Cruise Report - Preliminary

California Current LTER Program UC-Ship Funds Student Cruise CCE-P0904 R/V New Horizon: Apr. 22 – May 3rd

Compiled and submitted by: Michael R. Stukel, Chief Scientist Scripps Institution of Oceanography, Univ. California, San Diego

Cruise ID: CCE-P0904 Depart: 22 Apr. 2009 at 0800 (PST) Return: 3 May. 2009 at 0900 (PST) Vessel: R/V New Horizon Operator: SIO Master: Captain John Manion Chief Scientist: Michael Stukel SIO Resident Technicians: Gus Aprans, Meghan Donohue

Table of Contents

Scientific Objectives	3
General Overview of Science Plan	3
Ship and Technical Support	4
Science Operations and Issues	5
CCE-P0904 Activity Schedule	6
Cruise Personnel	9

SCIENTIFIC OBJECTIVES

This cruise was conceived as an opportunity for older graduate students to test hypotheses arising from studies on earlier CCE Process cruises while allowing younger students to conduct exploratory work for their theses. The overall scientific objective was to characterize trophic and production processes within and surrounding a frontal

region that often forms in the spring and separates the core of the California Current from the more productive water inshore.

GENERAL OVERVIEW OF THE SCIENCE PLAN

The edge of the California Current Proper is often identifiable as a strong salinity gradient in CCE Glider transects along CalCOFI line 80. A recent glider section, along with satellite support and shipboard flow-through sea surface temperature (SST) and fluorescence was used for initial site selection. We planned two short experimental cycles on either side of the frontal region, followed by a two day sampling period dedicated to the front itself.

Two day experimental cycles on the inshore (productive) side of the front and offshore (oligotrophic) side of the front (cycles 1 & 2, respectively) were designed to allow measurement of key productivity rates. Measurements included phytoplankton net and gross growth rates and primary productivity, new production, micro- and mesozooplankton grazing, and bacterial production. The extended period of time spent within each water parcel also allowed for repeat measurements of standing stocks from bacteria and nutrients to mesopelagic fish using multiple complementary methods. Lagrangian sampling of these water parcels allowed us to compare rates measured on our in situ drift array to net community changes in the water column.

Sampling across the front attempted to characterize both the physical and biological nature of the front. After an initial day spent locating the front using surface feature profiles made with the ship's flowthrough measurements and the Advanced Laser Fluoremeter (ALF) system, we chose seven stations that spanned the length of the front. An initial night-time transect across the front measured profiles of chlorophyll, HPLC pigments, dissolved organic carbon (DOC), particulate organic carbon (POC), flow cytometry, epifluorescence microscopy of the nano- and microplankton community, and nutrient concentrations, as well as primary productivity at the 30% light level, and PRPOOS net-sampled mesozooplankton biomass and grazing. The following day two cross-frontal

transects (one five km upstream and the other five km downstream of our night-time stations) with seven CTD stations each were taken to further characterize the physical structure of the front. The final night-time crossing featured three stations (stations 2, 4, and 6 from the previous night) with more detailed rate measurements as well as along-front oblique tows for mesozooplankton and mesopelagic fish.

Ship and Technical Support

We set out with ambitious goals including several operations that are typically performed on larger vessels. For the most part, these challenging operations were successful, thanks to the skill and willingness of the captain and crew of the R/V New Horizon. We owe particular thanks to the restechs, Gus Aprans and Meghan Donohue, who were always available, helpful, and capable in assisting us with our operations. Their continual effort and helpful advice went a long way in translating our plans into reality.

However, there were some distinct problems encountered during the cruise. We lost our first day of ship-time because the CTD failed after reaching a depth of 200-m. Luckily, only a day was lost due to the suggestion of the captain and restechs that we conduct a test station as soon as we reached deep enough water, rather than waiting until we had arrived on site. Another significant issue was the inaccuracy of the winch readout. This particular problem was not noticed until the end of the cruise, and will cause us significant difficulties when trying to interpret the results from our zooplankton net tows, because the depth of the tows is not known.

