These waters had a wide range
in temperature (8.25< T< 24.1�C), a high salinity
(S> 33.15), were low in nitrate (N< 20 mM), and high in
oxygen (O> 5 mL/L). Type 2 outliers (n¼ 146)

Table 2. Descriptive Statistics for the Cleaned Variablesa

Variable Abbreviation n Range Mean sd Skewness Kurtosis CV

Nitrate (mM) N 44,037 [0.02, 37.70] 14.48 10.33 0.10 1.70 71.30
Temperature (�C) T 44,037 [6.09, 20.62] 11.14 2.28 0.78 3.52 20.49
Salinity (psu) S 44,037 [31.060, 34.365] 33.51 0.48 �1.61 6.26 1.42
Oxygen (mL/L) O 35,786 [0.79, 9.28] 4.41 1.52 �0.07 1.93 34.46
Phosphate (mM) P 39,378 [0.01, 3.22] 1.30 0.67 0.09 1.84 51.65
Silicate (mM) Si 42,830 [0.100, 67.410] 18.27 12.89 0.60 2.50 70.55
N:P ratio N:P 39,378 [0.051, 60.000] 8.94 4.28 �0.78 2.8 47.88
Si:N ratio Si:N 42,830 [0.015, 60.000] 2.73 4.98 4.34 24.30 182.46
Obs. depth (m) Z 44,037 [0, 200] 56.51 51.44 1.06 3.32 91.02
Month M 44,037 [1, 12] 5.63 3.23 0.15 1.92 57.42
Latitude (�N) L 44,037 [30.342, 47.000] 36.63 4.14 1.15 3.05 11.31

aThe variables used in data screening and in GAM model specification, sample size (n), range, mean, standard deviation (sd), skewness, kurtosis, and
coefficient of variation (CV). Note that the second column provides the abbreviated names of the variables used in the text.
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corresponded to a small cluster found at middepths (20–
200 m) and mostly in the northern half of the study area
(L> 36�N). These waters were cold (T< 8.25�C) and had a
high salinity (S> 33.15), high nitrate (N> 20 mM), and low
oxygen (O< 4 mL/L). Type 3 outliers (n¼ 770) were
found mostly in the upper 50 m and occurred primarily in
the northern half of the study area (L> 36�N). These waters
had a wide range of temperature (6< T< 17�C), a low sa-
linity (S< 33.15), low nitrate (N< 20 mM), and high oxy-
gen (O> 4.5 mL/L).

[17] Thus, these outliers identified the most extreme nu-
trient relationships in multivariate space and were separa-
ble by water mass characteristics, latitude, and depth. The
procedure also eliminated observations with salinities
lower than 31.060, which are influenced by riverine dis-
charge (e.g., the area of influence of the Columbia River
plume as well as other rivers discharging along the Oregon
and California coasts). For these reasons, we felt justified
to remove these outliers from data compilation.

3.3. Final Data Set

[18] The cleaned data set contained 44,037 observations
and spanned the period 8 July 1959 to 8 June 2011 (Table 1

and Figure 1). Descriptive statistics for this data set, includ-
ing range, mean, standard deviation, skewness, kurtosis,
and coefficient of variation are provided in Table 2. We
also examined the univariate distribution of the main varia-
bles (nitrate, temperature, salinity, oxygen, depth, month,
and latitude) as well as the bivariate relationships among
them and these are shown in Figure 2. Pearson correlation
coefficients among variables are presented in Table 3.
Phosphate and silicate covaried strongly with nitrate
(r¼ 0.98 and 0.95, respectively) but were also highly col-
linear with each other (r¼ 0.95) as well as with oxygen
(r¼�0.92 and �0.87, respectively) and with temperature
(r¼�0.83 and �0.82, respectively) ; therefore, they were
not included as potential explanatory variables in the
models.

[19] Both the descriptive metrics and the graphical ex-
ploration (Table 2 and Figure 2) indicated some degree of
nonnormality in the primary variables used in modeling (N,
T, S, O) ; however common data transformations (i.e., log,
square root, inverse) did not improve the descriptive met-
rics or the distributions. (Although normality can be
achieved with more drastic transformations like the Box-
Cox or the rank, difficulties with interpretability and back

Figure 2. (a–g) Univariate frequency histograms (n¼ 22 bins) for variables used in GAM modeling af-
ter screening and outlier analysis. (h–x) Binned bivariate scatterplots (hexagonal bins, n¼ 30) with color
shade indicating the density of observations (blue¼ low, red¼ high) for selected variable combinations.
The range of the number of observations per bin is given above each figure. Axis units are as in Table 2.
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transformation made them less applicable for our purpose).
Therefore, we used the variables untransformed and note
that some nonnormality remained in the final models (see
supporting information for additional diagnostics of model
residuals). We also point out that after screening and dele-
tion of outliers the final data set reflected waters of oceanic
character and therefore the inferences drawn from the mod-
els in the following sections are only applicable to the
ranges and variable combinations in the data analyzed here.

