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Distinguishing random environmental fluctuations
from ecological catastrophes for the North Pacific

Ocean
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The prospect of rapid dynamic changes in the environment is a
pressing concern that has profound management and public
policy implications">. Worries over sudden climate change and
irreversible changes in ecosystems are rooted in the potential
that nonlinear systems have for complex and ‘pathological’
behaviours'”. Nonlinear behaviours have been shown in model
systems® and in some natural systems"*®, but their occurrence in
large-scale marine environments remains controversial”'’. Here
we show that time series observations of key physical variables''~'*
for the North Pacific Ocean that seem to show these behaviours are
not deterministically nonlinear, and are best described as linear
stochastic. In contrast, we find that time series for biological
variables®'>"” having similar properties exhibit a low-dimen-
sional nonlinear signature. To our knowledge, this is the first
direct test for nonlinearity in large-scale physical and biological
data for the marine environment. These results address a con-
tinuing debate over the origin of rapid shifts in certain key marine
observations as coming from essentially stochastic processes or
from dominant nonlinear mechanisms"*'*'*?°. Qur measure-
ments suggest that large-scale marine ecosystems are dynamically
nonlinear, and as such have the capacity for dramatic change in
response to stochastic fluctuations in basin-scale physical states.

Recent effort to characterize the decadal-scale behaviour of
North Pacific physical and biological phenomena has centred on
the concept of ‘regime shifts™*>'. These regime shifts appear as quasi-
stationary states in measured parameters, separated by periods of
rapid transition®. Although attention has been focused on the
qualitative phenomenology of these shifts (that is, documenting
the appearance of distinct regimes with rapid shifts between them),
nowhere in the discussion has their dynamical origin been directly
assessed. True regime shifts are not random features of the time
series, but are formally associated with the ideas of nonlinear
amplification’, alternative basins of attraction®>*, multiple stable
states®, hysteresis and fold catastrophe"*, all of which require the
underlying dynamics to be nonlinear in origin. For example, while
it is quite clear that major changes occurred in the commonly
measured North Pacific abiotic and biotic indices around
1976-77 (for example, patterns of sea surface temperature
(SST), fisheries landings data, zooplankton abundance and
community composition)'*?', the nature of such changes remains
elusive. Are such changes indicative of the operation of non-
linear dynamics or are they features of the data that might arise
stochastically?

Some researchers (predominantly physical oceanographers) have
suggested that apparent shifts observed in key physical variables are
not singular (nonlinear transitional) events but instead represent
normal statistical deviations™'’. Insofar as similar features in marine
physical observations can be reproduced stochastically as random

events'’, it is not necessary to invoke complicated nonlinear mecha-
nisms. In contrast, others (predominantly biologists) have been
inclined to see rapid environmental shifts as a fundamentally non-
linear phenomenon with important ecological implications"'*".
They view the changes in populations and community structure
that occur across putative regimes as being more than passive linear
tracking of environmental variability. Rather, they see the rapid shifts
in biological variables as an amplified response to environmental
change pushing the system into different local basins of attraction
or alternative states”®*. Fold catastrophes are a special case for
achieving alternative states that raise the possibility of hysteresis or
non-symmetrical reversibility of ecosystem states (for example,
where population crashes are easier to attain than recoveries)'.
Such instability and irreversibility have become a cautionary tale
for environmental management and policy makers, bringing non-
linear phenomena to the fore.

A major weakness of the current debate is its focus on the statistical
phenomenology of regime shifts. This approach examines the timing
and magnitude of hypothesized shifts in the time series to see if they
represent statistically distinct states separated by rapid transitions™.
Identifying these plateaus and transitions usually involves subjectiv-
ity at some level that is difficult to overcome (for example, specifying
the timing of shifts). Techniques that promise solutions for this
require too much data for the biological time series involved®, and
many of the approaches assume the existence of only two states—a
simple but arbitrary assertion. It seems curious that although the
phenomenon being debated is a nonlinear one, nowhere in the
methodological debate is the question of nonlinearity explicitly
examined. Insofar as it is the nonlinear basis of the putative shifts
that give them their meaning, it should be illuminating to directly
measure the observations to determine if they are in fact consistent
with the necessary hypothesis of nonlinearity.