Science Operations and Issues

Our ambitious schedule was designed to maximize the 12 days' of ship-time allotted to us by conducting two mini-cycles of 2-3 day on either side of a front that commonly forms along the inner edge of the California Current Proper (CCP) as well as sampling the front itself for two days. Our goal was made more difficult from the start as the moving vessel profiler (MVP) we had planned to use was deemed inoperable before the cruise, forcing us to use the ship's flow-through system in combination with the ALF system to identify both the front and homogeneous water parcels in which to conduct our cycles. The troubles with the CTD further confounded our schedule, setting us a day behind when we began our science.

From that point, however, things started to run more smoothly. We conducted two two-day cycles while successfully tracking an *in situ* drifter. Although we lost communication with the drifter on four different occasions, constant monitoring of the drifter tracking computer combined with a new method of predicting its location and the able assistance of the crew allowed us to locate it each time. Each cycle successfully included daily measurements of C-14 primary productivity, phytoplankton growth and microzooplankton grazing, mesozooplankton net tows, sediment trap and Th-234 measurements of export, IKMT tows for mesopelagic fish, and bacterial incubations. While weather caused us to scrub some IKMT tows, the vast majority of our scientific activities were successfully completed on schedule.

Our plan for front sampling involved sampling biomass at 7 locations across the front on the first night. Between the hours of 9pm and 5am PST we conducted 7 CTD casts and vertical PRPOOS net deployments at stations located 5km apart. The stations were chosen roughly perpendicular to shore and spanning a strong frontal feature noticed in a salinity profile from the ship's flow-through data as we surveyed the area. Due to the lack of an MVP we chose to survey the physical structure of the feature by conducting repeated CTD casts during the day. A total of 14 CTD (7 upstream and 7 downstream of the night transect line) casts were conducted at 5km spacing. The following night we conducted more thorough sampling at 3 sites across the front. At these stations CTD casts were utilized both for biomass and rate measurements, and oblique bongo and IKMT tows were conducted along the axis of the front.

CCE-P0904 Activity Schedule

Cycle 1

Day 0 – A	April 24th			
	Noon	1200	ALF Profile Across-shore	Hafez
	2pm	1400	Deploy Sediment Trap	Stukel
	3pm	1500	CTD Bowtie (Yo-yo)	Stukel
	9pm	2100	CTD Cast – Thorium	Stukel
Day 1 - /	Apr. 25th			
	1am or ASAP	0100	Bongo Tow	Powell
	2am	0200	CTD, Production	Stukel
	4am	0400	Array Deployment	Stukel
	6am	0600	IKMT Deep Tow	Davison
	10am	1000	Bongo Tow & Size Frac	Powell
	Noon	1200	CTD	Emy
	1pm	1300	IKMT Shallow Tow	Davison
	брт	1800	McLane Pump	Stukel
	7pm	1900	CTD, full dilution	Pasulka
	8pm	2000	Bongo Tow	Powell
	9pm	2100	Bongo Tow & Size Frac	Powell
Day 2 - Apr. 26th				
	2am	0200	CTD, production	Stukel
	4am	0400	Array Recovery & Redeployment	Stukel
	10am	1000	Bongo Tow & Size Frac	Powell
	Noon	1200	CTD	Emy
	2pm	1400	Bongo Tow	Powell
	3pm	1500	Bongo Tow	Powell
	4pm	1600	Bongo Tow	Powell
	5pm	1700	Bongo Tow	Powell
	6pm	1800	Bongo Tow	Powell
	7pm	1900	McLane Pump	Stukel
	10pm	2200	Bongo Tow & Size Frac	Powell
	11pm	2300	Bongo Tow	Powell
Day 3 - Apr. 27th				
	Midnight	0000	Bongo Tow	Powell
	1am	0100	Bongo Tow	Powell
	2am	0200	CTD, finals	Stukel
	4am	0400	Array recovery & deploy	Stukel
	6am or ASAP	0600	Recover Sediment Trap	Stukel
	7am	0700	Transit Offshore	