4. Nitrate Patterns in the Coastal Upwelling
Domain of the CCS

[20] The large observational data set compiled here
allowed us to examine the patterns of biologically available
nitrate in the water column in the coastal upwelling domain
of the CCS over a period of five decades. As occurs
throughout the world ocean, nitrate concentrations in the
study area were high at depth and became progressively
lower in the upper levels of the water column (Figures 2m
and 3a). Nitrate increased with latitude, especially at depth
(Z> 50 m) (Figure 3a). In waters Z< 50 m nitrate tended
to peak at 37–40�N and then decrease.

[21] Nitrate had a strong inverse relationship with tem-
perature and oxygen and a direct one with salinity (Figures
2s–2u and 4a). These relationships were reasonably linear
and tight at Z> 50 m, but they developed a ‘‘hockey stick’’
shape and displayed wide scatter at shallower depths, espe-
cially where N< 5 mM, T> 14.5�C, S< 33.25, and O> 6
mL/L (Figures 3b–3d and 4a).

[22] In terms of temporal patterns, nitrate followed a sea-
sonal cycle with a broad peak in the spring and summer
months (Figure 4b). This cycle occurred at all depths
although it was less marked in very shallow (Z< 10 m) and
very deep (Z> 100 m) waters. There was also evidence of
decadal trends over the period 1959–2011, with nitrate
decreasing from 1959 to the late 1980s and then increasing
through the present time (Figure 4c). This trend occurred at
all depths, but, like the seasonal pattern, it was most
marked at middepths (10<Z< 100 m) (Figure 4c).

[23] Progressively lower nitrate and oxygen concentra-
tions toward the southern half of the study area (L< 37�N;
Figures 2h, 2k, and 3a) indicated that denitrified waters are
upwelled in this region relative to the waters upstream.
However, the fact that the observed nitrate concentrations
were always high at low oxygen levels indicated that

denitrification generally did not occur in the upper 200 m
anywhere in the data set.

5. Modeling Approach

[24] Although global methods (i.e., linear regression,
including polynomial expansions) have been widely used
to model the T-N relationship [Kamykowski and Zentara,
1986; Garside and Garside, 1995; Chavez et al., 1996;
Louanchi and Najjar, 2000], our focus here is on local
methods (i.e., GAMs), which have the potential to better
capture nonlinearities in the relationship that may be
related to regional gradients (e.g., water mass distributions,
upwelling intensity). A brief introduction to the GAM
methodology is given in section 5.1 followed by details of
variable and smoothness selection in section 5.2. Models
quantifying the T-N relationship are built in sections 5.3,
starting from a T-only model to more complex models that
further explore the nonlinear dependence of nitrate on other
influential variables and that address some of the shortcom-
ings of the simpler models.

5.1. General Form of a GAM

[25] GAMs are a nonparametric extension of the more
familiar generalized linear models (GLMs). Instead of
assuming a priori any rigid parametric form, GAMs repre-
sent the relationship between the response and the explana-
tory variables by smooth functions, which can take
virtually any form [Hastie and Tibshirani, 1990; Wood,
2006]. Because they implement a local, data-driven regres-
sion, GAMs can be used to quantitatively explore complex
relationships when little is known about the underlying
mechanisms responsible for generating the observations.
Like GLMs, GAMs are estimated using the method of
penalized likelihood and the discrepancy between the
observations and the estimated mean is measured using
deviance residuals (expressed as the percent of deviance
explained, D2) [Hastie and Tibshirani, 1990; Wood, 2006].

[26] The general form of a GAM is:

g �ið Þ ¼ � þ
Xp

j¼1

fj Xið Þ þ "i ð1Þ

where the function g(m) is a link function relating the mean
of the response variable given the explanatory variables,
m¼E(YıX1, . . . ,XP), to the additive predictor �þ

P
fj (Xi).

Table 3. Correlation Matrix (Pairwise Pearson Correlation Coefficients) of Main Variables in the Compiled Data Set Considered in
Data Screening and in GAM Model Specification

N T S O P Si Z M L

N 1.000
T �0.824 1.000
S 0.620 �0.255 1.000
O �0.929 0.659 �0.663 1.000
P 0.983 �0.832 0.556 �0.921 1.000
Si 0.951 �0.819 0.529 �0.868 0.951 1.000
Z 0.651 �0.483 0.520 �0.802 0.673 0.572 1.000
M 0.059 0.031 0.028 �0.024 0.044 0.064 �0.004 1.000
L 0.089 �0.428 �0.528 0.157 0.125 0.258 �0.226 0.083 1.000
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The term � represents any strictly parametric component in
the model (e.g., the intercept), while components fj (Xi) in
the additive predictor are specified as nonparametric
smooth functions of the explanatory variables, and "i are in-
dependent and identically distributed normal random varia-
bles [Hastie and Tibshirani, 1990; Wood, 2006].