Here we test a suite of key physical and biological time series
observations for the North Pacific basin. Our aim is not to examine
particular events to see if they satisfy the statistical description of a
regime; rather, we look at complete time series to see if the variations
contained in the whole data series were nonlinear in origin.

We examine these data using established methods from nonlinear
time series analysis that involve state space reconstruction with
lagged coordinate embeddings (Takens’ theorem)>”***, To determine
whether a time series reflects linear or nonlinear processes, we
compare the out-of-sample forecast skill of a linear model versus
an equivalent nonlinear model. This involves a two-step procedure:
(1) we use simplex-projection® to identify the best embedding
dimension (the number of independent variables required to
model the process)’ (Fig. 1), and (2) we use this embedding in the
S-map procedure”®*>* to assess the nonlinearity of the time series
(Fig. 2). The method of S-maps relies on fitting a series of models
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(from linear to nonlinear) where the degree of nonlinearity is
controlled by a local weighting parameter 6. Improved out-of-sample
forecast skill with increasingly nonlinear models (larger 0) indicates
that the underlying dynamics were themselves nonlinear”. The
forecast protocol, which involves a blind evaluation of forecast
skill, is a rigorous standard that avoids model over-fitting or arbitrary
fits to the data (see Methods and Supplementary Information).

We analyse the key time series commonly associated with the
North Pacific regime shift debate that have sufficient length for the
methods to apply. Physical measurements include indices that
collapse North Pacific basin-wide phenomena into single time series
(for example, via empirical orthogonal functions), and coastal
SST time series (Table 1). The Southern Oscillation Index (SOI)*?
is widely used for tracking the state of the El Nino/Southern
Oscillation, which is the leading source of North Pacific interannual
climate variations. The North Pacific Index (NPI)'* and the Pacific
Decadal Oscillation Index (PDO)'" track the leading patterns of
North Pacific sea-level pressure and SST variability, respectively. We
chose the three longest daily coastal SST time series in the eastern
Pacific (Scripps Pier, Pacific Grove and Farallones Islands)'. These
time series are highly correlated with basin scale indices while also
reflecting strong local dynamics. This collection of data is broadly
representative of the large-scale physical state of the North Pacific
basin over the twentieth century (Table 1).

Biological data analysed include annual commercial landings for
Pacific salmon and trout (1938-2000)", the weekly Scripps Pier
diatom record (1920-39)° and the California Cooperative Oceanic
Fisheries Investigation (CalCOFI) time series for copepods'
and larval fishes' (Table 2). In order to generate time series of
sufficient length, composite CalCOFI series were created and
then analysed (see Methods). These data have been part of the
regime-shift literature, and form a representative collection for this
analysis.

All of the major physical indices in Table 1 possess characteristics
consistent with high dimensional or stochastic processes (for ex-
ample, Fig. 1c). This simple characterization is true from weekly to
annual timescales. They are well modelled as linear autoregressive
(AR) processes of high order, showing no significant forecast
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Figure 1 | Examples of the simplex projection method. a, b, Model time
series; red noise® (a) and the nonlinear tent map® (b). ¢, d, Natural time
series; Scripps Pier SST (c) and Scripps Pier diatoms (d). Panels b and ¢ both
show increasing skill (higher correlation coefficients, p) at higher embedding
dimensions (E), which indicates that the underlying processes are high-
dimensional (random for all practical purposes). In contrast, the chaotic
tent map (b) and the Scripps Pier diatom time series (d) both show optimal
skill (best p) with low-dimensional embeddings.
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improvement as the S-maps are tuned towards nonlinear solutions
(for example, Fig. 2¢).

In contrast, all of the biological data in Table 2 (both simple and
composites) consistently exhibit nonlinear signatures. These series
were best rendered in relatively low embedding dimensions (for
example, Fig. 1d), and without exception showed improvement in
out-of-sample forecast skill as the S-maps were tuned towards
increasingly nonlinear solutions (for example, Fig. 2d). Although
not all Ap (change in forecast skill measured as a difference in the
correlation coefficients) in Table 2 are significant, all show improve-
ment, which is significant for the biological ensemble (binomial
probability <0.001).

The fundamentally different way that regime shifts in the North
Pacific have been viewed by physical oceanographers and biological
oceanographers coincides with the different character of their
respective time series. The physical time series do not appear to
arise from low dimensional nonlinear processes, and the irregular
features that have been hypothesized to indicate nonlinear
deterministic regimes are better characterized as stochastic. At first
sight, they do not show the required nonlinearity to allow the
interpretation that the shift-like features are more than random
events.