Cycle 2							
Day 0 – April 27th							
	3pm	1500	ALF Profile Across-shore	Hafez			
	5pm	1700	CTD	Stukel			
	брт	1800	Sed Trap Deployment	Stukel			
	8pm	2000	Bongo Tow	Powell			
	9pm	2100	Bongo Tow	Powell			
	10pm	2200	Bongo Tow & Size Frac	Powell			
	11pm	2300	IKMT Shallow Tow	Davison			
Day 1 - /	Apr. 28th						
	1am or ASAP	0100	Bongo Tow	Powell			
	2am	0200	CTD, Production	Stukel			
	4am	0400	Array Deployment	Stukel			
	6am	0600	IKMT Deep Tow	Davison			
	10am	1000	Bongo Tow & Size Frac	Powell			
	11am	1100	McLane Pump	Stukel			
	Noon	1200	CTD	Emy			
	1pm	1300	IKMT Deep Tow	Davison			
	брт	1800	Deep CTD (1000m), dil & Th	Stukel & Pasulka			
	*	Concurrent	Fill bottles for Dickson Lab				
	8pm	2000	Repeated Bongo Tows	Powell			
	9pm	2100	Bongo Tow	Powell			
	10pm	2200	Bongo Tow & Size Frac	Powell			
	11pm	2300	Bongo	Powell			
Day 2 - /	Apr. 29th	_					
	2am	0200	CTD, production	Stukel			
	4am	0400	Array Recovery & Redeployment	Stukel			
	7am	0700	McLane Pump	Stukel			
	10am	1000	Bongo Tow & Size Frac	Powell			
	Noon	1200	CTD	Emy			
	1pm	1300	IKMT Deep tow	Davison			
	7pm	1900	McLane Pump	Stukel			
	8:30pm	2030	IKMT shallow tow	Davison			
	10pm	2200	Bongo Tow & Size Frac	Powell			
	11pm	2300	Bongo Tow	Powell			
Day 3 - /	Apr. 27th						
	2am	0200	CTD, finals	Stukel			
	4am	0400	Array recovery & deploy	Stukel			
	6am or ASAP	0600	Recover Sediment Trap	Stukel			
	7am	0700	Transit to front				

Front

Day 0 - Apr. 30th		Day 1 - May 1st		
0800	Survey to locate front	0800	CTD	
1200	PRPOOS Net	0845	CTD	
1215	CTD with sampling	0930	CTD	
1230	Continue Survey	1015	CTD	
Night 1 - Apr. 30	- May 1	1100	CTD	
2100	PRPOOS	1145	CTD	
2115	CTD with sampling	1215	CTD	
2200	PRPOOS	1315	CTD	
2215	CTD with sampling	1400	CTD	
2300	PRPOOS	1445	CTD	
2315	CTD with sampling	1515	CTD	
0000	PRPOOS	1600	CTD	
0045	CTD with sampling	1645	CTD	
0130	PRPOOS	1730	CTD	
0145	CTD with sampling	Night 2 - May 1-2	-2	
0245	PRPOOS	2100	CTD with sampling	
0300	CTD with sampling	2130	Bongo	
0345	PRPOOS	2200	IKMT	
0415	CTD with sampling	0015	CTD with sampling	
		0100	Bongo	
		0130	IKMT	
		0330	CTD with sampling	
		0415	Bongo	
		0500	IKMT	
		0600	Brief Front Survey	
		0645	CTD	
		0715	CTD	
		0730	Head Home	

Cruise Personnel

<u>Name</u>

Mike Stukel Pete Davison Jesse Powell Darcy Taniguchi Ally Pasulka Byron Pedler Andrew Taylor Jian Liu Ana Lara Lopez Mark Hafez **Emy Daniels** Marco Hatch Mary MacCormick Lars Thoresen Melissa Miller Heather Crellin-Greer Lauren Franco Gus Aprans Meghan Donohue

Position Grad Student / Chief Sci. Grad Student Grad Student Grad Student Grad Student Grad Student Grad Student Technician Technician Technician (Columbia U. / NASA) Undergrad Volunteer (Grad Student) Volunteer Volunteer Volunteer Volunteer Volunteer ResTech ResTech