[27] Model fitting was carried out in the R environment
version 2.15.1 [Ihaka and Gentleman, 1996; R Core Team,
2012] using the ‘‘mixed GAM computation vehicle’’
(mgcv) library version 1.7–22 [Wood, 2006]. The mgcv
library implements an automatic selection of the smoothing

parameters associated with each smooth term, based on
generalized cross-validation (GCV). Simply put, cross vali-
dation involves leaving one of the data points out, fitting
the model to the remaining data, and then calculating the
square difference between those points and the fitted model
(smaller differences mean better models). This procedure is
repeated for all data points and for several amounts of
smoothing (and hence several values of df for each term).
The GCV score reflects the overall balance between the
gains obtained by increasing the amount of smoothing, and
the costs in terms of increasing the number of df [Wood,

Figure 3. Trellis scatterplots of N against L, T, S, and O conditioned by Z, with observations grouped
into five levels having roughly the same number of counts. The depth levels (in meter) are displayed on
the strip above each figure, both numerically (bracketed intervals) and visually (darker shaded sections
of the strip). Red curve in all figures is a loess scatterplot smoother (degree¼ 2, span¼ 3/4) intended to
guide the eye through the point cloud.
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2006]. The maximum number of df of each smooth term
(and hence the complexity of the relationship) must be set
initially by the user, but the fitting procedure subsequently
‘‘downgrades’’ them to minimize the GCV score of the
entire model [Wood, 2006]. Optimal smoothness for each
term can be automatically achieved by initially fitting a
model with restricted maximum likelihood (REML) instead
of GCV, but the user must still decide if the functional
responses obtained with this method are an appropriate rep-
resentation of the underlying processes, and make adjust-
ments to the df as necessary [Wood, 2006].

5.2. Model Specification and Selection

[28] The data set was divided into training and testing por-
tions using the following scheme: observations for the pe-
riod 1959–2004 (n¼ 37,612) were used for model training

while data for the period 2005–2011 (n¼ 6430) were saved
for model testing. This allowed us to evaluate the ability of
the models to predict new nitrate observations while also
allowing us to assess the models’ representation of temporal
behavior at selected locations over the testing period (see
section 6). As mentioned in section 3.3, nitrate concentration
was treated as a continuous normal random variable, and
thus GAMs were built using the identity function as the link
function (i.e., N � Gaussian). Thin-plate splines were used
as the basis for the smooth function for the explanatory vari-
ables except for month (M), which was treated as a cyclical
variable using the cyclic cubic regression spline.

[29] Selection of the smoothing parameter associated
with each term involved specifying the basis dimension, k,
which amounts to setting the maximum possible df allowed
for each term (the actual effective df for each term are then

Figure 4. Trellis scatterplots of (a) N against T conditioned by S, (b) N against M conditioned by Z,
and (c) N against date conditioned by Z, with observations grouped into five levels having roughly the
same number of counts. Other plot details are as in Figure 3.
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estimated from the data by GCV), and the value for
gamma, �, that minimizes the GCV scores. Univariate
GAMs with k¼ 10 and �¼ 1 (the mgcv defaults) were ini-
tially specified to assess the relative importance of the indi-
vidual explanatory variables in predicting nitrate. For the
final multivariate models, gamma was set to �¼ 1.4, as
suggested by Wood [2006] to avoid overfitting, while an
initial estimate of the optimal smoothness for each term
was obtained by fitting the models with REML. These esti-
mates of k were subsequently adjusted downward in cases
where the functional responses appeared too ‘‘wiggly,’’ and
the final models were fit with GCV.

[30] Assessment of the univariate GAMs was based on
drop in deviance, D2, GCV score, and Akaike’s information
criterion (AIC). These criteria indicated that the explanatory
variables should be entered into candidate multivariate mod-
els in the following order: O, T, S, Z, M, and L (Table 4).
Interactions among variables (i.e., when the conditional de-
pendence between the response and an explanatory variable
changes with the values of a third variable) were explored
visually using Trellis displays [Fuentes et al., 2011]. Clear
interactions between T and Z (Figure 3b) and T and S (Figure
4a) were identified from these displays, and they were
entered in multivariate models using tensor products con-
structed with cubic regression splines as the smooth function
[Wood, 2006].

[31] As the last step, candidate multivariate models were
checked to ensure that none of the terms included were su-
perfluous. Term selection was implemented using the
‘‘shrinkage’’ method, which adds a shrinkage parameter to

the smoothing penalty such that under heavier penalization
redundant terms are reduced to the zero function and
thereby ‘‘selected out’’ of a model [Marra and Wood,
2011]. None of the terms in the models of interest specified
in sections 5.3 were dropped by this selection procedure.