It is perhaps not surprising that some of the physical indices
appear to be linear-stochastic insofar as they are constructed from
linear combinations of observations. As linear aggregates (that is,
averages or linear orthogonal functions), these indices may mask
possible nonlinearities in individual physical measurements. For
example, although station-based barometric pressures in temperate
latitudes are highly nonlinear, it has been shown that this nonlinear-
ity can vanish in larger spatial aggregates®. The dynamics of measles
in Great Britain also exhibit this behaviour: individual cities display
highly nonlinear infection rates, but these deterministic nonlinear
effects appear as noise when the individual cities are aggregated into a
single time series for the country as a whole**. Thus, simply because
the PDO, NPI and SOI do not show nonlinear characteristics does
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Figure 2 | Examples of the S-map method for the four time series from
Fig. 1. The model generated red noise (a) and the Scripps Pier SST time
series (c) show no improvement in forecast skill as S-maps are tuned towards
increasingly local or nonlinear solutions (by increasing §). Consequently,
these time series do not show any indication of nonlinearity, and display all
the hallmarks of a stochastic (high dimensional) linear generating
mechanism. In contrast, the chaotic tent map (b) and the Scripps Pier
diatom time series (d) both show increased skill as the S-map is tuned
towards nonlinear solutions.
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Table 1 | Analyses of key North Pacific physical time series

NATURE|Vol 435[19 May 2005

Timescale Physical data Best E Best 6 Best p Ap Nonlinear? N P-value
Weekly SIO SST 20 + 0 0.252 0 No 4,226 1
Monthly SIO SST 20 + 0 0.787 0 No 984 1
Monthly Pacific Grove SST 20 + 0 0.524 0 No 945 1
Monthly Farallones SST 20 + 0 0.486 0 No 764 1
Monthly PDO 20 + 0 0.255 0 No 1,248 1
Monthly NPI 20 + 0 0.636 0 No 1,260 1
Monthly SOl 20 + 0 0.380 0 No 852 1
Quarterly SIO SST 20 + 0 0.958 0 No 328 1
Quarterly PDO 20 + 0 0.376 0 No 416 1
Quarterly NPI 20 + 0 0.497 0 No 420 1
Quarterly SOl 20 + 0 0.328 0 No 284 1
Annual SIO SST, composite 20 0 0.770 0 No 984 1
Annual PDO, composite 10 0 0.547 0 No 1,248 1
Annual NPI, composite 16 0 0.674 0 No 1,260 1
Annual SOI, composite 13 0 0.640 0 No 852 1

E, embedding dimension; 6, nonlinear tuning parameter. Best p (6 ,.t) indicates forecast skill (correlation coefficient), obtained using Ap = ((p at Opest) — (o at 6¢)). A positive Ap measures
the difference in forecasting skill of the best nonlinear model (that is, where § > 0) as compared to the global linear model (that is, where 8 = 0). Thus, Ap = ppest — po. Data were analysed
at various decimations (resolution in time scale). The PDO, NPI and SOl indices have monthly resolution. Quarterly data are averages of those monthly values. Daily coastal SST anomalies
(daily data minus the year-day average over the entire record) were averaged to form weekly, monthly and quarterly time series. Owing to the paucity of data at the annual scale, we
constructed composite time series by concatenating monthly values (all Januaries, all Februaries, ... all Decembers). These data are best embedded in high dimensions and show no
improvement in forecast skill as the S-maps are tuned towards nonlinear solutions. As such, on timescales relevant to the regime shift debate, these physical oceanographic time series are

unanimous in showing the hallmarks of linear stochastic generating mechanisms.

not preclude the possibility of nonlinear dynamics operating on finer
scales. Nonetheless, these indices have been at the heart of the regime-
shift debate, and we show their features to be stochastic.