5.3. A Simple Model for Nitrate

[32] The first GAM model explored was one with a sin-
gle smooth term for temperature :

Ni ¼ �0 þ f Tið Þ þ "i ð2Þ

[33] Automatic smoothness selection with REML
yielded 8.94 df for the smooth term but the functional
response contained unrealistic ‘‘bumps’’ and ‘‘wiggles,’’ so
for the final fitting with GCV the basis dimension was con-
strained to k¼ 8. The model results are given in Table 5.
This model used 1 parametric df for the intercept and 6.32
effective df for the smooth term, for a total of 7.32 df. The
smooth term was highly significant (p value< 0.001), with
fit statistics D2¼ 71.6%, GCV score¼ 30.27, and
AIC¼ 234965.3.

[34] The functional response of nitrate to temperature
consisted of a sigmoid curve steeply descending from high
nitrate concentrations at low temperatures and with a long
tail at low nitrate concentrations and high temperatures
(Figure 5a). The partial residuals (dots colored by depth in
Figure 5a) indicated that much of the original scatter in the
T-N relationship (e.g., Figures 2s and 3b) remained in the
model and, further, that it had a strong tendency to

Table 4. Assessment of Single-Term GAM Models Used to Determine the Relative Importance of the Explanatory Variables Based on
GCV Score, AIC, Drop in Deviance, and the Percent Deviance Explained (D2)a

Model N � df p Value GCV Score AIC Resid. Deviance Deviance Drop D2 (%)

Intercept 1.00 <0.001 97.41 218,630.8 2,861,313 0
L 5.61 <0.001 96.83 217,713.1 2,843,158 18,155 0.6
M 4.85 <0.001 91.21 215,952.3 2,677,900 183,413 6.4
Z 5.82 <0.001 45.43 195,471.6 1,333,519 1,527,794 53.4
S 6.00 <0.001 41.08 192,523.2 1,206,170 1,655,143 57.8
T 5.96 <0.001 27.13 180,319.1 796,152 2,065,161 72.2
O 5.97 <0.001 12.07 156,542.4 354,410 2,506,903 87.6

aFor each model, the drop in deviance is relative to the null model (i.e., intercept-only model in first row). Variables are sorted in increasing order of
importance based on these criteria.

Table 5. Final GAM Model Specifications, Estimated Terms, and Fit Statistics Reported by mgcva

N�T N�T � S N�Oþ (T � S)b N�(T � Z)þMþL

n 37,607 37,607 29,378 37,607
P value T (<0.001) T � S (<0.001) O (<0.001) T � Z (<0.001)

T � S (<0.001) M (<0.001)
L (<0.001)

Eff. df T (6.32) T � S (21.12) O (6.27) T � Z (19.51)
T � S (23.83) M (4.95)

L (6.99)
Tot. df 7.32 22.12 31.10 32.45
D2 71.6% 91.2% 96.6% 87.2%
GCV score 30.27 9.45 3.29 13.69
AIC 234965.3 191167.0 118366.7 205112.4

aTotal df include 1 df for the intercept plus the effective df for the smooth terms.
bThe number of observations was lower for this model due to missing O values.
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overpredict nitrate at shallow depths (Z< 50 m) and to
underpredict at deeper depths (Figures 5a and 5b). Biases
were also evident in the residuals in relation to month and
latitude, with the model tending to overpredict in the early
part of the year (January-August) and at the high latitudes
(Figures 5b and 5c). Additional residual diagnostics for this
model indicated a noticeable departure from normality and
significant heterogeneity relative to the linear predictor
(Figure S1 in supporting information).

[35] The performance of the model at predicting new
observations was evaluated using the testing set. These
results are presented in Table 6. Although the correlation
between the observed and the predicted nitrate was very
high (r¼ 0.98), a scatterplot showed that the slope of the
observed versus predicted values was significantly different
from a 1:1 relationship (Figure 5d), such that the model
increasingly underpredicted the higher nitrate concentra-
tions observed at depth. Thus, we concluded from the

Figure 5. (a) Estimated effects (solid black curve) at the scale of the linear predictor for a simple
GAM based on T for the training data set (1959–2004, n¼ 37,607). The 95% confidence limits (strictly
Bayesian credible intervals) are shown as dashed black lines. Dots are the partial residuals, colored by Z.
(b) Model residuals versus Z (colored by M). (c) Model residuals versus L (colored by M). Red curve in
Figures 5b and 5c is a loess scatterplot smoother (degree¼ 2, span¼ 3/4). (d) Scatterplot of observed
versus predicted values (colored by Z) by a simple GAM based on T for the testing data set (2005–2011,
n¼ 6430). Dashed gray line is the linear fit and black line is the 1:1 line.
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diagnostics of both the training and testing steps that a T-
only model was inadequate for the coastal upwelling do-
main of the CCS (but it may be adequate for a sufficiently
small area with a limited depth range).

5.4. A Model With Temperature and Salinity

[36] Since salinity is the variable most commonly meas-
ured with temperature, we considered it useful to construct
a model with these two variables to examine the perform-
ance of salinity as an explanatory variable. As mentioned
in section 5.2, a marked interaction between T and S was
detected in the data, and initial assessment indicated that a
model including this interaction provided a better fit than a
model with only the main effects. Using the previously
defined training and testing data sets, the model was speci-
fied as:

Ni ¼ �0 þ f Ti � Sið Þ þ "i ð3Þ

[37] Where the smooth function f(T � S) is a tensor prod-
uct constructed with a cubic regression spline as the basis.
The estimate of the optimal smoothness for this term
obtained by initially fitting the model with REML (21.3
effective df) yielded a reasonable functional response, so
for the final fitting with GCV the basis dimension was set
to k¼ 5 for both T and S. (For tensor product smooths the
upper limit of the df is given by the product of k values pro-
vided for each marginal smooth less one, which is lost to
the identifiability constraint on the smooth, Wood [2006]).
This model used 1 parametric df for the intercept and 21.12
effective df for the T � S smooth term, for a total of 22.12
df. The smooth term was highly significant (p val-
ue< 0.001). The addition of salinity increased this model’s
D2 to 91.2% and lowered both the GCV score and the AIC
to 9.45 and 191,167, respectively (Table 5).

[38] The functional response of nitrate in T � S space
(contoured and colored surface in Figure 6a) showed a
rapid and uniform decrease at T< 12�C and S> 32.5 that
then leveled out at higher temperatures and lower salinities.
In addition to this large-scale gradient, a local maximum in
nitrate was predicted at low temperature and low salinity
(Figure 6a), corresponding to estuarine influences at the
northern part of the study area. This model largely cor-
rected the depth and latitude biases in the T-only model,
indicating that nitrate levels in the CCS are highly depend-
ent on water mass, but the tendency to overpredict in the

early part of the year remained (Figures 6b and 6c).
Additional diagnostics of the model’s residuals indicated
an improvement toward normality and a closer fit, but sig-
nificant heterogeneity remained at low and intermediate
values of the linear predictor (Figure S2 in supporting
information).

[39] The performance of this model at predicting new
observations was evaluated using the testing set (Table 6).
A scatterplot of observed versus predicted nitrate indicated
that although the slope was closer to a 1:1 relationship than
for the T-only model (Figure 6d), the shape of the relation-
ship had some curvature, leading to underprediction at in-
termediate nitrate levels and slight overprediction at both
low and high nitrate levels (Figure 6d).

5.5. An Expanded Model With Oxygen, Temperature,
and Salinity

[40] Including additional hydrographic variables in the
models can yield functional relationships useful in elucidat-
ing relevant patterns and processes while also improving
the fit and predictive power. Of all the variables considered,
the initial univariate GAMs (Table 4) indicated that oxygen
was the single most important variable in predicting nitrate.
Therefore, we fitted and evaluated models including the
three variables oxygen, temperature, and salinity and their
interactions. The following model provided the best fit:

Ni ¼ �0 þ f1 Oið Þ þ f2 Ti � Sið Þ þ "i ð4Þ

[41] Automatic smoothness selection with REML sug-
gested 8.28 effective df for the O smooth term but the func-
tional response appeared slightly overfitted, so for the final
fitting with GCV the basis dimension for this term was con-
strained to k¼ 8. The basis dimension for the T � S term
was maintained as k¼ 5 for both T and S, as in the TS
model in the previous section. This model used a total of
31.1 df (1 for the intercept, 6.27 for the O term, and 23.83
for the T � S interaction), with all smooth terms being
highly significant (p values< 0.001). The fit statistics for
this model were the best of any model, with D2¼ 96.6%,
GCV score¼ 3.29, and AIC¼ 118366.7 (Table 5).

[42] The smooth term for oxygen, the strongest effect,
consisted of a sigmoid curve descending from high nitrate
at the lowest oxygen concentrations to low nitrate at the
higher oxygen concentrations (Figure 7a). This smooth
captured the well-known influence of oxygen levels on

Table 6. Metrics of the Performance of the Final GAM Models in Predicting Nitrate Observations From the Testing Data Seta

N�T N�T � S N�Oþ (T � S)b N�(T � Z)þMþL

n 6430 6430 6408 6430
r 0.98 0.97 0.99 0.98
CV obs. 70.47 70.47 70.28 70.47
CV pred. 68.57 71.82 72.56 69.72
Mean ratio obs.: pred. 1.20 0.95 0.89 0.66
Rangejobs.-pred.j(mM) [1.34 � 10�4, 12.05] [1.21 � 10�4, 10.43] [4.35 � 10�4, 9.05] [3.60 � 10�4, 11.37]
Meanjobs.-pred.j(mM) 3.51 2.06 1.02 2.14
Sdjobs.-pred.j(mM) 2.27 1.51 1.10 1.69

aRow wise these are: the sample size (n), the correlation coefficient between observations and predictions (r), the coefficient of variation for observa-
tions and for predictions, the mean ratio of observations to predictions, and the range, mean and standard deviation (sd) of the absolute value of the differ-
ence between observations and predictions.

bThe number of observations was lower for this model due to missing O values.
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nitrate uptake, respiration, and microbial processes in the
water column [e.g., Sarmiento and Gruber, 2009], as evi-
denced by the depth-dependent pattern in the partial resid-
uals (colored dots in Figure 7a). The functional response of
nitrate to the T � S term was similar to that of the TS
model, but temperature tended to be a stronger driver of the
relationship than salinity in this model, especially at high
nitrate values (Figure 7b). This model also predicted the
local maximum in nitrate at low temperature and low salin-
ity (Figure 7b) described in the previous section. No latitu-
dinal bias was apparent in the model’s residuals, and the
seasonal bias was also largely corrected (Figure 7c).