More significantly, the various SST records, which are primary
(non-aggregated) measurements, show the temperature shift
phenomenon to be stochastic. That is, even simple SST measure-
ments, which are emblematic of the physical regime shift phenom-
enon”', do not indicate that temperature shifts have low dimensional
nonlinear modes. Rather, they are high dimensional, and conse-
quently they will be more difficult to model mechanistically in a way
that replicates the phenomenological forecasting skill of a high
degree AR model. This is a fundamental constraint on modelling
efforts that we demonstrate empirically here. These findings resonate
with the conception of the ocean as a linear red-noise integrator of
atmospheric phenomena, a hypothesis first advanced in the 1970s>.
However, it is clear that not all physical environmental time series are,
by definition, high dimensional and stochastic; for example, analysis
of meteorological observations shows strong low dimensional non-
linearity in the atmosphere, indicative of the potential for cata-
strophic climate change®?®. Furthermore, although true regime shift

Table 2 | Analyses of key North Pacific biological time series

behaviour did not appear in the North Pacific physical oceano-
graphic data that we tested, this obviously does not preclude the
possibility of such behaviour having occurred further into the past or
arising in the future. It simply did not occur in the last century, where
the alleged shifts are indistinguishable from random events.
Biological time series appear to have dynamics that are fundamen-
tally different from those of the physical variables associated with
regime shifts. The relatively skilful out-of-sample forecasts at low
embedding dimensions (even in composites) are consistent with the
view that biological populations are nonlinear stochastic*. The full
set of dynamics consists of a low dimensional, nonlinear, noise-free
skeleton convolved with stochastic events acting on that skeleton to
define the invariant measure®. Thus, the biological populations are
not simply tracking the environment. Rather, our results support the
hypothesis that ecological dynamics in the oceans can be character-
ized by nonlinear amplification of stochastic physical forcing by
biological processes”®. Regardless of interpretation, the biological
time series for the North Pacific basin have the necessary signature
for regimes to be actual nonlinear features of the data as opposed to
randomly generated ones. This result for landings data and larval fish

Timescale Biological data Best E Best 6 Best p Ap Nonlinear? N P-value
Weekly Scripps Pier diatom 3 0.3 0.539 0.139* Yes 830 <0.01
Monthly Scripps Pier diatom 4 0.05 0.542 0.083 Yes 206 0.134
Quarterly CalCOFI coastal larval fish 7 1.6 0.715 0.031* Yes 3,220 <0.01
Quarterly CalCOFI coastal-oceanic larval fish 8 0.6 0.744 0.017 Yes 1,400 0.164
Quarterly CalCOFI oceanic larval fish 8 1.4 0.678 0.020* Yes 4,760 0.040
Biannual CalCOFI copepod 6 1.2 0.677 0.027 Yes 1,736 0.078
Annual CalCOFI copepod 5 0.4 0.566 0.015 Yes 868 0.322
Annual CalCOFI coastal larval fish 5 0.6 0.603 0.060* Yes 805 0.038
Annual CalCOFI coastal-oceanic larval fish 4 0.2 0.502 0.092 Yes 350 0.063
Annual CalCOFI oceanic larval fish 7 0.6 0.576 0.017 Yes 1,790 0.273
Annual Chinook salmon 3 0.4 0.448 0.440* Yes 63 <0.01
Annual Coho salmon 7 0.3 0.656 017 Yes 63 0.213
Annual Chum salmon 4 0.8 0.634 0.767* Yes 63 <0.01
Annual Steelhead trout 3 0.2 0.281 0.272 Yes 63 0.118
Annual Sockeye salmon 4 0.7 0.484 0.168 Yes 63 0.168
Annual Composite salmon and trout 4 0.3 0.464 0.078 Yes 315 0.148

Parameters as in Table 1. Monthly diatom data are averages of weekly samples. Quarterly larval fish data represent four cruises per year, and biannual copepod data represent two cruises per
year. Annual larval fish data are averages of the quarterly samples, and annual copepod data are averages of biannual samples. Commercial fisheries landing data are annual totals. These
population data (described in text) are best embedded in low dimensions, and show improvement in forecast skill as the S-maps are tuned towards increasingly nonlinear solutions. Even
where Ap is not significant (asterisk indicates significant at the 0.05 level), the nonlinear model (§ >0) still outperforms the global linear model (6 = 0). As such, these biological time series

all show the hallmarks of nonlinear generating mechanisms.
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abundance should call into question static conceptions of maximum
sustainable yield and the use of fixed exploitation quotas for mana-
ging commercial fisheries’. The potential for rapid and unpredictable
shifts in response to environmental stochasticity and human impact
supports a precautionary management approach for marine ecosys-
tems'.