Further diagnostics of the model’s residuals indicated that,
while present at low levels, the issues of nonconstant var-
iance, nonlinearity and departure from normality in the
simpler models were greatly reduced with the expanded
model and were no longer of concern (Figures S3 and S4 in
supporting information).

[43] The performance of this model at predicting new
observations was evaluated using the testing set (Table 6).
This model achieved the highest correlation between the
observed and the predicted nitrate (r¼ 0.99). More impor-
tantly, the scatterplot showed that the slope of the relation-
ship was indistinguishable from a 1:1 relationship and that

Figure 6. (a) Estimated effects (contoured surface) at the scale of the linear predictor for the T � S
interaction term for a GAM based on T and S for the training data set (1959–2004, n¼ 37,607). (b)
Model residuals versus Z (colored by M). (c) Model residuals versus L (colored by M). Red curve in Fig-
ures 6b and 6c is a loess scatterplot smoother (degree¼ 2, span¼ 3/4). (d) Scatterplot of observed versus
predicted values (colored by Z) by a GAM based on T and S for the testing data set (2005–2011,
n¼ 6430). Dashed gray line is the linear fit and black line is the 1:1 line.
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there was very little bias relative to depth in the predictions
(Figure 7d).

5.6. A Proxy Model With Temperature, Depth,
Month, and Latitude

[44] The prediction biases in depth, latitude, and season
detected in the T-only model (as well as the strong structure
in the residuals) were adequately corrected by including

oxygen and salinity, indicating that these three variables
captured the dominant physical and biological processes
driving nitrate variability in the upper 200 m of the CCS.
However, despite its shortcomings, a T-only model may be
the only option in applications for which no other proper-
ties are available. Thus, we explored models that incorpo-
rated depth, month, and latitude as proxies for the spatial
and temporal processes accounted for by the OTS model.

Figure 7. (a) Estimated effects (solid black curve) at the scale of the linear predictor for the O smooth
term for a GAM based on O, T, and S for the training data set (1959–2004, n¼ 29,378). The 95% confi-
dence limits (strictly Bayesian credible intervals) are shown as dashed black lines. Dots are the partial
residuals, colored by Z. (b) Estimated effects (contoured surface) at the scale of the linear predictor for
the T � S interaction. (c) Model residuals versus Z (colored by M). Red curve is a loess scatterplot
smoother (degree¼ 2, span¼ 3/4). (d) Scatterplot of observed versus predicted values (colored by Z) by
a GAM based on O, T, and S for the testing data set (2005–2011, n¼ 6408). Dashed gray line is the lin-
ear fit and black line is the 1:1 line.
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Using the previously defined training and testing data sets,
the best fitting model was:

Ni ¼ �0 þ f1 Ti � Zið Þ þ f2ðMiÞ þ f3 Lið Þ þ "i ð5Þ

[45] Automatic smoothness selection with REML sug-
gested 19.76 effective df for the T � Z interaction, 7.76 df
for the M term and 8.46 df for the L term. However, the
functional responses for both M and L appeared slightly
overfitted, so for the final fitting with GCV the basis dimen-
sion for these terms was constrained to k¼ 7 and 8, respec-
tively, while the basis dimensions for the T � Z term were
set to k¼ 6 and 4, respectively. This model used 1 paramet-
ric df for the intercept, 19.51 df for the T � Z interaction,
4.95 df for the month and 6.99 df for the latitude smooth
term, for a total of 32.45 df. All three smooth terms were

highly significant (p values< 0.001). The fit statistics were
similar to those of the TS model (D2¼ 87.2%, GCV score-
¼ 13.69, AIC¼ 205112.4; see Table 5).

[46] The functional response of nitrate in T � Z space
showed a rapid decrease at T< 14�C at all depths, indicat-
ing that temperature was a stronger driver of the relation-
ship than depth, and it then leveled out at the higher
temperatures that occurred at Z< 100 m (Figure 8a). The
smooth term for month (Figure 8b) predicted negative ni-
trate values from December through May and positive val-
ues from July through November, indicating the periods
when this term corrected for overprediction and underpre-
diction, respectively, relative to the T-only model. How-
ever, this term only made a modest contribution to nitrate
prediction, as evidenced also by the wide scatter in the par-
tial residuals (Figure 8b). Finally, the response of nitrate to

Figure 8. (a) Estimated effects (contoured surface) at the scale of the linear predictor for the T � Z
interaction term for a GAM based on T, Z, M, and L for the training data set (1959–2004, n¼ 37,607). (b
and c) Estimated effects (solid black curves) at the scale of the linear predictor for the M and L smooth
terms, respectively, for a GAM based on T, Z, M, and L for the training data set (1959–2004,
n¼ 37,607). The 95% confidence limits (strictly Bayesian credible intervals) are shown as dashed black
lines. Dots are the partial residuals, colored by Z in Figure 8b or by M in Figure 8c (note that the y axis
has been constrained in these two plots to highlight the functional shape of the smooth functions). (d)
Model residuals versus Z (colored by M). (e) Model residuals versus L (colored by M). Red curve in Fig-
ures 8d and 8e is a loess scatterplot smoother (degree¼ 2, span¼ 3/4). (f) Scatterplot of observed versus
predicted values (colored by Z) for a GAM based on T, Z, M, and L for the testing data set (2005–2011,
n¼ 6430). Dashed gray line is the linear fit and black line is the 1:1 line.
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latitude was described by a large-scale gradient, with ni-
trate decreasing with increasing latitude (Figure 8c). This
term corrected for overprediction in the T-only model,
especially at the higher latitudes. The two local maxima
near 33–35�N and 38–40�N along this gradient (Figure 8c)
probably indicate localized areas of increased nitrate sup-
ply due to intense upwelling centered around Point Con-
ception and Cape Mendocino, respectively.

[47] The model’s residuals indicated that the depth and
latitudinal bias were largely corrected but there was evi-
dence that some seasonal bias still remained (Figures 8d
and 8e), probably because of the wide scatter in the rela-
tionship of this variable with nitrate (Figures 4b and 8b).
Further examination of the residuals indicated an improve-
ment over the T-only model, with levels of nonnormality
and heterogeneity similar to those of the TS model (Figure
S5 in supporting information).

[48] The performance of this model at predicting new
observations was evaluated using the testing set, with most
metrics being very similar to those of the TS model (Table
6). A scatterplot of observed versus predicted nitrate had a
slope that departed moderately from the 1:1 relationship
model and the shape of the relationship had a slight curva-
ture (Figure 8f), leading to underprediction at intermediate
nitrate levels and to overprediction at both low and high ni-
trate levels (Figure 8f).

6. Application: Predicting Nitrate Time Series

[49] We conducted further evaluation of three of the
models developed in section 5 (T-only, OTS, and TZML
models) to investigate the temporal behavior of predicted

nitrate at seasonal and interannual scales. For this purpose,
we inspected time series of predicted nitrate at 150 m depth
from the testing data set (2005–2011) and assessed their
skill relative to the observed series (via the root-mean-
square error, RMSE) for two locations, one on the NH-Line
and the other in the CalCOFI domain. These locations cor-
responded to station NH-25 (44�39.10N, 124�390W),
located 46 km from shore on the NH-Line, and CalCOFI
station 93.3.28 (station 28 on line 93.3; 32�54.60N,
117�23.40W), located 13 km from shore.

[50] Mean nitrate concentration at NH-25 (31.51 mM)
was appreciably higher than at CalCOFI station 93.28
(25.80 mM), but otherwise both stations exhibited a similar
seasonal cycle, with lowest levels in winter and fall and
highest levels in spring and summer. The predicted time se-
ries by all three models captured the observed seasonality
at both sites (Figures 9a and 9b). They also captured impor-
tant interannual variations as seen in the high value in 2008
(spring for CalCOFI and summer for NH-25) and the low
value in the winter of 2010 (Figures 9a and 9b). The high
values of nitrate for both CalCOFI and NH-25 in spring/
summer of 2008 were likely associated with the La Ni~na
event of 2007–2008, when cool sea surface temperatures,
strong upwelling, and high primary production prevailed in
the CCS [McClatchie et al., 2009]. Conversely, the low ni-
trate values in winter 2010 occurred during the short and
weak El Ni~no event of 2009–2010 [Bjorkstedt et al., 2011].

[51] However, only the OTS model had a high predictive
skill (RMSE¼ 2.39 mM and 0.40 mM, respectively for NH-
25 and CalCOFI station 93.3.28). The T-only model had
the lowest predictive skill (RMSE¼ 4.13 and 6.39 mM,
respectively for NH-25 and CalCOFI station 93.3.28). The

Figure 9. Time series of observed and predicted N in the testing data set (2005–2011) at 150 m depth
for: (a) hydrographic station NH-25 located off Newport, Oregon, and (b) CalCOFI station 93.3.28
located near San Diego, California. For the two locations the observation data (black line) are compared
to three predictive GAM models: T-only (blue line); T, Z, M and L (green line) ; and O, T, and S (red
line). RMSE values for each of the predicted series are given in the text.
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proxy TZML model significantly improved the skill for the
CalCOFI station (RMSE¼ 2.50 mM) but not for NH-25
(RMSE¼ 5.22 mM).