METHODS

Forecasting techniques. To determine whether a time series reflects linear or
nonlinear processes, we compare the out-of-sample forecast skill of a linear
model versus an equivalent nonlinear model. This involves using lag coordinate
embeddings in a two-step procedure: (1) we use simplex-projection to identify
the best embedding dimension, and (2) we use this embedding in the S-map
procedure”®* to assess the nonlinearity of the time series. In both cases, model
performance is evaluated out-of-sample with the time series divided into equal
halves. The first half (library set) is used to build the model, while the second half
(prediction set) is reserved to judge the out-of-sample performance of model
forecasts.

Simplex projection is a nearest-neighbour forecasting algorithm that involves
tracking the forward evolution of nearby points in a lag coordinate embedding®.
For this study, an exploratory series of embedding dimensions (E) ranging from
1 to 20 (or higher) are used to evaluate the prediction, and the best E is chosen on
the basis of prediction skill (Fig. 1). This embedding is then used in the S-map
procedure. S-maps are an extension of standard linear autoregressive models
in which the coefficients depend on the location of the predictee in an
E-dimensional embedding®”**>*°. (The predictee is the current state of the
system from which the prediction is being made.) New coefficients are recalcu-
lated by singular value decomposition for each new prediction. In this calcu-
lation, the weight given to each vector in the library depends on how close that
vector is to the predictee. The extent of this weighting is determined by the
parameter . When 6 = 0 we obtain a global (single) linear map, and increasing
values of § in the S-map give increasingly local or nonlinear mappings® (Fig. 2).
A detailed account of these methods is given in Supplementary Information.

All analyses were done both on raw values and on first differenced data to

minimize the possibility of masking the nonlinear signal by trivial autocorrela-
tion and to account for possible non-stationary trends in the data’. As no
qualitative difference was found between analyses, we report here only the more
conservative first differenced results.
Composite technique. The CalCOFI data represent one of the most compre-
hensive oceanographic monitoring programmes in the Pacific. Although hun-
dreds of individual species are sampled, each time series alone is too short to
apply the forecasting methods directly, particularly on the annual scale. For
example, each larval fish time series contained only 35 annual data points (140
quarterly observations from 1951-2002, with a gap in quarterly collection and
identification between 1967 and 1983). To accommodate the individual paucity
of points due to these gaps, we generate composite time series* based on the
known principal distributions of fish species'>*: coastal (23 taxa), coastal-
oceanic (10 taxa), and oceanic groups (34 taxa). To minimize the number of gaps
in the copepod data, only time series from 1951-66 and 1985-99 were used (for a
total of 31 annual data points). Thus, we could only use copepod time series for
the 28 taxa that occurred most frequently during the sampling period (at least 20
of 31 years). The copepods are treated as a single equivalence class, given the lack
of an unambiguous separation of species by region. However, the results are
unaffected when predominantly northern and predominantly southern species
are treated provisionally as separate groups.

Individual time series are normalized to have unit mean and variance, and
combined by equivalence class to produce composite time series®®. This
composite S-map procedure involves random combination of time series within
each equivalence class (connecting individual time series end-to-end in different
order to give different library/predictee combinations). The procedure is
repeated 100 times or until all combinations are exhausted, and the average of
these results for the CalCOFI data are reported in Table 2. The gaps and seams
between time series are accounted for by discarding all vectors that traverse a gap
or seam”. As a null test for the CalCOFI composites, we applied the procedure to
null versions of each of the composite equivalence classes (composite time series
with phases randomized) and as expected, obtained consistent linear signatures.
By contrast, nonlinear signatures are obtained for the CalCOFI data even when
the library and prediction halves are no longer randomly assigned, but are
systematically chosen to be most different from each other (that is, with library
and prediction sets each consisting of individual species whose time series covary
most positively). This yields library sets of similar species that are most dissimilar
to the prediction sets. In addition to the fact that all of the data in this study are
normalized and first differenced, this additional test eliminates the remote
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possibility of producing a nonlinear artefact by combining heterogeneous data
sets symmetrically into the library and prediction sets.

Physical variables required compositing at the annual scale only. The library
vector comprises all January values from the first half of the time series (here
~1900-50) and so forth until December. The prediction vector is likewise
constructed from the second half of the time series (here ~1951-2000).
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