[52] In spite of the corrective steps taken to minimize the
biases in the T-only model with the TZML proxy model, it
still underpredicted nitrate at both stations (Figures 9a and
9b). This is not surprising, considering the wide scatter of
the residuals relative to the fitted responses for both month
and latitude (Figures 8b and 8c). In contrast, the OTS model
showed good agreement with the observations, although
the slight underprediction at NH-25 (2.39 mM RMSE) sug-
gested that a regional bias remained, most likely due to the
majority of the training data coming from southern Califor-
nia (see Table 1 and Figures 1 and 2), where nitrate levels
tended to be less variable (Figure 3a).

7. Discussion and Conclusions

[53] The flexible GAM framework provided optimal non-
linear functional responses describing large-scale vertical
and latitudinal gradients in nitrate in the CCS, as well as
more complex interactions related to water mass distribu-
tions that could not be easily replicated with parametric
models. However, the usefulness of GAMs to predict nitrate
at larger spatial scales (basinwide to global) has not been
evaluated, and future studies should compare their perform-
ance relative to traditional regression approaches, which
have relied on implementing separate subregional models in
order to improve predictive power [e.g., Chavez et al., 1996;
Goes et al., 2000; Louanchi and Najjar, 2000].

[54] The four models considered here showed progres-
sive improvement in the quality of the fit, in the residuals
and in the predictive skill. A T-only model had a number of
shortcomings due to strong depth and latitudinal biases, but
it may be the only option when no other properties are
measured. For localized studies with restricted depth ranges
(e.g., in the nearshore) a T-only model is probably
adequate, but for ecosystem-wide studies where different
water masses are expected to occur, the inclusion of proxy
variables containing the spatial structure underlying these
processes may help alleviate some of these problems (alter-
natively, separate T-only models could be fitted to stratified
subsets of the data). A model that included salinity in addi-
tion to temperature corrected much of the latitudinal and
depth biases. Finally, a model with oxygen, temperature,
and salinity provided the most unbiased predictions, indicat-
ing that, at a minimum, these three variables are necessary to
adequately describe the spatial and temporal processes driv-
ing nitrate variability throughout the CCS. Although it is
possible to use density as a variable that combines tempera-
ture and salinity, modeling nitrate explicitly as a function of
T and S had the added benefit of allowing us to visualize
water masses in TS space, which was helpful in understand-
ing the spatial distribution of nitrate. For studies where this
is not necessary, modeling nitrate as a function of density
would be more parsimonious from a modeling perspective.

[55] Given the strong covariation of nitrate and tempera-
ture in the water column, it is not surprising that all the
models explored had a good agreement between the
response and the fitted values (D2 � 71.6–96.6%; Table 5),
as has been widely reported in the literature. Similarly, the
overall ability of the GAMs to predict nitrate observations

in the testing data set was very high (r � 0.97–0.99; Table
6). However, examination of the residuals and the skill at
predicting individual time series exposed important biases
in most models. The OTS model was the only one that
yielded residuals that approached normality and that con-
tained no significant structure (see supporting information).
Seasonal bias was present in all models to varying degrees,
and it was the least tractable source of bias due to the wide
scatter in the relationship between nitrate and month. To
some extent, these issues arise because of the varying
degree of non-normality present in the input variables (Fig-
ures 2a–2d). But if the goal is to produce unbiased nitrate
predictions, this study highlights the value of thorough
assessment of residuals as a tool for model improvement
over other metrics of model performance.

[56] Accurate estimation of nitrate concentration in the
euphotic zone from proxy variables has several applications.
For example, a nitrate inventory for the water column combined
with information about thermocline depth and water-column
stratification [Palacios et al., 2004] could be used to derive a
more direct index of the biological utility of upwelled waters
relative to existing wind-derived upwelling indices like the UI.
This is not only relevant for the monitoring of primary pro-
duction mediated by phytoplankton [Saba et al., 2011] and
benthic macroalgae [Broitman and Kinlan, 2006] but also for
the estimation of secondary production and fisheries yields
[Friedland et al., 2012]. Biogeochemical and ecosystem nu-
merical models that use nitrogen as currency [e.g., Powell
et al., 2006; Doney et al., 2009; Somes et al., 2010] could
also benefit from the statistical relationship between nitrate
and variables like temperature, salinity, depth, and latitude,
to constrain their nitrate budgets and thus obtain improved
estimates of phytoplankton primary production and biomass.

[57] Finally, large-scale prediction of surface nitrate has
relied on satellite measurements of sea surface temperature
and chlorophyll concentration [e.g., Goes et al., 1999;
Kamykowski et al., 2002, Sili�o-Calzada et al., 2008, Sar-
angi, 2011]. Given the improvement provided by our GAM
models that included salinity over the T-only model, it is
expected that the incorporation of satellite-measured sea
surface salinity, which only recently became available
[Lagerloef, 2012], into these efforts will result in improved
maps of surface nitrate at regional and global scales.
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